1
|
Hernández-Núñez I, Clark BS. Experimental Framework for Assessing Mouse Retinal Regeneration Through Single-Cell RNA-Sequencing. Methods Mol Biol 2025; 2848:117-134. [PMID: 39240520 DOI: 10.1007/978-1-0716-4087-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Retinal degenerative diseases including age-related macular degeneration and glaucoma are estimated to currently affect more than 14 million people in the United States, with an increased prevalence of retinal degenerations in aged individuals. An expanding aged population who are living longer forecasts an increased prevalence and economic burden of visual impairments. Improvements to visual health and treatment paradigms for progressive retinal degenerations slow vision loss. However, current treatments fail to remedy the root cause of visual impairments caused by retinal degenerations-loss of retinal neurons. Stimulation of retinal regeneration from endogenous cellular sources presents an exciting treatment avenue for replacement of lost retinal cells. In multiple species including zebrafish and Xenopus, Müller glial cells maintain a highly efficient regenerative ability to reconstitute lost cells throughout the organism's lifespan, highlighting potential therapeutic avenues for stimulation of retinal regeneration in humans. Here, we describe how the application of single-cell RNA-sequencing (scRNA-seq) has enhanced our understanding of Müller glial cell-derived retinal regeneration, including the characterization of gene regulatory networks that facilitate/inhibit regenerative responses. Additionally, we provide a validated experimental framework for cellular preparation of mouse retinal cells as input into scRNA-seq experiments, including insights into experimental design and analyses of resulting data.
Collapse
Affiliation(s)
- Ismael Hernández-Núñez
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Clark
- John F Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Ceisel A, Emmerich K, McNamara G, Graziano G, Banerjee S, Reibman B, Saxena MT, Mumm JS. Automated In Vivo Phenotypic Screening Platform for Identifying Factors that Affect Cell Regeneration Kinetics. Methods Mol Biol 2025; 2848:217-247. [PMID: 39240526 DOI: 10.1007/978-1-0716-4087-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Various strategies for replacing retinal neurons lost in degenerative diseases are under investigation, including stimulating the endogenous regenerative capacity of Müller Glia (MG) as injury-inducible retinal stem cells. Inherently regenerative species, such as zebrafish, have provided key insights into mechanisms regulating MG dedifferentiation to a stem-like state and the proliferation of MG and MG-derived progenitor cells (MGPCs). Interestingly, promoting MG/MGPC proliferation is not sufficient for regeneration, yet mechanistic studies are often focused on this measure. To fully account for the regenerative process, and facilitate screens for factors regulating cell regeneration, an assay for quantifying cell replacement is required. Accordingly, we adapted an automated reporter-assisted phenotypic screening platform to quantify the pace of cellular regeneration kinetics following selective cell ablation in larval zebrafish. Here, we detail a method for using this approach to identify chemicals and genes that control the rate of retinal cell regeneration following selective retinal cell ablation.
Collapse
Affiliation(s)
- Anneliese Ceisel
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, McKusick-Nathans Institute, Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George McNamara
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gianna Graziano
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shreya Banerjee
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barak Reibman
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, McKusick-Nathans Institute, Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Foley T, Thetiot M, Bally-Cuif L. Neural Stem Cell Regulation in Zebrafish. Annu Rev Genet 2024; 58:249-272. [PMID: 39121542 DOI: 10.1146/annurev-genet-111523-101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Neural stem cells (NSCs) are progenitor cell populations generating glial cells and neurons and endowed with long-lasting self-renewal and differentiation potential. While some neural progenitors (NPs) in the embryonic nervous system are also long-lived and match this definition, the term NSC classically refers to such progenitor types in the adult. With the discovery of extensive NSC populations in the adult brain of Danio rerio (zebrafish) and of their high neurogenic activity, including for neuronal regeneration, this model organism has become a powerful tool to characterize and mechanistically dissect NSC properties. On these bases, this article will consider NSCs in the adult zebrafish brain, with a focus on its most extensively characterized domain, the telencephalon (notably its dorsal part, the pallium). Whenever necessary, we will also refer to other brain subdivisions, embryonic processes, and the mouse adult brain, whether for comparative purposes or because more information is available in these other systems.
Collapse
Affiliation(s)
- Tanya Foley
- Zebrafish Neurogenetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Paris, France; , ,
| | - Melina Thetiot
- Zebrafish Neurogenetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Paris, France; , ,
| | - Laure Bally-Cuif
- Zebrafish Neurogenetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Paris, France; , ,
| |
Collapse
|
4
|
Vecchiotti D, Di Vito Nolfi M, Veglianti F, Dall’Aglio F, Khan HN, Flati I, Verzella D, Capece D, Alesse E, Angelucci A, Zazzeroni F. A 3D Bioprinting Approach to Studying Retinal Müller Cells. Genes (Basel) 2024; 15:1414. [PMID: 39596614 PMCID: PMC11593586 DOI: 10.3390/genes15111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Bioprinting is an innovative technology in tissue engineering, enabling the creation of complex biological structures. This study aims to develop a three-dimensional (3D) bioprinted model of Müller cells (MCs) to enhance our understanding of their physiological and pathological roles in the retina. Methods: We investigated two different hydrogels for their ability to support the viability and differentiation of rMC-1 cells, an immortalized retinal cell line. Using 3D bioprinting technology, we assessed cell viability, differentiation, and functional characteristics through various assays, including live/dead assays and western blot analysis. Results: The collagen-based hydrogel significantly improved the viability of rMC-1 cells and facilitated the formation of spheroid aggregates, more accurately mimicking in vivo conditions compared to traditional two-dimensional (2D) culture systems. Moreover, 3D bioprinted MCs exhibited reduced markers of gliosis and oxidative stress compared to 2D cultures. Molecular analysis revealed decreased expression of GFAP and phosphorylated ERK in the 3D setting, indicating a less stressed cellular phenotype. Conclusions: Our findings demonstrate that 3D bioprinting technologies provide a more predictive platform for studying the biology of retinal MCs, which can help in the development of targeted therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Veglianti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Dall’Aglio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Hafiz Nadeem Khan
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Irene Flati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
5
|
Wang Y, Yuan B, Liu W, Cui J, Zhou X, Yuan L, Deng Z, Li Y, Yuan X. The Xaliproden Nanoscale Zirconium-Porphyrin Metal-Organic Framework (XAL-NPMOF) Promotes Photoreceptor Regeneration Following Oxidative and Inflammatory Insults. Int J Nanomedicine 2024; 19:10387-10400. [PMID: 39430310 PMCID: PMC11490251 DOI: 10.2147/ijn.s477011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Background Age-related macular degeneration (AMD) is becoming the leading cause of blindness in the aged population. The death of photoreceptors is the principal event which is lack of curative treatment. Xaliproden, a highly selective synthetic 5-OH-tryptamine (5HT) 1A receptor agonist, has the neuroprotective potential. However, its application has been limited by the insoluble formulation, low utilization efficiency and side effects caused by systemic administration. Methods Nanoscale zirconium-porphyrin metal-organic framework (NPMOF) was used as a skeleton and loaded with xaliproden (XAL) to prepare a novel kind of nanoparticle, namely, XAL-NPMOF. The human umbilical vein endothelial cells, zebrafish embryos and larvae were used to test the biotoxicity and fluorescence imaging capability of XAL-NPMOF both in vitro and in vivo. A photoreceptor degeneration model was generated by intense light injury in adult zebrafish and XAL-NPMOF was delivered to the injured retina by intraocular injection. The photoreceptor regeneration, inflammatory response and visual function were explored by immunohistochemistry, quantitative real-time polymerase chain reaction and optomotor response analysis. Results Following a single XAL-NPMOF intraocular injection, the injured retina underwent the faster photoreceptor regeneration with a recovery of visual function via promoting cell proliferation, suppressing the inflammatory responses and increasing the expression of antioxidases. Conclusion As an amplifier, NPMOF can enhance the anti-inflammatory efficacy and neuroprotective effect of xaliproden. XAL-NPMOF could be a novel and convenient option for the treatment of AMD.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, People’s Republic of China
| | - Bo Yuan
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
| | - Wei Liu
- Tianjin Zhonghe Gene Technology Limited Company, Tianjin, People’s Republic of China
| | - Jianlin Cui
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
| | - Xueyan Zhou
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
| | - Liyun Yuan
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
| | - Zihao Deng
- Cancer Center, Capital Medical University, Beijing, People’s Republic of China
| | - Yuhao Li
- Central Laboratory, Xuanwu Hospital Capital Medical University, Beijing Geriatric Medical Research Center, Beijing, People’s Republic of China
- Optometry Institute, Nankai University, Tianjin, People’s Republic of China
| | - Xiaoyong Yuan
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin, People’s Republic of China
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
6
|
Song P, Parsana D, Singh R, Pollock LM, Anand-Apte B, Perkins BD. Photoreceptor regeneration occurs normally in microglia-deficient irf8 mutant zebrafish following acute retinal damage. Sci Rep 2024; 14:20146. [PMID: 39209978 PMCID: PMC11362524 DOI: 10.1038/s41598-024-70859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Microglia are resident immune cells in the central nervous system, including the retina that surveil the environment for damage and infection. Following retinal damage, microglia undergo morphological changes, migrate to the site of damage, and express and secrete pro-inflammatory signals. In the zebrafish retina, inflammation induces the reprogramming and proliferation of Müller glia and the regeneration of neurons following damage or injury. Immunosuppression or pharmacological ablation of microglia reduce or abolish Müller glia proliferation. We evaluated the retinal architecture and retinal regeneration in adult zebrafish irf8 mutants, which have significantly depleted numbers of microglia. We show that irf8 mutants have normal retinal structure at 3 months post fertilization (mpf) and 6 mpf but fewer cone photoreceptors by 10 mpf. Surprisingly, light-induced photoreceptor ablation induced Müller glia proliferation in irf8 mutants and cone and rod photoreceptor regeneration. Light-damaged retinas from both wild-type and irf8 mutants show upregulated expression of mmp-9, il8, and tnfβ pro-inflammatory cytokines. Our data demonstrate that adult zebrafish irf8 mutants can regenerate normally following acute retinal injury. These findings suggest that microglia may not be essential for retinal regeneration in zebrafish and that other mechanisms can compensate for the reduction in microglia numbers.
Collapse
Affiliation(s)
- Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dhwani Parsana
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lana M Pollock
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Brian D Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Han C, Li Y, Zheng X, Zhang X, Li G, Zhao L, Chen Z, Yang Y, Zhang W. AQP4- and Kir4.1-Mediated Müller Cell Oedema Is Involved in Retinal Injury Induced By Hypobaric Hypoxia. Mol Neurobiol 2024:10.1007/s12035-024-04382-3. [PMID: 39060906 DOI: 10.1007/s12035-024-04382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Hypobaric hypoxia is the main cause of high-altitude retinopathy (HAR). Retinal oedema is the key pathological change in HAR. However, its pathological mechanism is not clear. In this study, a 5000-m hypobaric hypoxic environment was simulated. Haematoxylin and eosin (H&E) staining and electrophysiological (ERG) detection were used to observe the morphological and functional changes in the retina of mice under hypobaric hypoxia for 2-72 h. Toluidine blue staining and transmission electron microscopy were used to observe the morphology of Müller cells in the hypobaric hypoxia groups. The functional changes and oedema mechanism of Müller cells were detected by immunofluorescence and western blotting. The expression levels of glutamine synthetase (GS), glial fibrillary acidic protein (GFAP), aquaporin 4 (AQP4), and inwardly rectifying potassium channel subtype 4.1 (Kir4.1) in Müller cells were quantitatively analysed. This study revealed that retinal oedema gradually increased with prolonged exposure to a 5000-m hypobaric hypoxic environment. In addition, the ERG showed that the time delay and amplitude of the a-wave and b-wave decreased. The expression of GS decreased, and the expression of GFAP increased in Müller cells after exposure to hypobaric hypoxia for 4 h. At the same time, retinal AQP4 expression increased, and Kir4.1 expression decreased. The oedema and functional changes in Müller cells are consistent with the time point of retinal oedema. In conclusion, Müller cell oedema is involved in retinal oedema induced by hypobaric hypoxia. An increase in AQP4 and a decrease in Kir4.1 are the main causes of Müller cell oedema caused by hypobaric hypoxia.
Collapse
Affiliation(s)
- Cong Han
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yuting Li
- Department of Pathology, Basic Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xingxing Zheng
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaoxia Zhang
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Guonian Li
- Department of Traditional Chinese Medicine, Xi'an Baoshi Flower Changqing Hospital, Shaanxi, 710201, China
| | - Liangtao Zhao
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhaoqian Chen
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yi Yang
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
8
|
Huang X, Luodan A, Gao H, He J, Ge L, Cha Z, Gong H, Lin X, Li H, Tang Y, Jiang D, Fan X, Xu H. Mitochondrial transfer between BMSCs and Müller promotes mitochondrial fusion and suppresses gliosis in degenerative retina. iScience 2024; 27:110309. [PMID: 39055937 PMCID: PMC11269791 DOI: 10.1016/j.isci.2024.110309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondrial dysfunction and Müller cells gliosis are significant pathological characteristics of retinal degeneration (RD) and causing blinding. Stem cell therapy is a promising treatment for RD, the recently accepted therapeutic mechanism is cell fusion induced materials transfer. However, whether materials including mitochondrial transfer between grafted stem cells and recipient's cells contribute to suppressing gliosis and mechanism are unclear. In present study, we demonstrated that bone marrow mesenchymal stem cells (BMSCs) transferred mitochondria to Müller cells by cell fusion and tunneling nanotubes. BMSCs-derived mitochondria (BMSCs-mito) were integrated into mitochondrial network of Müller cells, improving mitochondrial function, reducing oxidative stress and gliosis, which protected visual function partially in the degenerative rat retina. RNA sequencing analysis revealed that BMSCs-mito increased mitochondrial DNA (mtDNA) content and facilitated mitochondrial fusion in damaged Müller cells. It suggests that mitochondrial transfer from BMSCs remodels Müller cells metabolism and suppresses gliosis; thus, delaying the degenerative progression of RD.
Collapse
Affiliation(s)
- Xiaona Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Juncai He
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Zhe Cha
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xi Lin
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Huiting Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yongping Tang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dan Jiang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
9
|
Rueda-Latorre D, Sosa-Lockward JA, Abreu-Arbaje N. Presence of subfoveal hyperreflective dots as an anatomic and functional prognostic biomarker in macular holes. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2024; 99:232-236. [PMID: 38663716 DOI: 10.1016/j.oftale.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE To evaluate the presence of subfoveal hyperreflective dots (SfHD) using optical coherence tomography (OCT) in macular holes (MH) and establish whether there is a relationship with postoperative anatomical and functional outcomes. METHODS An observational cross-sectional study was conducted at the Dr. Elías Santana Hospital. Sixty-eight eyes of 67 patients with a tomographic diagnosis of full-thickness MH who underwent pars plana vitrectomy (PPV) and internal limiting membrane (ILM) peeling were included. Preoperative and postoperative measurements were obtained using radial macular scans and HD raster scans with Optovue and Cirrus 5000 (Zeiss) OCT machines. The main outcome measures were anatomical closure by OCT and functional outcome through best-corrected visual acuity (BCVA). RESULTS The anatomical closure rate in our study was 63%. MHs that failed to achieve anatomical closure exhibited a higher number of hyperreflective dots and worse postoperative BCVA. A statistically significant association was found between exposed retinal pigment epithelium (RPE) in microns and the number of SfHD (P = .001). CONCLUSION SfHD is a common tomographic finding in MH, and the presence of a higher number of these points is associated with poorer anatomical and functional outcomes. This imaging finding is a potential prognostic biomarker in this pathology.
Collapse
Affiliation(s)
- D Rueda-Latorre
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, República Dominicana; Servicio de Oftalmología, Centro Cristiano de Servicios Médicos, Hospital Dr. Elías Santana, Santo Domingo, República Dominicana.
| | - J A Sosa-Lockward
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, República Dominicana; Servicio de Oftalmología, Centro Cristiano de Servicios Médicos, Hospital Dr. Elías Santana, Santo Domingo, República Dominicana; Departamento de Retina y Vítreo, Hospital Dr. Elías Santana, Santo Domingo, República Dominicana
| | - N Abreu-Arbaje
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, República Dominicana; Servicio de Oftalmología, Centro Cristiano de Servicios Médicos, Hospital Dr. Elías Santana, Santo Domingo, República Dominicana; Departamento de Retina y Vítreo, Hospital Dr. Elías Santana, Santo Domingo, República Dominicana
| |
Collapse
|
10
|
Deng X, Mo Y, Zhu X. Deciphering Müller cell heterogeneity signatures in diabetic retinopathy across species: an integrative single-cell analysis. Eur J Med Res 2024; 29:265. [PMID: 38698486 PMCID: PMC11067085 DOI: 10.1186/s40001-024-01847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Diabetic retinopathy (DR), a leading cause of visual impairment, demands a profound comprehension of its cellular mechanisms to formulate effective therapeutic strategies. Our study presentes a comprehensive single-cell analysis elucidating the intricate landscape of Müller cells within DR, emphasizing their nuanced involvement. Utilizing scRNA-seq data from both Sprague-Dawley rat models and human patients, we delineated distinct Müller cell clusters and their corresponding gene expression profiles. These findings were further validated through differential gene expression analysis utilizing human transcriptomic data. Notably, certain Müller cell clusters displayed upregulation of the Rho gene, implying a phagocytic response to damaged photoreceptors within the DR microenvironment. This phenomenon was consistently observed across species. Additionally, the co-expression patterns of RHO and PDE6G within Müller cell clusters provided compelling evidence supporting their potential role in maintaining retinal integrity during DR. Our results offer novel insights into the cellular dynamics of DR and underscore Müller cells as promising therapeutic targets for preserving vision in retinal disorders induced by diabetes.
Collapse
Affiliation(s)
- Xiyuan Deng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Mo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiuying Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Liao Y, Wu M. Comparison of the effects of EGF, FGF-b, and NGF on the proliferation, migration, and reprogramming of primary rat Müller cells. Front Cell Neurosci 2024; 18:1338129. [PMID: 38450284 PMCID: PMC10914979 DOI: 10.3389/fncel.2024.1338129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Purpose During the healing process of full-thickness macular holes (FTMHs), the closure and recovery of the hole depend on the migration, proliferation, and activation of Müller cells to promote the closure of holes and restoration of the photosensitive layer. In this study, we investigated the ability of the epidermal growth factor (EGF), fibroblast growth factor-basic (FGF-b), and nerve growth factor (NGF) to influence this process by regulating proliferation, migration, and reprogramming of primary rat Müller cells. Methods Cell proliferation was measured using CCK8 [2- (2-Methoxy-4-nitrophenyl)-3- (4-nitrophenyl)-5- (2,4-disulfophenyl)-2H-tetrazolium Sodium Salt] colorimetric assays and EdU [5-Ethynyl-2'-deoxyuridine] assays over 48 h. Cell migration was measured using scratch-wound assays and transwell migration assays over 48 h. In addition, we conducted Western blot assays and immunofluorescence assays on cells that were specially treated for 1, 3, and 5 days for cell reprogramming. The percentage of EdU-positive cells in Nestin-positive have also been tested by co-immunofluorescence (Co-IF) staining. Results EGF and FGF-b significantly promoted the proliferation of Müller cells (p < 0.05) at a concentration of 0-50 ng/mL, but NGF did not (p > 0.05), compared to untreated controls. Exogenous FGF-b and EGF promote the reprogramming of primary rat Müller cells, significantly enhancing the neural stem cell marker Nestin after stimulation on the 1st, 3rd, and 5th days, respectively. The expression of Müller cell marker Vimentin was significantly (p < 0.05) reduced during this period compared to the control group. However, there was no significant difference between the NGF and control groups. Furthermore, the EGF group expressed stronger Nestin expression than the SCM group. The Co-IF staining showed that early 50% of activated cells came from newly proliferating cells on the 5th day. Conclusion These observations suggest that FGF-b can promote the activation of Müller cells in a short time and enhance the possessive features of neural stem cells, while EGF may act for a longer period of time. This may further the understanding of growth factor therapy in treating FTMHs, and Müller glia may be promising candidates for cell replacement therapy.
Collapse
Affiliation(s)
- Yanying Liao
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Miaoqin Wu
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int J Mol Sci 2024; 25:2145. [PMID: 38396822 PMCID: PMC10889087 DOI: 10.3390/ijms25042145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are an emergent animal model to study human diseases due to their significant genetic similarity to humans, swift development, and genetic manipulability. Their utility extends to the exploration of the involvement of inflammation in host defense, immune responses, and tissue regeneration. Additionally, the zebrafish model system facilitates prompt screening of chemical compounds that affect inflammation. This study explored the diverse roles of inflammatory pathways in zebrafish development and aging. Serving as a crucial model, zebrafish provides insights into the intricate interplay of inflammation in both developmental and aging contexts. The evidence presented suggests that the same inflammatory signaling pathways often play instructive or beneficial roles during embryogenesis and are associated with malignancies in adults.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francisco Juan Martínez-Navarro
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María L. Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
13
|
Henze D, Majdi JA, Cohen ED. Effect of epiretinal electrical stimulation on the glial cells in a rabbit retinal eyecup model. Front Neurosci 2024; 18:1290829. [PMID: 38318467 PMCID: PMC10839094 DOI: 10.3389/fnins.2024.1290829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction We examined how pulse train electrical stimulation of the inner surface of the rabbit retina effected the resident glial cells. We used a rabbit retinal eyecup preparation model, transparent stimulus electrodes, and optical coherence tomography (OCT). The endfeet of Müller glia processes line the inner limiting membrane (ILM). Methods To examine how epiretinal electrode stimulation affected the Müller glia, we labeled them post stimulation using antibodies against soluble glutamine synthetase (GS). After 5 min 50 Hz pulse train stimulation 30 μm from the surface, the retina was fixed, immunostained for Müller glia, and examined using confocal microscopic reconstruction. Stimulus pulse charge densities between 133-749 μC/cm2/ph were examined. Results High charge density stimulation (442-749 μC/cm2/ph) caused significant losses in the GS immunofluorescence of the Müller glia endfeet under the electrode. This loss of immunofluorescence was correlated with stimuli causing ILM detachment when measured using OCT. Müller cells show potassium conductances at rest that are blocked by barium ions. Using 30 msec 20 μA stimulus current pulses across the eyecup, the change in transretinal resistance was examined by adding barium to the Ringer. Barium caused little change in the transretinal resistance, suggesting under low charge density stimulus pulse conditions, the Müller cell radial conductance pathway for these stimulus currents was small. To examine how epiretinal electrode stimulation affected the microglia, we used lectin staining 0-4 h post stimulation. After stimulation at high charge densities 749 μC/cm2/ph, the microglia under the electrode appeared rounded, while the local microglia outside the electrode responded to the stimulated retina by process orientation inwards in a ring by 30 min post stimulation. Discussion Our study of glial cells in a rabbit eyecup model using transparent electrode imaging suggests that epiretinal electrical stimulation at high pulse charge densities, can injure the Müller and microglia cells lining the inner retinal surface in addition to ganglion cells.
Collapse
Affiliation(s)
- Dean Henze
- University of San Diego, San Diego, CA, United States
| | - Joseph A. Majdi
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, MD, United States
| | - Ethan D. Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, White Oak Federal Research Labs, Silver Spring, MD, United States
| |
Collapse
|
14
|
Guo YM, Jiang X, Min J, Huang J, Huang XF, Ye L. Advances in the study of Müller glia reprogramming in mammals. Front Cell Neurosci 2023; 17:1305896. [PMID: 38155865 PMCID: PMC10752929 DOI: 10.3389/fncel.2023.1305896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Müller cells play an integral role in the development, maintenance, and photopic signal transmission of the retina. While lower vertebrate Müller cells can differentiate into various types of retinal neurons to support retinal repair following damage, there is limited neurogenic potential of mammalian Müller cells. Therefore, it is of great interest to harness the neurogenic potential of mammalian Müller cells to achieve self-repair of the retina. While multiple studies have endeavored to induce neuronal differentiation and proliferation of mammalian Müller cells under defined conditions, the efficiency and feasibility of these methods often fall short, rendering them inadequate for the requisites of retinal repair. As the mechanisms and methodologies of Müller cell reprogramming have been extensively explored, a summary of the reprogramming process of unlocking the neurogenic potential of Müller cells can provide insight into Müller cell fate development and facilitate their therapeutic use in retinal repair. In this review, we comprehensively summarize the progress in reprogramming mammalian Müller cells and discuss strategies for optimizing methods and enhancing efficiency based on the mechanisms of fate regulation.
Collapse
Affiliation(s)
- Yi-Ming Guo
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xinyi Jiang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Min
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Juan Huang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Ye
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| |
Collapse
|
15
|
Sukkar B, Oktay L, Sahaboglu A, Moayedi A, Zenouri S, Al-Maghout T, Cantó A, Miranda M, Durdagi S, Hosseinzadeh Z. Inhibition of altered Orai1 channels in Müller cells protects photoreceptors in retinal degeneration. Glia 2023; 71:2511-2526. [PMID: 37533369 DOI: 10.1002/glia.24429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023]
Abstract
The expressions of ion channels by Müller glial cells (MGCs) may change in response to various retinal pathophysiological conditions. There remains a gap in our understanding of MGCs' responses to photoreceptor degeneration towards finding therapies. The study explores how an inhibition of store-operated Ca2+ entry (SOCE) and its major component, Orai1 channel, in MGCs protects photoreceptors from degeneration. The study revealed increased Orai1 expression in the MGCs of retinal degeneration 10 (rd10) mice. Enhanced expression of oxidative stress markers was confirmed as a crucial pathological mechanism in rd10 retina. Inducing oxidative stress in rat MGCs resulted in increasing SOCE and Ca2+ release-activated Ca2+ (CRAC) currents. SOCE inhibition by 2-Aminoethoxydiphenyl borate (2-APB) protected photoreceptors in degenerated retinas. Finally, molecular simulations proved the structural and dynamical features of 2-APB to the target structure Orai1. Our results provide new insights into the physiology of MGCs regarding retinal degeneration and shed a light on SOCE and Orai1 as new therapeutic targets.
Collapse
Affiliation(s)
- Basma Sukkar
- Paul Flechsig Institute, Centre of Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
| | - Lalehan Oktay
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Ayse Sahaboglu
- Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Tübingen, Germany
| | - Aylin Moayedi
- Paul Flechsig Institute, Centre of Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
| | - Shima Zenouri
- Paul Flechsig Institute, Centre of Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
| | - Tamer Al-Maghout
- Department of Cardiology and Vascular Medicine and Physiology, University of Tübingen, Tübingen, Germany
| | - Antolin Cantó
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - María Miranda
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Molecular Therapy Laboratory, School of Pharmacy, Bahcesehir University, Istanbul, Turkey
| | - Zohreh Hosseinzadeh
- Paul Flechsig Institute, Centre of Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Zeng Q, Zhou J, Hua X. TRIM9 promotes Müller cell-derived retinal stem cells to differentiate into retinal ganglion cells by regulating Atoh7. In Vitro Cell Dev Biol Anim 2023; 59:586-595. [PMID: 37792226 DOI: 10.1007/s11626-023-00807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023]
Abstract
Glaucoma is a multifactorial, irreversible blinding eye disease characterized by a large number of retinal ganglion cell (RGC) deaths. Müller cell-derived retinal stem cells (RSCs) can be induced to differentiate into RGCs under certain conditions. This study aimed to explore the regulatory effect and mechanism of TRIM9 on the differentiation of Müller cell-derived stem cells into RGCs. First, episcleral vein cauterization was used to induce high intraocular pressure (IOP) rat model. Next, Müller cells were isolated from rat retina, identified and induced to dedifferentiate into RSCs. Finally, RSCs were intervened with lentivirus PGC-FU-TRIM9-GFP transfection or siRNA Atoh7 and induced to redifferentiate into RGCs. In vivo, TRIM9 was highly expressed and Müller cells proliferated abnormally in the high IOP rat model. In vitro, S-100, GFAP, vimentin, and GS were positively expressed in Müller cells isolated from rat retina, and the purity of cells was 97.17%. Under the stimulation of cytokines, the proliferative capacity of the cells and the expression of Nestin and Ki67 gradually increased with the prolongation of culture time. Furthermore, RSCs transfected with the lentiviral vector PGC-FU-TRIM9-GFP displayed a striking morphological feature of long neurites. Additionally, there was a remarkable increase in the fluorescence intensity of Brn-3b and Thy1.1, accompanied by elevated mRNA and protein expression levels of Brn-3b, Thy1.1, and Atoh7. After knocking down Atoh7, the effect of TRIM9 on the above indicators was reversed. TRIM9 might promote the differentiation of Müller cells into RGCs by regulating the expression of Atoh7.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Ophthalmology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410008, China.
| | - Jinglin Zhou
- Department of Ophthalmology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410008, China
| | - Xingyu Hua
- Department of Ophthalmology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410008, China
| |
Collapse
|
17
|
Fang XL, Zhang Q, Xue WW, Tao JH, Zou HD, Lin QR, Wang YL. Suppression of cAMP/PKA/CREB signaling ameliorates retinal injury in diabetic retinopathy. Kaohsiung J Med Sci 2023; 39:916-926. [PMID: 37338034 DOI: 10.1002/kjm2.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
The blood-retinal barrier (BRB), homeostasis, neuronal integrity, and metabolic processes are all directly influenced by Müller cells, the most important retinal glial cells. We isolated primary Müller cells from Sprague-Dawley (SD) neonatal rats and treated them with glucose at varying doses. CCK-8 was used to quantify cellular viability, and a TUNEL assay was performed to detect cell apoptosis. ELISA, immunofluorescence, and western blotting were used to assess cAMP/PKA/CREB signaling, Kir4.1, AQP4, GFAP, and VEGF levels, respectively. H&E staining was used to examine histopathological alterations in diabetic retinopathy (DR)-affected retinal tissue in rats. As glucose concentration increases, gliosis of Müller cells became apparent, as evidenced by a decline in cell activity, an increase in apoptosis, downregulation of Kir4.1 level, and overexpression of GFAP, AQP4, and VEGF. Treatments with low, intermediate, and high glucose levels led to aberrant activation of cAMP/PKA/CREB signaling. Interestingly, blocking cAMP and PKA reduced high glucose-induced Müller cell damage and gliosis by a significant amount. Further in vivo results suggested that cAMP or PKA inhibition significantly improved edema, bleeding, and retinal disorders. Our findings showed that high glucose exacerbated Müller cell damage and gliosis via a mechanism involving cAMP/PKA/CREB signaling.
Collapse
Affiliation(s)
- Xiao-Ling Fang
- Department of Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Qin Zhang
- Department of Ophthalmology, Jing'an District Central Hospital, Shanghai, China
| | - Wen-Wen Xue
- Department of Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jin-Hua Tao
- Department of Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Hai-Dong Zou
- Department of Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Qiu-Rong Lin
- Department of Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yu-Lan Wang
- Department of Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
18
|
Yasuda T, Nakazawa T, Hirakawa K, Matsumoto I, Nagata K, Mori S, Igarashi K, Sagara H, Oda S, Mitani H. Retinal regeneration after injury induced by gamma-ray irradiation during early embryogenesis in medaka, Oryzias latipes. Int J Radiat Biol 2023; 100:131-138. [PMID: 37555698 DOI: 10.1080/09553002.2023.2242932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE Zebrafish, a small fish model, exhibits a multipotent ability for retinal regeneration after damage throughout its lifetime. Compared with zebrafish, birds and mammals exhibit such a regenerative capacity only during the embryonic period, and this capacity decreases with age. In medaka, another small fish model that has also been used extensively in biological research, the retina's inner nuclear layer (INL) failed to regenerate after injury in the hatchling at eight days postfertilization (dpf). We characterized the regenerative process of the embryonic retina when the retinal injury occurred during the early embryonic period in medaka. METHODS We employed a 10 Gy dose of gamma-ray irradiation to initiate retinal injury in medaka embryos at 3 dpf and performed histopathological analyses up to 21 dpf. RESULTS One day after irradiation, numerous apoptotic neurons were observed in the INL; however, these neurons were rarely observed in the ciliary marginal zone and the photoreceptor layer. Numerous pyknotic cells were clustered in the irradiated retina until two days after irradiation. These disappeared four days after irradiation, but the abnormal bridging structures between the INL and ganglion cell layer (GCL) were present until 11 days after irradiation, and the neural layers were completely regenerated 18 days after irradiation. After gamma-ray irradiation, the spindle-like Müller glial cells in the INL became rounder but did not lose their ability to express SOX2. CONCLUSIONS Irradiated retina at 3 dpf of medaka embryos could be completely regenerated at 18 days after irradiation (21 dpf), although the abnormal layer structures bridging the INL and GCL were transiently formed in the retinas of all the irradiated embryos. Four days after irradiation, embryonic medaka Müller glia were reduced in number but maintained SOX2 expression as in nonirradiated embryos. This finding contrasts with previous reports that 8 dpf medaka larvae could not fully regenerate damaged retinas because of loss of SOX2 expression.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, Japan
| | - Takuya Nakazawa
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kei Hirakawa
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Ikumi Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shunta Mori
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Kento Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
- Department of Applied Pharmacology, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Sagara
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
19
|
Xiao X, Liao Z, Zou J. Genetic and epigenetic regulators of retinal Müller glial cell reprogramming. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:126-133. [PMID: 37846362 PMCID: PMC10577857 DOI: 10.1016/j.aopr.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 10/18/2023]
Abstract
Background Retinal diseases characterized with irreversible loss of retinal nerve cells, such as optic atrophy and retinal degeneration, are the main causes of blindness. Current treatments for these diseases are very limited. An emerging treatment strategy is to induce the reprogramming of Müller glial cells to generate new retinal nerve cells, which could potentially restore vision. Main text Müller glial cells are the predominant glial cells in retinae and play multiple roles to maintain retinal homeostasis. In lower vertebrates, such as in zebrafish, Müller glial cells can undergo cell reprogramming to regenerate new retinal neurons in response to various damage factors, while in mammals, this ability is limited. Interestingly, with proper treatments, Müller glial cells can display the potential for regeneration of retinal neurons in mammalian retinae. Recent studies have revealed that dozens of genetic and epigenetic regulators play a vital role in inducing the reprogramming of Müller glial cells in vivo. This review summarizes these critical regulators for Müller glial cell reprogramming and highlights their differences between zebrafish and mammals. Conclusions A number of factors have been identified as the important regulators in Müller glial cell reprogramming. The early response of Müller glial cells upon acute retinal injury, such as the regulation in the exit from quiescent state, the initiation of reactive gliosis, and the re-entry of cell cycle of Müller glial cells, displays significant difference between mouse and zebrafish, which may be mediated by the diverse regulation of Notch and TGFβ (transforming growth factor-β) isoforms and different chromatin accessibility.
Collapse
Affiliation(s)
- Xueqi Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Zou
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Mahaling B, Sinha NR, Sokupa S, Addi UR, Mohan RR, Chaurasia SS. Mustard gas exposure instigates retinal Müller cell gliosis. Exp Eye Res 2023; 230:109461. [PMID: 37023936 PMCID: PMC10157651 DOI: 10.1016/j.exer.2023.109461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/08/2023]
Abstract
Sulfur mustard (SM) is a chemical warfare agent (CWA) that causes severe eye pain, photophobia, excessive lacrimation, corneal and ocular surface defects, and blindness. However, SM's effects on retinal cells are relatively meager. This study investigated the role of SM toxicity on Müller glial cells responsible for cellular architecture, inner blood-retinal barrier maintenance, neurotransmitter recycling, neuronal survival, and retinal homeostasis. Müller glial cells (MIO-M1) were exposed to SM analog, nitrogen mustard (NM), at varying concentrations (50-500 μM) for 3 h, 24 h, and 72 h. Müller cell gliosis was evaluated using morphological, cellular, and biochemical methods. Real-time cellular integrity and morphological evaluation were performed using the xCELLigence real-time monitoring system. Cellular viability and toxicity were measured using TUNEL and PrestoBlue assays. Müller glia hyperactivity was calculated based on glial fibrillary acidic protein (GFAP) and vimentin immunostaining. Intracellular oxidative stress was measured using DCFDA and DHE cell-based assays. Inflammatory markers and antioxidant enzyme levels were determined by quantitative real-time PCR (qRT-PCR). AO/Br and DAPI staining further evaluated DNA damage, apoptosis, necrosis, and cell death. Inflammasome-associated Caspase-1, ASC, and NLRP3 were studied to identify mechanistic insights into NM toxicity in Müller glial cells. The cellular and morphological evaluation revealed the Müller glia hyperactivity after NM exposure in a dose- and time-dependent manner. NM exposure caused significant oxidative stress and enhanced cell death at 72 h. A significant increase in antioxidant indices was observed at the lower concentrations of NM. Mechanistically, we found that NM-treated MIO-M1 cells increased caspase-1 levels that activated NLRP3 inflammasome-induced production of IL-1β and IL-18, and elevated Gasdermin D (GSDMD) expression, a crucial component actuating pyroptosis. In conclusion, NM-induced Müller cell gliosis via increased oxidative stress results in caspase-1-dependent activation of the NLRP3 inflammasome and cell death driven primarily by pyroptosis.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nishant R Sinha
- Ophthalmology and Molecular Medicine, Mason Eye Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Sibabalo Sokupa
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Utkarsh Reddy Addi
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Rajiv R Mohan
- Ophthalmology and Molecular Medicine, Mason Eye Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
21
|
Chen XD, Liu HL, Li S, Hu KB, Wu QY, Liao P, Wang HY, Long ZY, Lu XM, Wang YT. The latest role of nerve-specific splicing factor PTBP1 in the transdifferentiation of glial cells into neurons. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1740. [PMID: 35574699 DOI: 10.1002/wrna.1740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 11/07/2022]
Abstract
Central nervous system injury diseases can cause the loss of many neurons, and it is difficult to regenerate. The field of regenerative medicine believes that supplementing the missing neurons may be an ideal method for nerve injury repair. Recent studies have found that down-regulation of polypyrimidine tract binding protein 1 (PTBP1) expression can make glial cells transdifferentiate into different types of neurons, which is expected to be an alternative therapy to restore neuronal function. This article summarized the research progress on the structure and biological function of the PTBP family, the mutual regulation of PTBP1 and PTBP2, their role in neurogenesis, and the latest research progress in targeting PTBP1 to mediate the transdifferentiation of glial cells into neurons, which may provide some new strategies and new ideas for the future treatment of central nervous system injury and neurodegenerative diseases. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Xing-Dong Chen
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
22
|
Rodent Models of Diabetic Retinopathy as a Useful Research Tool to Study Neurovascular Cross-Talk. BIOLOGY 2023; 12:biology12020262. [PMID: 36829539 PMCID: PMC9952991 DOI: 10.3390/biology12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Diabetes is a group of metabolic diseases leading to dysfunction of various organs, including ocular complications such as diabetic retinopathy (DR). Nowadays, DR treatments involve invasive options and are applied at the sight-threatening stages of DR. It is important to investigate noninvasive or pharmacological methods enabling the disease to be controlled at the early stage or to prevent ocular complications. Animal models are useful in DR laboratory practice, and this review is dedicated to them. The first part describes the characteristics of the most commonly used genetic rodent models in DR research. The second part focuses on the main chemically induced models. The authors pay particular attention to the streptozotocin model. Moreover, this section is enriched with practical aspects and contains the current protocols used in research in the last three years. Both parts include suggestions on which aspect of DR can be tested using a given model and the disadvantages of each model. Although animal models show huge variability, they are still an important and irreplaceable research tool. Note that the choice of a research model should be thoroughly considered and dependent on the aspect of the disease to be analyzed.
Collapse
|
23
|
Nagel-Wolfrum K, Fadl BR, Becker MM, Wunderlich KA, Schäfer J, Sturm D, Fritze J, Gür B, Kaplan L, Andreani T, Goldmann T, Brooks M, Starostik MR, Lokhande A, Apel M, Fath KR, Stingl K, Kohl S, DeAngelis MM, Schlötzer-Schrehardt U, Kim IK, Owen LA, Vetter JM, Pfeiffer N, Andrade-Navarro MA, Grosche A, Swaroop A, Wolfrum U. Expression and subcellular localization of USH1C/harmonin in human retina provides insights into pathomechanisms and therapy. Hum Mol Genet 2023; 32:431-449. [PMID: 35997788 PMCID: PMC9851744 DOI: 10.1093/hmg/ddac211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023] Open
Abstract
Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).
Collapse
Affiliation(s)
- Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Benjamin R Fadl
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirjana M Becker
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Daniel Sturm
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jacques Fritze
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Burcu Gür
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Lew Kaplan
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Tommaso Andreani
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Tobias Goldmann
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Matthew Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret R Starostik
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anagha Lokhande
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melissa Apel
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Karl R Fath
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Department of Biology, Queens College of CUNY, Kissena Blvd, Flushing, NY 11367, USA
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tubingen, 72076 Tubingen, Germany
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, NY 14209, USA
| | | | - Ivana K Kim
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Jan M Vetter
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Computational Biology and Data Mining, Institute of Organismic & Molecular Evolution Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Antje Grosche
- Department of Physiological Genomics, BioMedical Center, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
24
|
Marchese NA, Ríos MN, Guido ME. Müller glial cell photosensitivity: a novel function bringing higher complexity to vertebrate retinal physiology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
25
|
Bise T, Pfefferli C, Bonvin M, Taylor L, Lischer HEL, Bruggmann R, Jaźwińska A. The regeneration-responsive element careg monitors activation of Müller glia after MNU-induced damage of photoreceptors in the zebrafish retina. Front Mol Neurosci 2023; 16:1160707. [PMID: 37138703 PMCID: PMC10149768 DOI: 10.3389/fnmol.2023.1160707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
In contrast to mammals, zebrafish can regenerate their damaged photoreceptors. This capacity depends on the intrinsic plasticity of Müller glia (MG). Here, we identified that the transgenic reporter careg, a marker of regenerating fin and heart, also participates in retina restoration in zebrafish. After methylnitrosourea (MNU) treatment, the retina became deteriorated and contained damaged cell types including rods, UV-sensitive cones and the outer plexiform layer. This phenotype was associated with the induction of careg expression in a subset of MG until the reconstruction of the photoreceptor synaptic layer. Single-cell RNA sequencing (scRNAseq) analysis of regenerating retinas revealed a population of immature rods, defined by high expression of rhodopsin and the ciliogenesis gene meig1, but low expression of phototransduction genes. Furthermore, cones displayed deregulation of metabolic and visual perception genes in response to retina injury. Comparison between careg:EGFP expressing and non-expressing MG demonstrated that these two subpopulations are characterized by distinct molecular signatures, suggesting their heterogenous responsiveness to the regenerative program. Dynamics of ribosomal protein S6 phosphorylation showed that TOR signaling became progressively switched from MG to progenitors. Inhibition of TOR with rapamycin reduced the cell cycle activity, but neither affected careg:EGFP expression in MG, nor prevented restoration of the retina structure. This indicates that MG reprogramming, and progenitor cell proliferation might be regulated by distinct mechanisms. In conclusion, the careg reporter detects activated MG, and provides a common marker of regeneration-competent cells in diverse zebrafish organs, including the retina.
Collapse
Affiliation(s)
- Thomas Bise
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Marylène Bonvin
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Lea Taylor
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Heidi E. L. Lischer
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Anna Jaźwińska,
| |
Collapse
|
26
|
Mitchell DM, Stenkamp DL. Generating Widespread and Scalable Retinal Lesions in Adult Zebrafish by Intraocular Injection of Ouabain. Methods Mol Biol 2023; 2636:221-235. [PMID: 36881303 DOI: 10.1007/978-1-0716-3012-9_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Zebrafish regenerate functional retinal neurons after injury. Regeneration takes place following photic, chemical, mechanical, surgical, or cryogenic lesions, as well as after lesions that selectively target specific neuronal cell populations. An advantage of chemical retinal lesion for studying the process of regeneration is that the lesion is topographically widespread. This results in the loss of visual function as well as a regenerative response that engages nearly all stem cells (Müller glia). Such lesions can therefore be used to further our understanding of the process and mechanisms underlying re-establishment of neuronal wiring patterns, retinal function, and visually mediated behaviors. Widespread chemical lesions also permit the quantitative analysis of gene expression throughout the retina during the period of initial damage and over the duration of regeneration, as well as the study of growth and targeting of axons of regenerated retinal ganglion cells. The neurotoxic Na+/K+ ATPase inhibitor ouabain specifically offers a further advantage over other types of chemical lesions in that it is scalable; the extent of damage can be targeted to include only inner retinal neurons, or all retinal neurons, simply by adjusting the intraocular concentration of ouabain that is used. Here we describe the procedure through which these "selective" vs. "extensive" retinal lesions can be generated.
Collapse
Affiliation(s)
- Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
27
|
Barrett LM, Meighan PC, Mitchell DM, Varnum MD, Stenkamp DL. Assessing Rewiring of the Retinal Circuitry by Electroretinogram (ERG) After Inner Retinal Lesion in Adult Zebrafish. Methods Mol Biol 2023; 2636:421-435. [PMID: 36881314 DOI: 10.1007/978-1-0716-3012-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Adult zebrafish respond to retinal injury with a regenerative response that replaces damaged neurons with Müller glia-derived regenerated neurons. The regenerated neurons are functional, appear to make appropriate synaptic connections, and support visually mediated reflexes and more complex behaviors. Curiously, the electrophysiology of damaged, regenerating, and regenerated zebrafish retina has only recently been examined. In our previous work, we demonstrated that electroretinogram (ERG) recordings of damaged zebrafish retina correlate with the extent of the inflicted damage and that the regenerated retina at 80 days post-injury exhibited ERG waveforms consistent with functional visual processing. In this paper we describe the procedure for obtaining and analyzing ERG recordings from adult zebrafish previously subjected to widespread lesions that destroy inner retinal neurons and engage a regenerative response that restores retinal function, in particular the synaptic connections between photoreceptor axon terminals and the dendritic trees of retinal bipolar neurons.
Collapse
Affiliation(s)
- Lindsey M Barrett
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Peter C Meighan
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Diana M Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael D Varnum
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
28
|
Yang S, Qi S, Wang C. The role of retinal Müller cells in diabetic retinopathy and related therapeutic advances. Front Cell Dev Biol 2022; 10:1047487. [PMID: 36531955 PMCID: PMC9757137 DOI: 10.3389/fcell.2022.1047487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/24/2022] [Indexed: 11/19/2023] Open
Abstract
Diabetic retinopathy (DR) is a significant complication of diabetes. During the pathogenesis of retinal microangiopathy and neuronopathy, activated retinal Müller cells (RMCs) undergo morphological and structural changes such as increased expression of glial fibrillary acidic protein, disturbance of potassium and water transport regulation, and onset of production of a large number of inflammatory and vascular growth factors as well as chemokines. Evidently, activated RMCs are necessary for the pathogenesis of DR; therefore, exploring the role of RMCs in DR may provide a new target for the treatment thereof. This article reviews the mechanism of RMCs involvement in DR and the progress in related treatments.
Collapse
Affiliation(s)
| | - Shounan Qi
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Chenguang Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Fafure AA, Edem EE, Obisesan AO, Enye LA, Adekeye AO, Adetunji AE, Nebo KE, Olusegun AA, Fafure OE. Fermented maize slurry (Ogi) and its supernatant (Omidun) mitigate elevated intraocular pressure by modulating BDNF expression and glial plasticity in the retina-gut axis of glaucomatous rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:887-896. [PMID: 34380184 DOI: 10.1515/jcim-2021-0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Growing interest has been reported on the health benefits of fermented foods, which includes cognition enhancement and inflammation attenuation. BDNF is a known protectant against retinal degeneration, however, therapies that target this neurotrophic factor has been limited. Therefore, we assessed the reaction of BDNF and glial cells in glaucomatous rats and their response to treatment with fermented maize products. METHODS Thirty male adult rats were either injected via the episcleral vein with hypertonic saline to elevate intraocular pressure (IOP) or treated with fermented maize slurry (Ogi) or its supernatant (Omidun). Following sacrifice, the retina and duodenum were studied by immunohistochemical analysis using antibodies directed against GFAP, AIF-1 and BDNF. RESULTS Hypertonic saline injection produced hypertrophy of the Müller cells and increased GFAP and AIF-1 expression in the retina and gut when compared to the control. Treatment with Ogi and Omidun produced varying degrees of reduction of gliosis, protection against hypertonic saline-induced retinal ganglion cell loss, and reduced intraocular pressure. BDNF expression was downregulated following the hypertonic saline assault, while Omidun and Ogi treatment abrogated its reduction following the hypertonic saline assault. CONCLUSIONS Collectively, our findings suggest that acute elevation of IOP alters crosstalk between gut and retina with consequent aberrant activation of glial cells; and that probiotic bacteria like the lactic acid bacteria rich in fermented foods including Ogi and Omidun may offer neuroprotection to the ganglionic cells by attenuating the retinal glial reaction and improving BDNF activity.
Collapse
Affiliation(s)
- Adedamola Adediran Fafure
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Edem Ekpenyong Edem
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Abiola Oluwatosin Obisesan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Linus Anderson Enye
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adeshina Oloruntoba Adekeye
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adedeji Enitan Adetunji
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Kate Eberechukwu Nebo
- Neuroscience Unit, Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adebayo Adeoluwa Olusegun
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe-Babalola University, Ado-Ekiti, Nigeria
| | | |
Collapse
|
30
|
Grigoryan EN. Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye. Cells 2022; 11:cells11233755. [PMID: 36497013 PMCID: PMC9738527 DOI: 10.3390/cells11233755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs' properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
31
|
Miranda-Negrón Y, García-Arrarás JE. Radial glia and radial glia-like cells: Their role in neurogenesis and regeneration. Front Neurosci 2022; 16:1006037. [PMID: 36466166 PMCID: PMC9708897 DOI: 10.3389/fnins.2022.1006037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2024] Open
Abstract
Radial glia is a cell type traditionally associated with the developing nervous system, particularly with the formation of cortical layers in the mammalian brain. Nonetheless, some of these cells, or closely related types, called radial glia-like cells are found in adult central nervous system structures, functioning as neurogenic progenitors in normal homeostatic maintenance and in response to injury. The heterogeneity of radial glia-like cells is nowadays being probed with molecular tools, primarily by the expression of specific genes that define cell types. Similar markers have identified radial glia-like cells in the nervous system of non-vertebrate organisms. In this review, we focus on adult radial glia-like cells in neurogenic processes during homeostasis and in response to injury. We highlight our results using a non-vertebrate model system, the echinoderm Holothuria glaberrima where we have described a radial glia-like cell that plays a prominent role in the regeneration of the holothurian central nervous system.
Collapse
Affiliation(s)
| | - José E. García-Arrarás
- Department of Biology, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
32
|
Aleksandrova MA, Sukhinich KK. Astrocytes of the Brain: Retinue Plays the King. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Catalani E, Cherubini A, Del Quondam S, Cervia D. Regenerative Strategies for Retinal Neurons: Novel Insights in Non-Mammalian Model Organisms. Int J Mol Sci 2022; 23:ijms23158180. [PMID: 35897754 PMCID: PMC9331597 DOI: 10.3390/ijms23158180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
A detailed knowledge of the status of the retina in neurodegenerative conditions is a crucial point for the development of therapeutics in retinal pathologies and to translate eye research to CNS disease. In this context, manipulating signaling pathways that lead to neuronal regeneration offers an excellent opportunity to substitute damaged cells and, thus, restore the tissue functionality. Alternative systems and methods are increasingly being considered to replace/reduce in vivo approaches in the study of retina pathophysiology. Herein, we present recent data obtained from the zebrafish (Danio rerio) and the fruit fly Drosophila melanogaster that bring promising advantages into studying and modeling, at a preclinical level, neurodegeneration and regenerative approaches in retinal diseases. Indeed, the regenerative ability of vertebrate model zebrafish is particularly appealing. In addition, the fruit fly is ideal for regenerative studies due to its high degree of conservation with vertebrates and the broad spectrum of genetic variants achievable. Furthermore, a large part of the drosophila brain is dedicated to sight, thus offering the possibility of studying common mechanisms of the visual system and the brain at once. The knowledge acquired from these alternative models may help to investigate specific well-conserved factors of interest in human neuroregeneration after injuries or during pathologies.
Collapse
|
34
|
Mansour HA, Uwaydat SH, Parodi M, Jürgens I, Smiddy W, Allabban AA, Schwartz SG, Foster RE, Ascaso J, Leoz MS, Belotto S, Mateo J, Olivier-Pascual N, Lima LH, Navea A, Neila EMR, Castillo RA, Alaman AS, Mansour AM. Recovery course of foveal microstructure in the nonsurgical resolution of full-thickness macular hole. Graefes Arch Clin Exp Ophthalmol 2022; 260:3173-3183. [DOI: 10.1007/s00417-022-05672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/04/2022] Open
|
35
|
Incomplete Recovery of Zebrafish Retina Following Cryoinjury. Cells 2022; 11:cells11081373. [PMID: 35456052 PMCID: PMC9030934 DOI: 10.3390/cells11081373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Zebrafish show an extraordinary potential for regeneration in several organs from fins to central nervous system. Most impressively, the outcome of an injury results in a near perfect regeneration and a full functional recovery. Indeed, among the various injury paradigms previously tested in the field of zebrafish retina regeneration, a perfect layered structure is observed after one month of recovery in most of the reported cases. In this study, we applied cryoinjury to the zebrafish eye. We show that retina exposed to this treatment for one second undergoes an acute damage affecting all retinal cell types, followed by a phase of limited tissue remodeling and regrowth. Surprisingly, zebrafish developed a persistent retinal dysplasia observable through 300 days post-injury. There is no indication of fibrosis during the regeneration period, contrary to the regeneration process after cryoinjury to the zebrafish cardiac ventricle. RNA sequencing analysis of injured retinas at different time points has uncovered enriched processes and a number of potential candidate genes. By means of this simple, time and cost-effective technique, we propose a zebrafish injury model that displays a unique inability to completely recover following focal retinal damage; an outcome that is unreported to our knowledge. Furthermore, RNA sequencing proved to be useful in identifying pathways, which may play a crucial role not only in the regeneration of the retina, but in the first initial step of regeneration, degeneration. We propose that this model may prove useful in comparative and translational studies to examine critical pathways for successful regeneration.
Collapse
|
36
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
37
|
Bradshaw SN, Allison WT. Hagfish to Illuminate the Developmental and Evolutionary Origins of the Vertebrate Retina. Front Cell Dev Biol 2022; 10:822358. [PMID: 35155434 PMCID: PMC8826474 DOI: 10.3389/fcell.2022.822358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The vertebrate eye is a vital sensory organ that has long fascinated scientists, but the details of how this organ evolved are still unclear. The vertebrate eye is distinct from the simple photoreceptive organs of other non-vertebrate chordates and there are no clear transitional forms of the eye in the fossil record. To investigate the evolution of the eye we can examine the eyes of the most ancient extant vertebrates, the hagfish and lamprey. These jawless vertebrates are in an ideal phylogenetic position to study the origin of the vertebrate eye but data on eye/retina development in these organisms is limited. New genomic and gene expression data from hagfish and lamprey suggest they have many of the same genes for eye development and retinal neurogenesis as jawed vertebrates, but functional work to determine if these genes operate in retinogenesis similarly to other vertebrates is missing. In addition, hagfish express a marker of proliferative retinal cells (Pax6) near the margin of the retina, and adult retinal growth is apparent in some species. This finding of eye growth late into hagfish ontogeny is unexpected given the degenerate eye phenotype. Further studies dissecting retinal neurogenesis in jawless vertebrates would allow for comparison of the mechanisms of retinal development between cyclostome and gnathostome eyes and provide insight into the evolutionary origins of the vertebrate eye.
Collapse
Affiliation(s)
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
38
|
Yang P, Cao Q, Liu Y, Wang K, Zhu W. Small‐molecule‐driven direct reprogramming of Müller cells into bipolar‐like cells. Cell Prolif 2022; 55:e13184. [PMID: 35043487 PMCID: PMC8828256 DOI: 10.1111/cpr.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Pang Yang
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd Qingdao China
| | - Yani Liu
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
| | - KeWei Wang
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
- Institute of Innovative Drugs Qingdao University Qingdao China
| | - Wei Zhu
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine Shen Zhen China
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine Beihang University & Capital Medical University Beijing China
| |
Collapse
|
39
|
Campbell LJ, Levendusky JL, Steines SA, Hyde DR. Retinal regeneration requires dynamic Notch signaling. Neural Regen Res 2021; 17:1199-1209. [PMID: 34782554 PMCID: PMC8643038 DOI: 10.4103/1673-5374.327326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinal damage in the adult zebrafish induces Müller glia reprogramming to produce neuronal progenitor cells that proliferate and differentiate into retinal neurons. Notch signaling, which is a fundamental mechanism known to drive cell-cell communication, is required to maintain Müller glia in a quiescent state in the undamaged retina, and repression of Notch signaling is necessary for Müller glia to reenter the cell cycle. The dynamic regulation of Notch signaling following retinal damage also directs proliferation and neurogenesis of the Müller glia-derived progenitor cells in a robust regeneration response. In contrast, mammalian Müller glia respond to retinal damage by entering a prolonged gliotic state that leads to additional neuronal death and permanent vision loss. Understanding the dynamic regulation of Notch signaling in the zebrafish retina may aid efforts to stimulate Müller glia reprogramming for regeneration of the diseased human retina. Recent findings identified DeltaB and Notch3 as the ligand-receptor pair that serves as the principal regulators of zebrafish Müller glia quiescence. In addition, multiomics datasets and functional studies indicate that additional Notch receptors, ligands, and target genes regulate cell proliferation and neurogenesis during the regeneration time course. Still, our understanding of Notch signaling during retinal regeneration is limited. To fully appreciate the complex regulation of Notch signaling that is required for successful retinal regeneration, investigation of additional aspects of the pathway, such as post-translational modification of the receptors, ligand endocytosis, and interactions with other fundamental pathways is needed. Here we review various modes of Notch signaling regulation in the context of the vertebrate retina to put recent research in perspective and to identify open areas of inquiry.
Collapse
Affiliation(s)
- Leah J Campbell
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jaclyn L Levendusky
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Shannon A Steines
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - David R Hyde
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
40
|
German OL, Vallese-Maurizi H, Soto TB, Rotstein NP, Politi LE. Retina stem cells, hopes and obstacles. World J Stem Cells 2021; 13:1446-1479. [PMID: 34786153 PMCID: PMC8567457 DOI: 10.4252/wjsc.v13.i10.1446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Retinal degeneration is a major contributor to visual dysfunction worldwide. Although it comprises several eye diseases, loss of retinal pigment epithelial (RPE) and photoreceptor cells are the major contributors to their pathogenesis. Early therapies included diverse treatments, such as provision of anti-vascular endothelial growth factor and many survival and trophic factors that, in some cases, slow down the progression of the degeneration, but do not effectively prevent it. The finding of stem cells (SC) in the eye has led to the proposal of cell replacement strategies for retina degeneration. Therapies using different types of SC, such as retinal progenitor cells (RPCs), embryonic SC, pluripotent SCs (PSCs), induced PSCs (iPSCs), and mesenchymal stromal cells, capable of self-renewal and of differentiating into multiple cell types, have gained ample support. Numerous preclinical studies have assessed transplantation of SC in animal models, with encouraging results. The aim of this work is to revise the different preclinical and clinical approaches, analyzing the SC type used, their efficacy, safety, cell attachment and integration, absence of tumor formation and immunorejection, in order to establish which were the most relevant and successful. In addition, we examine the questions and concerns still open in the field. The data demonstrate the existence of two main approaches, aimed at replacing either RPE cells or photoreceptors. Emerging evidence suggests that RPCs and iPSC are the best candidates, presenting no ethical concerns and a low risk of immunorejection. Clinical trials have already supported the safety and efficacy of SC treatments. Serious concerns are pending, such as the risk of tumor formation, lack of attachment or integration of transplanted cells into host retinas, immunorejection, cell death, and also ethical. However, the amazing progress in the field in the last few years makes it possible to envisage safe and effective treatments to restore vision loss in a near future.
Collapse
Affiliation(s)
- Olga L German
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Harmonie Vallese-Maurizi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Tamara B Soto
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Nora P Rotstein
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahia blanca 8000, Buenos Aires, Argentina
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| | - Luis Enrique Politi
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, and Neurobiology Department, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) Conicet, Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
41
|
Too LK, Simunovic MP. Retinal Stem/Progenitor Cells Derived From Adult Müller Glia for the Treatment of Retinal Degeneration. Front Cell Dev Biol 2021; 9:749131. [PMID: 34660607 PMCID: PMC8511496 DOI: 10.3389/fcell.2021.749131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 01/09/2023] Open
Abstract
Over the past two decades, progress in our understanding of glial function has been revolutionary. Within the retina, a subset of glial cells termed the “Müller glia (MG),” have been demonstrated to play key roles in retinal homeostasis, structure and metabolism. Additionally, MG have also been shown to possess the regenerative capacity that varies across species. In teleost fish, MG respond to injury by reprogramming into stem-like cells capable of regenerating lost tissue. The expression of stem/progenitor cell markers has been demonstrated broadly in mammalian MG, including human MG, but their in vivo regenerative capacity appears evolutionarily limited. Advances in stem cell therapy have progressively elucidated critical mechanisms underlying innate MG reprogramming in teleost fish, which have shown promising results when applied to rodents. Furthermore, when cultured ex vivo, MG from mammals can differentiate into several retina cell types. In this review, we will explore the reparative and regenerative potential of MG in cellular therapy approaches, and outline our current understanding of embryonic retinal development, the stem-cell potential of MG in adult vertebrate retina (including human), and microenvironmental cues that guide MG reprogramming.
Collapse
Affiliation(s)
- Lay Khoon Too
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Matthew P Simunovic
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Sydney Eye Hospital, Sydney, NSW, Australia
| |
Collapse
|
42
|
Webster SE, Sklar NC, Spitsbergen JB, Stanchfield ML, Webster MK, Linn DM, Otteson DC, Linn CL. Stimulation of α7 nAChR leads to regeneration of damaged neurons in adult mammalian retinal disease models. Exp Eye Res 2021; 210:108717. [PMID: 34348130 PMCID: PMC8459670 DOI: 10.1016/j.exer.2021.108717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
The adult mammal lacks the ability to regenerate neurons lost to retinal damage or disease in a meaningful capacity. However, previous studies from this laboratory have demonstrated that PNU-282987, an α7 nicotinic acetylcholine receptor agonist, elicits a robust neurogenic response in the adult murine retina. With eye drop application of PNU-282987, Müller glia cells re-enter the cell cycle and produce progenitor-like cells that can differentiate into various types of retinal neurons. In this study, we analyzed the regenerative capability of PNU-282987 in two retinal disease models and identified the source of newly regenerated neurons. Wild-type mice and mice with a transgenic Müller-glia lineage tracer were manipulated to mimic loss of retinal cells associated with glaucoma or photoreceptor degeneration. Following treatment with PNU-282987, the regenerative response of retinal neurons was quantified and characterized. After onset of photoreceptor degeneration, PNU-282987 was able to successfully regenerate both rod and cone photoreceptors. Quantification of this response demonstrated significant regeneration, restoring photoreceptors to near wild-type density. In mice that had glaucoma-like conditions induced, PNU-282987 treatment led to a significant increase in retinal ganglion cells. Retrograde labeling of optic nerve axon fibers demonstrated that newly regenerated axons projected into the optic nerve. Lineage tracing analysis demonstrated that these new neurons were derived from Müller glia. These results demonstrate that PNU-282987 can induce retinal regeneration in adult mice following onset of retinal damage. The ability of PNU-282987 to regenerate retinal neurons in a robust manner offers a new direction for developing novel and potentially transformative treatments to combat neurodegenerative disease.
Collapse
Affiliation(s)
- Sarah E Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - Nathan C Sklar
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jake B Spitsbergen
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - Megan L Stanchfield
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - Mark K Webster
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States
| | - David M Linn
- Grand Valley State University, Department of Biomedical Sciences, Allendale, MI, United States
| | - Deborah C Otteson
- University of Houston College of Optometry, Houston, TX, United States
| | - Cindy L Linn
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, United States.
| |
Collapse
|
43
|
VEGF Mediates Retinal Müller Cell Viability and Neuroprotection through BDNF in Diabetes. Biomolecules 2021; 11:biom11050712. [PMID: 34068807 PMCID: PMC8150851 DOI: 10.3390/biom11050712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
To investigate the mechanism of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) in Müller cell (MC) viability and neuroprotection in diabetic retinopathy (DR), we examined the role of VEGF in MC viability and BDNF production, and the effect of BDNF on MC viability under diabetic conditions. Mouse primary MCs and cells of a rat MC line, rMC1, were used in investigating MC viability and BDNF production under diabetic conditions. VEGF-stimulated BDNF production was confirmed in mice. The mechanism of BDNF-mediated MC viability was examined using siRNA knockdown. Under diabetic conditions, recombinant VEGF (rVEGF) stimulated MC viability and BDNF production in a dose-dependent manner. rBDNF also supported MC viability in a dose-dependent manner. Targeting BDNF receptor tropomyosin receptor kinase B (TRK-B) with siRNA knockdown substantially downregulated the activated (phosphorylated) form of serine/threonine-specific protein kinase (AKT) and extracellular signal-regulated kinase (ERK), classical survival and proliferation mediators. Finally, the loss of MC viability in TrkB siRNA transfected cells under diabetic conditions was rescued by rBDNF. Our results provide direct evidence that VEGF is a positive regulator for BDNF production in diabetes for the first time. This information is essential for developing BDNF-mediated neuroprotection in DR and hypoxic retinal diseases, and for improving anti-VEGF treatment for these blood-retina barrier disorders, in which VEGF is a major therapeutic target for vascular abnormalities.
Collapse
|
44
|
Prospects for the application of Müller glia and their derivatives in retinal regenerative therapies. Prog Retin Eye Res 2021; 85:100970. [PMID: 33930561 DOI: 10.1016/j.preteyeres.2021.100970] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision. Müller glial cells, which are the major structural cells of the retina, play a very important role in retinal homeostasis during health and disease. They are responsible for the spontaneous retinal regeneration observed in zebrafish and lower vertebrates during early postnatal life, and despite the presence of Müller glia with stem cell characteristics in the adult mammalian retina, there is no evidence that they promote regeneration in humans. Like many other stem cells and neurons derived from pluripotent stem cells, Müller glia with stem cell potential do not differentiate into retinal neurons or integrate into the retina when transplanted into the vitreous of experimental animals with retinal degeneration. However, despite their lack of integration, grafted Müller glia have been shown to induce partial restoration of visual function in spontaneous or induced experimental models of photoreceptor or retinal ganglion cell damage. This improvement in visual function observed after Müller cell transplantation has been ascribed to the release of neuroprotective factors that promote the repair and survival of damaged neurons. Due to the development and availability of pluripotent stem cell lines for therapeutic uses, derivation of Müller cells from retinal organoids formed by iPSC and ESC has provided more realistic prospects for the application of these cells to retinal therapies. Several opportunities for research in the regenerative field have also been unlocked in recent years due to a better understanding of the genomic and proteomic profiles of the developing and regenerating retina in zebrafish, providing the basis for further studies of the human retina. In addition, the increased interest on the nature and function of cellular organelle release and the characterization of molecular components of exosomes released by Müller glia, may help us to design new approaches that could be applied to the development of more effective treatments for retinal degenerative diseases.
Collapse
|
45
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|