1
|
Cotoia A, Charitos IA, Corriero A, Tamburrano S, Cinnella G. The Role of Macronutrients and Gut Microbiota in Neuroinflammation Post-Traumatic Brain Injury: A Narrative Review. Nutrients 2024; 16:4359. [PMID: 39770985 PMCID: PMC11677121 DOI: 10.3390/nu16244359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Traumatic brain injury (TBI) represents a multifaceted pathological condition resulting from external forces that disrupt neuronal integrity and function. This narrative review explores the intricate relationship between dietary macronutrients, gut microbiota (GM), and neuroinflammation in the TBI. We delineate the dual aspects of TBI: the immediate mechanical damage (primary injury) and the subsequent biological processes (secondary injury) that exacerbate neuronal damage. Dysregulation of the gut-brain axis emerges as a critical factor in the neuroinflammatory response, emphasizing the role of the GM in mediating immune responses. Recent evidence indicates that specific macronutrients, including lipids, proteins, and probiotics, can influence microbiota composition and in turn modulate neuroinflammation. Moreover, specialized dietary interventions may promote resilience against secondary insults and support neurological recovery post-TBI. This review aims to synthesize the current preclinical and clinical evidence on the potential of dietary strategies in mitigating neuroinflammatory pathways, suggesting that targeted nutrition and gut health optimization could serve as promising therapeutic modalities in TBI management.
Collapse
Affiliation(s)
- Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, “Istitute” of Bari, 70124 Bari, Italy;
- Doctoral School on Applied Neurosciences, Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Alberto Corriero
- Department of Interdisciplinary Medicine-ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Stefania Tamburrano
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| | - Gilda Cinnella
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy; (S.T.); (G.C.)
| |
Collapse
|
2
|
Ghosh M, Pearse DD. The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases. Cells 2024; 13:1834. [PMID: 39594583 PMCID: PMC11592485 DOI: 10.3390/cells13221834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them. Under normal physiological conditions, MGEVs are essential to homeostasis, whereas the dysregulation of their production and/or alterations in their cargoes have been implicated in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), spinal cord injury (SCI), and traumatic brain injury (TBI). In contrast, MGEVs may also offer therapeutic potential by reversing inflammation or being amenable to engineering for the delivery of beneficial biologics or drugs. The effects of MGEVs are determined by the phenotypic state of the parent microglia. Exosomes from anti-inflammatory or pro-regenerative microglia support neurorepair and cell survival by delivering neurotrophic factors, anti-inflammatory mediators, and molecular chaperones. Further, MGEVs can also deliver components like mitochondrial DNA (mtDNA) and proteins to damaged neurons to enhance cellular metabolism and resilience. MGEVs derived from pro-inflammatory microglia can have detrimental effects on neural health. Their cargo often contains pro-inflammatory cytokines, molecules involved in oxidative stress, and neurotoxic proteins, which can exacerbate neuroinflammation, contribute to neuronal damage, and impair synaptic function, hindering neurorepair processes. The role of MGEVs in neurodegeneration and injury-whether beneficial or harmful-largely depends on how they modulate inflammation through the pro- and anti-inflammatory factors in their cargo, including cytokines and microRNAs. In addition, through the propagation of pathological proteins, such as amyloid-beta and alpha-synuclein, MGEVs can also contribute to disease progression in disorders such as AD and PD, or by the transfer of apoptotic or necrotic factors, they can induce neuron toxicity or trigger glial scarring during neurological injury. In this review, we have provided a comprehensive and up-to-date understanding of the molecular mechanisms underlying the multifaceted role of MGEVs in neurological injury and disease. In particular, the role that specific exosome cargoes play in various pathological conditions, either in disease progression or recovery, will be discussed. The therapeutic potential of MGEVs has been highlighted including potential engineering methodologies that have been employed to alter their cargoes or cell-selective targeting. Understanding the factors that influence the balance between beneficial and detrimental exosome signaling in the CNS is crucial for developing new therapeutic strategies for neurodegenerative diseases and neurotrauma.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Zhang H, Wang L, Wang X, Deng L, He B, Yi X, Li J. Mangiferin alleviated poststroke cognitive impairment by modulating lipid metabolism in cerebral ischemia/reperfusion rats. Eur J Pharmacol 2024; 977:176724. [PMID: 38851559 DOI: 10.1016/j.ejphar.2024.176724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
INTRODUCTION Mangiferin is a Chinese herbal extract with multiple biological activities. Mangiferin can penetrate the blood‒brain barrier and has potential in the treatment of nervous system diseases. These findings suggest that mangiferin protects the neurological function in ischemic stroke rats by targeting multiple signaling pathways. However, little is known about the effect and mechanism of mangiferin in alleviating poststroke cognitive impairment. METHODS Cerebral ischemia/reperfusion (I/R) rats were generated via middle cerebral artery occlusion. Laser speckle imaging was used to monitor the cerebral blood flow. The I/R rats were intraperitoneally (i.p.) injected with 40 mg/kg mangiferin for 7 consecutive days. Neurological scoring, and TTC staining were performed to evaluate neurological function. Behavioral experiments, including the open field test, elevated plus maze, sucrose preference test, and novel object recognition test, were performed to evaluate cognitive function. Metabolomic data from brain tissue with multivariate statistics were analyzed by gas chromatography‒mass spectrometry and liquid chromatography‒mass spectrometry. RESULTS Mangiferin markedly decreased neurological scores, and reduced infarct areas. Mangiferin significantly attenuated anxiety-like and depression-like behaviors and enhanced learning and memory in I/R rats. According to the metabolomics results, 13 metabolites were identified to be potentially regulated by mangiferin, and the differentially abundant metabolites were mainly involved in lipid metabolism. CONCLUSIONS Mangiferin protected neurological function and relieved poststroke cognitive impairment by improving lipid metabolism abnormalities in I/R rats.
Collapse
Affiliation(s)
- Hui Zhang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Laifa Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Xueqin Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Ling Deng
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Binsheng He
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China.
| | - Xia Yi
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, Hunan, China.
| | - Jianming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, 410219, Hunan, China; The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China.
| |
Collapse
|
4
|
Guangliang H, Tao W, Danxin W, Lei L, Ye M. Critical Knowledge Gaps and Future Priorities Regarding the Intestinal Barrier Damage After Traumatic Brain Injury. World Neurosurg 2024; 188:136-149. [PMID: 38789030 DOI: 10.1016/j.wneu.2024.05.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The analysis aims to provide a comprehensive understanding of the current landscape of research on the Intestinal barrier damage after traumatic brain injury (TBI), elucidate specific mechanisms, and address knowledge gaps to help guide the development of targeted therapeutic interventions and improve outcomes for individuals with TBI. A total of 2756 relevant publications by 13,778 authors affiliated within 3198 institutions in 79 countries were retrieved from the Web of Science. These publications have been indexed by 1139 journals and cited 158, 525 references. The most productive author in this field was Sikiric P, and the University of Pittsburgh was identified as the most influential institution. The United States was found to be the leading country in terms of article output and held a dominant position in this field. The International Journal of Molecular Sciences was identified as a major source of publications in this area. In terms of collaboration, the cooperation between the United States and China was found to be the most extensive among countries, institutions, and authors, indicating a high level of influence in this field. Keyword co-occurrence network analysis revealed several hotspots in this field, including the microbiome-gut-brain axis, endoplasmic reticulum stress, cellular autophagy, ischemia-reperfusion, tight junctions, and intestinal permeability. The analysis of keyword citation bursts suggested that ecological imbalance and gut microbiota may be the forefront of future research. The findings of this study can serve as a reference and guiding perspective for future research in this field.
Collapse
Affiliation(s)
- He Guangliang
- Hainan Vocational of Science and Technology, International School of Nursing, Haikou, China; HeJiang Affiliated Hospital of Southwest Medical University, Department of Respiratory and Critical Care Medicine, Luzhou, China
| | - Wang Tao
- Hainan Medical University, International School of Nursing, Haikou, China; Foshan University, Medical College, Guangdong, China
| | - Wang Danxin
- The First Affiliated Hospital of Hainan Medical University, Nursing Department, Haikou, China
| | - Liu Lei
- The First Affiliated Hospital of Hainan Medical University, Respiratory Medicine Department, Haikou, China
| | - Min Ye
- Hainan Vocational of Science and Technology, International School of Nursing, Haikou, China; Hainan Medical University, International School of Nursing, Haikou, China.
| |
Collapse
|
5
|
Wang HF, Liu WC, Zailani H, Yang CC, Chen TB, Chang CM, Tsai IJ, Yang CP, Su KP. A 12-week randomized double-blind clinical trial of eicosapentaenoic acid intervention in episodic migraine. Brain Behav Immun 2024; 118:459-467. [PMID: 38499208 DOI: 10.1016/j.bbi.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) may benefit migraine improvement, though prior studies are inconclusive. This study evaluated the effect of eicosapentaenoic acid (EPA) on episodic migraine (EM) prevention. Seventy individuals with EM participated in a 12-week randomized, double-blind, placebo-controlled trial from March 2020 and May 2022. They were randomly assigned to either the EPA (N = 35, 2 g fish oil with 1.8 g of EPA as a stand-alone treatment daily), or the placebo group (N = 35, 2 g soybean oil daily). Migraine frequency and headache severity were assessed using the monthly migraine days, visual analog scale (VAS), Migraine Disability Assessment (MIDAS), Hospital Anxiety and Depression Scale (HADS), Migraine-Specific Quality-of-Life Questionnaire (MSQ), and Pittsburgh Sleep Quality Index (PSQI) in comparison to baseline measurements. The EPA group significantly outperformed the placebo in reducing monthly migraine days (-4.4 ± 5.1 days vs. - 0.6 ± 3.5 days, p = 0.001), days using acute headache medication (-1.3 ± 3.0 days vs. 0.1 ± 2.3 days, p = 0.035), improving scores for headache severity (ΔVAS score: -1.3 ± 2.4 vs. 0.0 ± 2.2, p = 0.030), disability (ΔMIDAS score: -13.1 ± 16.2 vs. 2.6 ± 20.2, p = 0.001), anxiety and depression (ΔHADS score: -3.9 ± 9.4 vs. 1.1 ± 9.1, p = 0.025), and quality of life (ΔMSQ score: -11.4 ± 19.0 vs. 3.1 ± 24.6, p = 0.007). Notably, female particularly benefited from EPA, underscoring its potential in migraine management. In conclusion, high-dose EPA has significantly reduced migraine frequency and severity, improved psychological symptoms and quality of life in EM patients, and shown no major adverse events, suggesting its potential as a prophylactic for EM.
Collapse
Affiliation(s)
- Hsueh-Fang Wang
- Department of Nutrition, Hungkuang University, Taichung, Taiwan
| | - Wen-Chun Liu
- An Nan Hospital, China Medical University, Tainan, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Ju Tsai
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Kuan-Pin Su
- An Nan Hospital, China Medical University, Tainan, Taiwan; Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Institute of Psychiatry, King's College London, London, UK; College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Kureshi S, Mendizabal M, Francis J, Djalilian HR. Conservative Management of Acute Sports-Related Concussions: A Narrative Review. Healthcare (Basel) 2024; 12:289. [PMID: 38338173 PMCID: PMC10855441 DOI: 10.3390/healthcare12030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
This review explores the application of the conservative management model for pain to sports-related concussions (SRCs), framing concussions as a distinct form of pain syndrome with a pathophysiological foundation in central sensitization. Drawing parallels with proven pain management models, we underscore the significance of a proactive approach to concussion management. Recognizing concussions as a pain syndrome allows for the tailoring of interventions in alignment with conservative principles. This review first covers the epidemiology and controversies surrounding prolonged concussion recovery and persistent post-concussion symptoms (PPCS). Next, the pathophysiology of concussions is presented within the central sensitization framework, emphasizing the need for early intervention to mitigate the neuroplastic changes that lead to heightened pain sensitivity. Five components of the central sensitization process specific to concussion injuries are highlighted as targets for conservative interventions in the acute period: peripheral sensitization, cerebral metabolic dysfunction, neuroinflammation, glymphatic system dysfunction, and pain catastrophizing. These proactive interventions are emphasized as pivotal in accelerating concussion recovery and reducing the risk of prolonged symptoms and PPCS, in line with the philosophy of conservative management.
Collapse
Affiliation(s)
- Sohaib Kureshi
- Neurosurgical Medical Clinic, San Diego, CA 92111, USA
- TBI Virtual, San Diego, CA 92111, USA
| | | | | | - Hamid R. Djalilian
- TBI Virtual, San Diego, CA 92111, USA
- Departments of Otolaryngology, Neurological Surgery, and Biomedical Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Chen J, Chen Z, Yu D, Yan Y, Hao X, Zhang M, Zhu T. Neuroprotective Effect of Hydrogen Sulfide Subchronic Treatment Against TBI-Induced Ferroptosis and Cognitive Deficits Mediated Through Wnt Signaling Pathway. Cell Mol Neurobiol 2023; 43:4117-4140. [PMID: 37624470 PMCID: PMC10661805 DOI: 10.1007/s10571-023-01399-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Emerging evidence shows that targeting ferroptosis may be a potential therapeutic strategy for treating traumatic brain injury (TBI). Hydrogen sulfide (H2S) has been proven to play a neuroprotective role in TBI, but little is known about the effects of H2S on TBI-induced ferroptosis. In addition, it is reported that the Wnt signaling pathway can also actively regulate ferroptosis. However, whether H2S inhibits ferroptosis via the Wnt signaling pathway after TBI remains unclear. In this study, we first found that in addition to alleviating neuronal damage and cognitive impairments, H2S remarkably attenuated abnormal iron accumulation, decreased lipid peroxidation, and improved the expression of glutathione peroxidase 4, demonstrating the potent anti-ferroptosis action of H2S after TBI. Moreover, Wnt3a or liproxstatin-1 treatment obtained similar results, suggesting that activation of the Wnt signaling pathway can render the cells less susceptible to ferroptosis post-TBI. More importantly, XAV939, an inhibitor of the Wnt signaling pathway, almost inversed ferroptosis inactivation and reduction of neuronal loss caused by H2S treatment, substantiating the involvement of the Wnt signaling pathway in anti-ferroptosis effects of H2S. In conclusion, the Wnt signaling pathway might be the critical mechanism in realizing the anti-ferroptosis effects of H2S against TBI. TBI induces ferroptosis-related changes characterized by iron overload, impaired antioxidant system, and lipid peroxidation at the chronic phase after TBI. However, NaHS subchronic treatment reduces the susceptibility to TBI-induced ferroptosis, at least partly by activating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Zhennan Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dongyu Yu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yufei Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mingxia Zhang
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Tong Zhu
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|