1
|
Beck CL, Kirby AM, Roberts S, Kunze A. Multimodal Characterization of Cortical Neuron Response to Permanent Magnetic Field Induced Nanomagnetic Force Maps. ACS NANO 2024; 18:34630-34645. [PMID: 39654337 DOI: 10.1021/acsnano.4c09542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Nanomagnetic forces deliver precise mechanical cues to biological systems through the remote pulling of magnetic nanoparticles under a permanent magnetic field. Cortical neurons respond to nanomagnetic forces with cytosolic calcium influx and event rate shifts. However, the underlying consequences of nanomagnetic force modulation on cortical neurons remain to be elucidated. Here, we integrate electrophysiological and optical recording modalities with nanomagnetic forces to characterize the in vitro functional response to mechanical cues. Neurons exposed to chitosan functionalized magnetic nanoparticles for 24 h and then exposed to magnetic fields capable of generating forces of 2-160 pN present elevated cytosolic calcium in neurons and a time-dynamic electrophysiological spike rate and magnitude response. Extracellular recordings with microelectrode arrays revealed a 2-8 pN force-specific increase in electrophysiological spiking with a trend in reduced activity following 2 min of continuous force exposure. Nanomagnetic forces in the 16-160 pN range produced increased electrophysiological activity and remained excited for up to 4 h under continuous stimulation before silencing. Furthermore, the neuronal response to nanomagnetic forces at 16-160 pN can be electrophysiologically mediated without calcium influx by altering the magnetic nanoparticle-neuron interactions. These results demonstrate that low pN nanomagnetic forces mediate neuronal function and suggest that magnetic nanoparticle interactions and force magnitudes can be harnessed to provoke different responses in cortical neurons.
Collapse
Affiliation(s)
- Connor L Beck
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Andrew M Kirby
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Samuel Roberts
- Department of Chemical Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
- Montana Nanotechnology Facility, Montana State University, Bozeman, Montana 59717, United States
- Optical Technology Center, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
2
|
Hernández-González M, de la Torre-Vázquez J, Barrera-Cobos FJ, Flores-Soto M, Guevara MA, González-Burgos I. Correlation between compulsive behaviors and plastic changes in the dendritic spines of the prefrontal cortex and dorsolateral striatum of male rats. Behav Brain Res 2024; 475:115199. [PMID: 39182621 DOI: 10.1016/j.bbr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a mental affliction characterized by compulsive behaviors often manifested in intrusive thoughts and repetitive actions. The quinpirole model has been used with rats to replicate compulsive behaviors and study the neurophysiological processes associated with this pathology. Several changes in the dendritic spines of the medial prefrontal cortex (mPFC) and dorsolateral striatum (DLS) have been related to the occurrence of compulsive behaviors. Dendritic spines regulate excitatory synaptic contacts, and their morphology is associated with various brain pathologies. The present study was designed to correlate the occurrence of compulsive behaviors (generated by administering the drug quinpirole) with the morphology of the different types of dendritic spines in the mPFC and DLS. A total of 18 male rats were used. Half were assigned to the experimental group, the other half to the control group. The former received injections of quinpirole, while the latter rats were injected with physiological saline solution, for 10 days in both cases. After the experimental treatment, the quinpirole rats exhibited all the parameters indicative of compulsive behavior and a significant correlation with the density of stubby and wide neckless spines in both the mPFC and DLS. Dendritic spines from both mPFC and DLS neurons showed plastic changes correlatively with the expression of compulsive behavior induced by quinpirole. Further studies are suggested to evaluate the involvement of glutamatergic neurotransmission in the neurobiology of OCD.
Collapse
Affiliation(s)
- Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Jahaziel de la Torre-Vázquez
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Francisco Javier Barrera-Cobos
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS. Guadalajara, Jalisco, Mexico
| | - Miguel Angel Guevara
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | | |
Collapse
|
3
|
Xie AX, Iguchi N, Malykhina AP. Long-term follow-up of TREK-1 KO mice reveals the development of bladder hypertrophy and impaired bladder smooth muscle contractility with age. Am J Physiol Renal Physiol 2024; 326:F957-F970. [PMID: 38601986 PMCID: PMC11386977 DOI: 10.1152/ajprenal.00382.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Stretch-activated two-pore domain K+ (K2P) channels play important roles in many visceral organs, including the urinary bladder. The TWIK-related K+ channel TREK-1 is the predominantly expressed K2P channel in the urinary bladder of humans and rodents. Downregulation of TREK-1 channels was observed in the urinary bladder of patients with detrusor overactivity, suggesting their involvement in the pathogenesis of voiding dysfunction. This study aimed to characterize the long-term effects of TREK-1 on bladder function with global and smooth muscle-specific TREK-1 knockout (KO) mice. Bladder morphology, bladder smooth muscle (BSM) contractility, and voiding patterns were evaluated up to 12 mo of age. Both sexes were included in this study to probe the potential sex differences. Smooth muscle-specific TREK-1 KO mice were used to distinguish the effects of TREK-1 downregulation in BSM from the neural pathways involved in the control of bladder contraction and relaxation. TREK-1 KO mice developed enlarged urinary bladders (by 60.0% for males and by 45.1% for females at 6 mo; P < 0.001 compared with the age-matched control group) and had a significantly increased bladder capacity (by 137.7% at 12 mo; P < 0.0001) and compliance (by 73.4% at 12 mo; P < 0.0001). Bladder strips isolated from TREK-1 KO mice exhibited decreased contractility (peak force after KCl at 6 mo was 1.6 ± 0.7 N/g compared with 3.4 ± 2.0 N/g in the control group; P = 0.0005). The lack of TREK-1 channels exclusively in BSM did not replicate the bladder phenotype observed in TREK-1 KO mice, suggesting a strong neurogenic origin of TREK-1-related bladder dysfunction.NEW & NOTEWORTHY This study compared voiding function and bladder phenotypes in global and smooth muscle-specific TREK-1 KO mice. We found significant age-related changes in bladder contractility, suggesting that the lack of TREK-1 channel activity might contribute to age-related changes in bladder smooth muscle physiology.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| | - Nao Iguchi
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| | - Anna P Malykhina
- Division of Urology, Department of SurgeryUniversity of Colorado Anschutz Medical CampusAuroraColoradoUnited States
| |
Collapse
|
4
|
Francis-Oliveira J, Higa GSV, Viana FJC, Cruvinel E, Carlos-Lima E, da Silva Borges F, Zampieri TT, Rebello FP, Ulrich H, De Pasquale R. TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex. Exp Neurol 2024; 373:114652. [PMID: 38103709 DOI: 10.1016/j.expneurol.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development.
Collapse
Affiliation(s)
- José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil; Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP 09210-580, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Thais Tessari Zampieri
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernanda Pereira Rebello
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil.
| |
Collapse
|
5
|
Xia C, Liu C, Ren S, Cai Y, Zhang Q, Xia C. Potassium channels, tumorigenesis and targeted drugs. Biomed Pharmacother 2023; 162:114673. [PMID: 37031494 DOI: 10.1016/j.biopha.2023.114673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
Potassium channels play an important role in human physiological function. Recently, various molecular mechanisms have implicated abnormal functioning of potassium channels in the proliferation, migration, invasion, apoptosis, and cancer stem cell phenotype formation. Potassium channels also mediate the association of tumor cells with the tumor microenvironment. Meanwhile, potassium channels are important targets for cancer chemotherapy. A variety of drugs exert anti-cancer effects by modulating potassium channels in tumor cells. Therefore, there is a need to understand how potassium channels participate in tumor development and progression, which could reveal new, novel targets for cancer diagnosis and treatment. This review summarizes the roles of voltage-gated potassium channels, calcium-activated potassium channels, inwardly rectifying potassium channels, and two-pore domain potassium channels in tumorigenesis and the underlying mechanism of potassium channel-targeted drugs. Therefore, the study lays the foundation for rational and effective drug design and individualized clinical therapeutics.
Collapse
Affiliation(s)
- Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China.
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
6
|
Zhong S, Kiyoshi CM, Du Y, Wang W, Luo Y, Wu X, Taylor AT, Ma B, Aten S, Liu X, Zhou M. Genesis of a functional astrocyte syncytium in the developing mouse hippocampus. Glia 2023; 71:1081-1098. [PMID: 36598109 PMCID: PMC10777263 DOI: 10.1002/glia.24327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Astrocytes are increasingly shown to operate as an isopotential syncytium in brain function. Protoplasmic astrocytes acquire this ability to functionally go beyond the single-cell level by evolving into a spongiform morphology, cytoplasmically connecting into a syncytium, and expressing a high density of K+ conductance. However, none of these cellular/functional features exist in neonatal newborn astrocytes, which imposes a basic question of when a functional syncytium evolves in the developing brain. Our results show that the spongiform morphology of individual astrocytes and their spatial organization all reach stationary levels by postnatal day (P) 15 in the hippocampal CA1 region. Functionally, astrocytes begin to uniformly express a mature level of passive K+ conductance by P11. We next used syncytial isopotentiality measurement to monitor the maturation of the astrocyte syncytium. In uncoupled P1 astrocytes, the substitution of endogenous K+ by a Na+ -electrode solution ([Na+ ]p ) resulted in the total elimination of the physiological membrane potential (VM ), and outward K+ conductance as predicted by the Goldman-Hodgkin-Katz (GHK) equation. As more astrocytes are coupled to each other through gap junctions during development, the [Na+ ]p -induced loss of physiological VM and the outward K+ conductance is progressively compensated by the neighboring astrocytes. By P15, a stably established syncytial isopotentiality (-73 mV), and a fully compensated outward K+ conductance appeared in all [Na+ ]p -recorded astrocytes. Thus, in view of the developmental timeframe wherein a singular syncytium is anatomically and functionally established for intra-syncytium K+ equilibration, an astrocyte syncytium becomes fully operational at P15 in the mouse hippocampus.
Collapse
Affiliation(s)
- Shiying Zhong
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Neurology, Shanghai 10Hospital of Tongji University, School of Medicine, Shanghai, 200072, China
| | - Conrad M. Kiyoshi
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wei Wang
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology, Tongji Medical College, Wuhan, 430030, China
| | - Yumeng Luo
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xiao Wu
- Department of Neurology, Wuhan First Hospital, Wuhan 430022, China
| | - Anne T. Taylor
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Baofeng Ma
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xueyuan Liu
- Department of Neurology, Shanghai 10Hospital of Tongji University, School of Medicine, Shanghai, 200072, China
| | - Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Jia YZ, Li HT, Zhang GM, Wu HY, Zhang SS, Zhi HW, Wang YH, Zhu JW, Wang YF, Xu XQ, Tian CJ, Cui WQ. Electroacupuncture alleviates orofacial allodynia and anxiety-like behaviors by regulating synaptic plasticity of the CA1 hippocampal region in a mouse model of trigeminal neuralgia. Front Mol Neurosci 2022; 15:979483. [PMID: 36277498 PMCID: PMC9582442 DOI: 10.3389/fnmol.2022.979483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Trigeminal neuralgia (TN), one of the most severe and debilitating chronic pain conditions, is often accompanied by mood disorders, such as anxiety and depression. Electroacupuncture (EA) is a characteristic therapy of Traditional Chinese Medicine with analgesic and anxiolytic effects. This study aimed to investigate whether EA ameliorates abnormal TN orofacial pain and anxiety-like behavior by altering synaptic plasticity in the hippocampus CA1. Materials and methods A mouse infraorbital nerve transection model (pT-ION) of neuropathic pain was established, and EA or sham EA was used to treat ipsilateral acupuncture points (GV20-Baihui and ST7-Xiaguan). Golgi-Cox staining and transmission electron microscopy (TEM) were administrated to observe the changes of synaptic plasticity in the hippocampus CA1. Results Stable and persistent orofacial allodynia and anxiety-like behaviors induced by pT-ION were related to changes in hippocampal synaptic plasticity. Golgi stainings showed a decrease in the density of dendritic spines, especially mushroom-type dendritic spines, in hippocampal CA1 neurons of pT-ION mice. TEM results showed that the density of synapses, membrane thickness of the postsynaptic density, and length of the synaptic active zone were decreased, whereas the width of the synaptic cleft was increased in pT-ION mice. EA attenuated pT-ION-induced orofacial allodynia and anxiety-like behaviors and effectively reversed the abnormal changes in dendritic spines and synapse of the hippocampal CA1 region. Conclusion EA modulates synaptic plasticity of hippocampal CA1 neurons, thereby reducing abnormal orofacial pain and anxiety-like behavior. This provides evidence for a TN treatment strategy.
Collapse
Affiliation(s)
- Yu-Zhi Jia
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Tao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Ming Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Si-Shuo Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Wei Zhi
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Han Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Wen Zhu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Fan Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cai-Jun Tian
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Li Z, He Z, Li Z, Sun T, Zhang W, Xiang H. Differential synaptic mechanism underlying the neuronal modulation of prefrontal cortex, amygdala, and hippocampus in response to chronic postsurgical pain with or without cognitive deficits in rats. Front Mol Neurosci 2022; 15:961995. [PMID: 36117908 PMCID: PMC9478413 DOI: 10.3389/fnmol.2022.961995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic Postsurgical Pain (CPSP) is well recognized to impair cognition, particularly memory. Mounting evidence suggests anatomic and mechanistic overlap between pain and cognition on several levels. Interestingly, the drugs currently used for treating chronic pain, including opioids, gabapentin, and NMDAR (N-methyl-D-aspartate receptor) antagonists, are also known to impair cognition. So whether pain-related cognitive deficits have different synaptic mechanisms as those underlying pain remains to be elucidated. In this context, the synaptic transmission in the unsusceptible group (cognitively normal pain rats) was isolated from that in the susceptible group (cognitively compromised pain rats). It was revealed that nearly two-thirds of the CPSP rats suffered cognitive impairment. The whole-cell voltage-clamp recordings revealed that the neuronal excitability and synaptic transmission in the prefrontal cortex and amygdala neurons were enhanced in the unsusceptible group, while these parameters remained the same in the susceptible group. Moreover, the neuronal excitability and synaptic transmission in hippocampus neurons demonstrated the opposite trend. Correspondingly, the levels of synaptic transmission-related proteins demonstrated a tendency similar to that of the excitatory and inhibitory synaptic transmission. Furthermore, morphologically, the synapse ultrastructure varied in the postsynaptic density (PSD) between the CPSP rats with and without cognitive deficits. Together, these observations indicated that basal excitatory and inhibitory synaptic transmission changes were strikingly different between the CPSP rats with and without cognitive deficits.
Collapse
|
9
|
Shetty MS, Ris L, Schindler RFR, Mizuno K, Fedele L, Giese KP, Brand T, Abel T. Mice Lacking the cAMP Effector Protein POPDC1 Show Enhanced Hippocampal Synaptic Plasticity. Cereb Cortex 2022; 32:3457-3471. [PMID: 34937090 PMCID: PMC9376866 DOI: 10.1093/cercor/bhab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cyclic 3',5'-cyclic adenosine monophosphate (cAMP)-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of Popeye domain-containing protein 1 (POPDC1) (or blood vessel epicardial substance (BVES)), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as protein kinase A (PKA) and exchange factor directly activated by cAMP, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have an unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including the hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wild-type mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laurence Ris
- Department of Neuroscience, University of Mons, Research Institute for Health Sciences and Technology, 7000 Mons, Belgium
| | | | - Keiko Mizuno
- Department of Neuroscience, King’s College, London SE5 9NU, UK
| | - Laura Fedele
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | | | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Zheng X, Yang J, Zhu Z, Fang Y, Tian Y, Xie M, Wang W, Liu Y. The Two-Pore Domain Potassium Channel TREK-1 Promotes Blood-Brain Barrier Breakdown and Exacerbates Neuronal Death After Focal Cerebral Ischemia in Mice. Mol Neurobiol 2022; 59:2305-2327. [PMID: 35067892 DOI: 10.1007/s12035-021-02702-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
Earlier studies have shown the neuroprotective role of TWIK-related K+ channel 1 (TREK-1) in global cerebral and spinal cord ischemia, while its function in focal cerebral ischemia has long been debated. This study used TREK-1-deficient mice to directly investigate the role of TREK-1 after focal cerebral ischemia. First, immunofluorescence assays in the mouse cerebral cortex indicated that TREK-1 expression was mostly abundant in astrocytes, neurons, and oligodendrocyte precursor cells but was low in myelinating oligodendrocytes, microglia, or endothelial cells. TREK-1 deficiency did not affect brain weight and morphology or the number of neurons, astrocytes, or microglia but did increase glial fibrillary acidic protein (GFAP) expression in astrocytes of the cerebral cortex. The anatomy of the major cerebral vasculature, number and structure of brain micro blood vessels, and blood-brain barrier integrity were unaltered. Next, mice underwent 60 min of focal cerebral ischemia and 72 h of reperfusion induced by the intraluminal suture method. TREK-1-deficient mice showed less neuronal death, smaller infarction size, milder blood-brain barrier (BBB) breakdown, reduced immune cell invasion, and better neurological function. Finally, the specific pharmacological inhibition of TREK-1 also decreased infarction size and improved neurological function. These results demonstrated that TREK-1 might play a detrimental rather than beneficial role in focal cerebral ischemia, and inhibition of TREK-1 would be a strategy to treat ischemic stroke in the clinic.
Collapse
Affiliation(s)
- Xiaolong Zheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yeye Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Neurological Diseases of Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Abstract
Astroglia are key regulators of synaptic function, playing central roles in homeostatic ion buffering, energy dynamics, transmitter uptake, maintenance of neurotransmitter pools, and regulation of synaptic plasticity through release of neuroactive chemicals. Given the myriad of crucial homeostatic and signaling functions attributed to astrocytes and the variety of neurotransmitter receptors expressed by astroglia, they serve as prime cellular candidates for establishing maladaptive synaptic plasticity following drug exposure. Initial studies on astroglia and addiction have placed drug-mediated disruptions in the homeostatic regulation of glutamate as a central aspect of relapse vulnerability. However, the generation of sophisticated tools to study and manipulate astroglia have proven that the interaction between addictive substances, astroglia, and relapse-relevant synaptic plasticity extends far beyond the homeostatic regulation of glutamate. Here we present astroglial systems impacted by drug exposure and discuss how changes in astroglial biology contribute to addiction biology.
Collapse
|
12
|
Controlled Decompression Attenuates Compressive Injury following Traumatic Brain Injury via TREK-1-Mediated Inhibition of Necroptosis and Neuroinflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4280951. [PMID: 34790287 PMCID: PMC8592713 DOI: 10.1155/2021/4280951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Decompressive craniectomy is an effective strategy to reduce intracranial hypertension after traumatic brain injury (TBI), but it is related to many postoperative complications, such as delayed intracranial hematoma and diffuse brain swelling. Our previous studies have demonstrated that controlled decompression (CDC) surgery attenuates brain injury and reduces the rate of complications after TBI. Here, we investigated the potential molecular mechanisms of CDC in experimental models. The in vitro experiments were performed in a traumatic neuronal injury (TNI) model following compression treatment in primary cultured cortical neurons. We found that compression aggravates TNI-induced neuronal injury, which was significantly attenuated by CDC for 2 h or 3 h. The results of immunocytochemistry showed that CDC reduced neuronal necroptosis and activation of RIP3 induced by TNI and compression, with no effect on RIP1 activity. These protective effects were associated with decreased levels of inflammatory cytokines and preserved intracellular Ca2+ homeostasis. In addition, the expression of the two-pore domain K+ channel TREK-1 and its activity was increased by compression and prolonged by CDC. Treatment with the TREK-1 blockers, spadin or SID1900, could partially prevent the effects of CDC on intracellular Ca2+ metabolism, necroptosis, and neuronal injury following TNI and compression. Using a traumatic intracranial hypertension model in rats, we found that CDC for 20 min or 30 min was effective in alleviating brain edema and locomotor impairment in vivo. CDC significantly inhibited neuronal necroptosis and neuroinflammation and increased TREK-1 activation, and the CDC-induced protection in vivo was attenuated by spadin and SID1900. In summary, CDC is effective in alleviating compressive neuronal injury both in vitro and in vivo, which is associated with the TREK-1-mediated attenuation of intracellular Ca2+ overload, neuronal necroptosis, and neuroinflammation.
Collapse
|
13
|
Choveau FS, Ben Soussia I, Bichet D, Franck CC, Feliciangeli S, Lesage F. Convergence of Multiple Stimuli to a Single Gate in TREK1 and TRAAK Potassium Channels. Front Pharmacol 2021; 12:755826. [PMID: 34658895 PMCID: PMC8514629 DOI: 10.3389/fphar.2021.755826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Inhibitory potassium channels of the TREK1/TRAAK family are integrators of multiple stimuli, including temperature, membrane stretch, polyunsaturated fatty acids and pH. How these signals affect the gating of these channels is the subject of intense research. We have previously identified a cytoplasmic domain, pCt, which plays a major role in controlling channel activity. Here, we use pharmacology to show that the effects of pCt, arachidonic acid, and extracellular pH converge to the same gate within the channel. Using a state-dependent inhibitor, fluoxetine, as well as natural and synthetic openers, we provide further evidence that the “up” and “down” conformations identified by crystallography do not correspond to open and closed states of these channels.
Collapse
Affiliation(s)
- Frank S Choveau
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| | - Ismail Ben Soussia
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| | - Delphine Bichet
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| | - Chatelain C Franck
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| | - Sylvain Feliciangeli
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| | - Florian Lesage
- Université Côte D'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, Valbonne, France
| |
Collapse
|
14
|
Zhou M, Du Y, Aten S, Terman D. On the electrical passivity of astrocyte potassium conductance. J Neurophysiol 2021; 126:1403-1419. [PMID: 34525325 DOI: 10.1152/jn.00330.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Predominant expression of leak-type K+ channels provides astrocytes a high membrane permeability to K+ ions and a hyperpolarized membrane potential that are crucial for astrocyte function in brain homeostasis. In functionally mature astrocytes, the expression of leak K+ channels creates a unique membrane K+ conductance that lacks voltage-dependent rectification. Accordingly, the conductance is named ohmic or passive K+ conductance. Several inwardly rectifying and two-pore domain K+ channels have been investigated for their contributions to passive conductance. Meanwhile, gap junctional coupling has been postulated to underlie the passive behavior of membrane conductance. It is now clear that the intrinsic properties of K+ channels and gap junctional coupling can each act alone or together to bring about a passive behavior of astrocyte conductance. Additionally, while the passive conductance can generally be viewed as a K+ conductance, the actual representation of this conductance is a combined expression of multiple known and unknown K+ channels, which has been further modified by the intricate morphology of individual astrocytes and syncytial gap junctional coupling. The expression of the inwardly rectifying K+ channels explains the inward-going component of passive conductance disobeying Goldman-Hodgkin-Katz constant field outward rectification. However, the K+ channels encoding the outward-going passive currents remain to be determined in the future. Here, we review our current understanding of ion channels and biophysical mechanisms engaged in the passive astrocyte K+ conductance, propose new studies to resolve this long-standing puzzle in astrocyte physiology, and discuss the functional implication(s) of passive behavior of K+ conductance on astrocyte physiology.
Collapse
Affiliation(s)
- Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sydney Aten
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - David Terman
- Department of Mathematics, Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Contribution of Neuronal and Glial Two-Pore-Domain Potassium Channels in Health and Neurological Disorders. Neural Plast 2021; 2021:8643129. [PMID: 34434230 PMCID: PMC8380499 DOI: 10.1155/2021/8643129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023] Open
Abstract
Two-pore-domain potassium (K2P) channels are widespread in the nervous system and play a critical role in maintaining membrane potential in neurons and glia. They have been implicated in many stress-relevant neurological disorders, including pain, sleep disorder, epilepsy, ischemia, and depression. K2P channels give rise to leaky K+ currents, which stabilize cellular membrane potential and regulate cellular excitability. A range of natural and chemical effectors, including temperature, pressure, pH, phospholipids, and intracellular signaling molecules, substantially modulate the activity of K2P channels. In this review, we summarize the contribution of K2P channels to neuronal excitability and to potassium homeostasis in glia. We describe recently discovered functions of K2P channels in glia, such as astrocytic passive conductance and glutamate release, microglial surveillance, and myelin generation by oligodendrocytes. We also discuss the potential role of glial K2P channels in neurological disorders. In the end, we discuss current limitations in K2P channel researches and suggest directions for future studies.
Collapse
|
16
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
17
|
Li XL, Tang CY, Wang S, Zhao M, Wang XF, Li TF, Qi XL, Luan GM, Guan YG. Regulation of TWIK-related K + channel 1 in the anterior hippocampus of patients with temporal lobe epilepsy with comorbid depression. Epilepsy Behav 2021; 121:108045. [PMID: 34116339 DOI: 10.1016/j.yebeh.2021.108045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Epilepsy with comorbid depression has recently attracted increasing attention. Temporal lobe epilepsy (TLE) may represent an increased risk of developing depression, especially if the seizures do not generalize. The two-pore domain potassium channel-TWIK-related K+ channel (TREK-1) plays important roles in both epilepsy and depression. However, the changes in its expression in patients with epilepsy with comorbid depression remain unclear. In the present study, we analyzed depressive symptoms using neuropsychiatric scales in forty-two patients with drug-resistant TLE, who also underwent EEG in waking and sleeping states, as well as 3.0 T brain MRI. We tested for TREK-1 positive neurons and microglial cells in the anterior hippocampi of patients with drug-resistant TLE with and without comorbid depression (n=5/group). Approximately 31% of patients with TLE had comorbid depression (13/42). Meanwhile, the patients who had hippocampal sclerosis had much higher scores on the depression rating scale. The results indicated the contribution of hippocampal sclerosis to the development of depression. Immunostaining of TREK-1 channels was observed in neurons and glia in the anterior hippocampus. Increased immunoreactivity of TREK-1 neurons was observed in the hippocampi of patients with TLE with comorbid depression compared with nondepressed patients with TLE. TREK-1 was expressed in almost all microglia. Curiously, more activated TREK-1-positive microglia were observed in patients with TLE with depression than in those without depression. The results suggested that a change in TREK-1 immunoreactivity was involved, at least partly, in the development of depression as a comorbidity of TLE. Imbalance of the TREK-1 channel may be a potential target for the treatment of patients with epilepsy with comorbid depression.
Collapse
Affiliation(s)
- Xiao-Li Li
- Department of Neurology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, China; Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chong-Yang Tang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Shu Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Meng Zhao
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiong-Fei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tian-Fu Li
- Department of Neurology, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China; Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Xue-Ling Qi
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guo-Ming Luan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China; Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Yu-Guang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Epilepsy, Beijing, China; Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Stephan J, Eitelmann S, Zhou M. Approaches to Study Gap Junctional Coupling. Front Cell Neurosci 2021; 15:640406. [PMID: 33776652 PMCID: PMC7987795 DOI: 10.3389/fncel.2021.640406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Astrocytes and oligodendrocytes are main players in the brain to ensure ion and neurotransmitter homeostasis, metabolic supply, and fast action potential propagation in axons. These functions are fostered by the formation of large syncytia in which mainly astrocytes and oligodendrocytes are directly coupled. Panglial networks constitute on connexin-based gap junctions in the membranes of neighboring cells that allow the passage of ions, metabolites, and currents. However, these networks are not uniform but exhibit a brain region-dependent heterogeneous connectivity influencing electrical communication and intercellular ion spread. Here, we describe different approaches to analyze gap junctional communication in acute tissue slices that can be implemented easily in most electrophysiology and imaging laboratories. These approaches include paired recordings, determination of syncytial isopotentiality, tracer coupling followed by analysis of network topography, and wide field imaging of ion sensitive dyes. These approaches are capable to reveal cellular heterogeneity causing electrical isolation of functional circuits, reduced ion-transfer between different cell types, and anisotropy of tracer coupling. With a selective or combinatory use of these methods, the results will shed light on cellular properties of glial cells and their contribution to neuronal function.
Collapse
Affiliation(s)
- Jonathan Stephan
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Eitelmann
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Min Zhou
- Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
Epileptiform Neuronal Discharges Impair Astrocyte Syncytial Isopotentiality in Acute Hippocampal Slices. Brain Sci 2020; 10:brainsci10040208. [PMID: 32252295 PMCID: PMC7226063 DOI: 10.3390/brainsci10040208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Astrocyte syncytial isopotentiality is a physiological mechanism resulting from a strong electrical coupling among astrocytes. We have previously shown that syncytial isopotentiality exists as a system-wide feature that coordinates astrocytes into a system for high efficient regulation of brain homeostasis. Neuronal activity is known to regulate gap junction coupling through alteration of extracellular ions and neurotransmitters. However, the extent to which epileptic neuronal activity impairs the syncytial isopotentiality is unknown. Here, the neuronal epileptiform bursts were induced in acute hippocampal slices by removal of Mg2+ (Mg2+ free) from bath solution and inhibition of γ-aminobutyric acid A (GABAA) receptors by 100 µM picrotoxin (PTX). The change in syncytial coupling was monitored by using a K+ free-Na+-containing electrode solution ([Na+]p) in the electrophysiological recording where the substitution of intracellular K+ by Na+ ions dissipates the physiological membrane potential (VM) to ~0 mV in the recorded astrocyte. However, in a syncytial coupled astrocyte, the [Na+]p induced VM loss can be compensated by the coupled astrocytes to a quasi-physiological membrane potential of ~73 mV. After short-term exposure to this experimental epileptic condition, a significant closure of syncytial coupling was indicated by a shift of the quasi-physiological membrane potential to −60 mV, corresponding to a 90% reduction of syncytial coupling strength. Consequently, the closure of syncytial coupling significantly decreased the ability of the syncytium for spatial redistribution of K+ ions. Altogether, our results show that epileptiform neuronal discharges weaken the strength of syncytial coupling and that in turn impairs the capacity of a syncytium for spatial redistribution of K+ ions.
Collapse
|