1
|
Kim SY, Woo SY, Kim HL, Chang Y, Ryu S, Kim HN. A shotgun metagenomic study identified short-chain fatty acid-producing species and their functions in the gut microbiome of adults with depressive symptoms: Large-scale shotgun sequencing data of the gut microbiota using a cross-sectional design. J Affect Disord 2025; 376:26-35. [PMID: 39894225 DOI: 10.1016/j.jad.2025.01.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The gut-brain axis is emerging as a novel mechanism to explain depressive disorders. METHODS We performed shotgun metagenomic sequencing of stool samples obtained from 133 individuals with depression and 532 without depression. This study examined the taxonomy, functional pathways, and predicted metabolites profiles associated with depressive symptoms, using generalized linear models. To explore links between the taxonomic and functional pathway results, we compared the relative abundance of specific species contributing to pathways significantly associated with depressive symptoms. RESULTS Taxonomic composition suggested a disruption in short-chain fatty acid (SCFA)-producing capacity of the gut microbiome in the depressed group. Pathways related to SCFA biosynthesis were also depleted in this group. Faecalibacterium prausnitzii, a well-known SCFA-producing bacterium, was significantly decreased in the depressed group and was identified as a major contributor to the depleted pathways. When inferring the metabolites related to depression from metagenomic data, higher levels of docosapentaenoic acid, stearoyl ethanolamide, putrescine, and bilirubin were more likely to be found in the depressed group. CONCLUSION The present findings highlight the altered gut microbiota and associated SCFA-related pathways in individuals with depression. The depletion of F. prausnitzii and its contribution to SCFA production suggest that it is a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Sun-Young Kim
- Department of Psychiatry, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Han-Na Kim
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea; Center for Clinical Epidemiology, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhu S, Guo Z, Liu L, Gao Y, Bai L, Chen Y, Zha M. Complex Probiotics Relieve Constipation Through Regulation of the Intestinal Microbiota in Kittens. Microorganisms 2025; 13:563. [PMID: 40142456 PMCID: PMC11945230 DOI: 10.3390/microorganisms13030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The early developmental phase is a critical window for feline growth, during which immature digestive systems are susceptible to microbiome imbalances caused by environmental stressors. Our research employed macrogenomic analysis to evaluate how complex probiotic formulations influence growth metrics and gastrointestinal flora in juvenile felines. Two dozen healthy kittens were equally divided into the control group and the probiotics group following a 5-day environmental adaptation phase. Fecal scores were recorded daily for all kittens. Fresh fecal samples were collected on days 1 and 14 for macrogenomic analysis. The results showed a significantly lower rate of constipation in the probiotics group compared to the control group (p < 0.05). However, no significant differences were observed in intestinal microbial diversity or structure between the two groups. Metagenomic analysis revealed a higher relative abundance of Bifidobacterium animalis in the probiotics group compared to the control group (p < 0.05). Additionally, the probiotics group exhibited lower relative abundances of Lachnospiraceae bacterium 2 1 58FAA, Lachnospiraceae bacterium 1 1 57FAA, and Acidaminococcus intestini compared to the control group (p < 0.05). These results suggest that complex probiotics can regulate the intestinal microbiota, improve constipation, and promote intestinal health in kittens.
Collapse
Affiliation(s)
- Shimin Zhu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhengrong Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Gao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lu Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Musu Zha
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Z.); (Z.G.); (L.L.); (Y.G.); (L.B.); (Y.C.)
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Naqvi I, Bandyopadhyay A, Panda A, Hareramadas B. Polycystic Ovarian Syndrome: A Review of Multi-omics Analyses. Reprod Sci 2025; 32:618-646. [PMID: 39875694 DOI: 10.1007/s43032-025-01789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Polycystic Ovary Syndrome (PCOS) is among the most prevalent endocrinological abnormalities of young females, posing a grave public health challenge to the society. The objective of the present literature review is to analyze the enormous amount of information available by way of numerous multi-omic studies, and to explore a meaningful relationship between various factors such as genetic, proteomic, environmental etc. to understand the multifactorial metabolic disorder in a proper manner. Detailed literature search was done in various science article repositories and biomedical databases such as PubMed, Google Scholar, BioMed Central, Embase etc. by using several keywords in whole gamut of combinations. PCOS is a heritable disease. It manifests as a result of a combination of several intricately inter-linked symptoms such as anovulation, obesity, type II diabetes, hyperandrogenism, polycystic ovaries etc., the last one being the main manifestation of the disease, thus leading to infertility among several other complications. Such a multifactorial metabolic disorder with extreme symptomatic heterogeneity cannot be fully explained solely based on symptoms or genetic variations; thus, giving some space of thought to other factors such as epigenetic, microbiomic factors etc. playing a role in the causation of the disease. The present scientific survey of literature extensively reviews various aspects of PCOS by critically looking into the vast multi-omic data, and concluded with suggesting treatment options as well as lifestyle changes required to deal with the psychological/ emotional impacts of the condition on affected women.
Collapse
Affiliation(s)
- Ilmas Naqvi
- Department of Zoology, Zakir Husain Delhi College (University of Delhi), J.L.N. Marg, New Delhi, 110002, India
| | | | - Amisha Panda
- Lab. No. 115, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - B Hareramadas
- Department of Zoology, Zakir Husain Delhi College (University of Delhi), J.L.N. Marg, New Delhi, 110002, India.
| |
Collapse
|
4
|
Allagui I, Sdayria J, Athmouni K, Zammel N, Guesmi F, Saoudi M, Giuffrè AM, Allagui MS, Nahdi S, Harrath AH. Cleome arabica L mitigates bisphenol A-induced ovarian dysfunction and inflammation in Wistar rats: biochemical, histopathological, pharmacokinetic, and in silico studies. 3 Biotech 2025; 15:21. [PMID: 39720094 PMCID: PMC11663833 DOI: 10.1007/s13205-024-04169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
The present study evaluated the antioxidant and anti-inflammatory properties of Cleome arabica (CA) fruit extract against bisphenol A (BPA)-induced ovarian injury in female Wistar rats. The antioxidant activity was estimated by the total antioxidant capacity (TAC) and superoxide radical (NBT) content. For the in vivo analyses, 24 animals were divided into the following 4 groups: the control group; the BPA group (50 mg/kg BW BPA for 30 days); the BPA + CA group (50 mg/kg BW BPA and 50 mg/kg BW CA); and the CA group (50 mg/kg BW CA). The in vitro results demonstrated that CA exhibited strong antioxidant activity and scavenged O2•- radicals. . Pharmacokinetic properties were also explored, reflecting the physiological dynamics of the five active molecules (quercetin, catechin, kaempferol, rosmarinic acid, and naringenin). The in vivo findings revealed a significant increase in body weight associated with a significant increase in plasma C-reactive protein (CRP), proinflammatory cytokines (IL-1, IL-6, and TNF-α), and testosterone levels (p < 0.01). In addition, ovarian histological disruption was observed. However, co-administration of CA extract significantly improved ovarian histological integrity and attenuated inflammatory and androgenic disturbances. Moreover, in silico investigations showed that CA compounds interacted more strongly with the active sites of IL-1β, IL-6, or TNF-α. The best binding energy was observed between catechin (five H-bonds) and IL-1β and IL-6, at -6.0 and -6.1 kcal/mol, respectively, and between rosmarinic acid (four H-bonds) and TNF-α, at -6.4 kcal/mol. The present study supports the use of Cleome arabica in the treatment of infertility for female polycystic ovary syndrome (PCOS) patients.
Collapse
Affiliation(s)
- Ikram Allagui
- Laboratory of Animal Ecophysiology, Faculty of Science, University of Sfax Tunisia, P.O. Box 95, CP 3000 Sfax, Tunisia
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, 2112 Gafsa, Tunisia
| | - Jazia Sdayria
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, 2112 Gafsa, Tunisia
| | - Khaled Athmouni
- Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planctonology, Department of life sciences, Faculty of Sciences, University of Sfax Tunisia, Unit UR 11 ES 72/Street of Soukra Km 3,5, B.P. 1171, CP 3000 Sfax, Tunisia
| | - Nourhene Zammel
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, 3029 Sfax, Tunisia
| | - Fatma Guesmi
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, 2112 Gafsa, Tunisia
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Carthage, Tunisia
| | - Mongi Saoudi
- Laboratory of Animal Ecophysiology, Faculty of Science, University of Sfax Tunisia, P.O. Box 95, CP 3000 Sfax, Tunisia
| | - Angelo Maria Giuffrè
- Department of AGRARIA, University Mediterranea of Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Mohamed Salah Allagui
- Laboratory of Animal Ecophysiology, Faculty of Science, University of Sfax Tunisia, P.O. Box 95, CP 3000 Sfax, Tunisia
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University Campus Sidi Ahmed Zarroug, University of Gafsa, 2112 Gafsa, Tunisia
| | - Saber Nahdi
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Shin A, Xing Y, Waseem MR, Siwiec R, James-Stevenson T, Rogers N, Bohm M, Wo J, Lockett C, Gupta A, Kadariya J, Toh E, Anderson R, Xu H, Gao X. Microbiota-Short Chain Fatty Acid Relationships Underlie Clinical Heterogeneity and Identify Key Microbial Targets in Irritable Bowel Syndrome (IBS). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.31.24302084. [PMID: 38352442 PMCID: PMC10863002 DOI: 10.1101/2024.01.31.24302084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Background Identifying microbial targets in irritable bowel syndrome (IBS) and other disorders of gut-brain interaction (DGBI) is challenging due to the dynamic nature of microbiota-metabolite-host interactions. SCFA are key microbial metabolites that modulate intestinal homeostasis and may influence IBS pathophysiology. We aimed to assess microbial features associated with short chain fatty acids (SCFA) and determine if features varied across IBS subtypes and endophenotypes. Among 96 participants who were screened, 71 completed the study. We conducted in-depth investigations of stool microbial metagenomes, stool SCFA, and measurable IBS traits (stool bile acids, colonic transit, stool form) in 41 patients with IBS (IBS with constipation [IBS-C] IBS with diarrhea [IBS-D]) and 17 healthy controls. We used partial canonical correspondence analyses (pCCA), conditioned on transit, to quantify microbe-SCFA associations across clinical groups. To explore relationships between microbially-derived SCFA and IBS traits, we compared gut microbiome-encoded potential for substrate utilization across groups and within a subset of participants selected by their stool characteristics as well as stool microbiomes of patients with and without clinical bile acid malabsorption. Results Overall stool microbiome composition and individual taxa abundances differed between clinical groups. Microbes-SCFA associations differed across groups and revealed key taxa including Dorea sp. CAG:317 and Bifidobacterium pseudocatenulatum in IBS-D and Akkermansia muciniphila and Prevotella copri in IBS-C that that may drive subtype-specific microbially-mediated mechanisms. Strongest microbe-SCFA associations were observed in IBS-D and several SCFA-producing species surprisingly demonstrated inverse correlations with SCFA. Fewer bacterial taxa were associated with acetate to butyrate ratios in IBS compared to health. In participants selected by stool form, we demonstrated differential abundances of microbial genes/pathways for SCFA metabolism and degradation of carbohydrates and mucin across groups. SCFA-producing taxa were reduced in IBS-D patients with BAM. Conclusion Keystone taxa responsible for SCFA production differ according to IBS subtype and traits and the IBS microbiome is characterized by reduced functional redundancy. Differences in microbial substrate preferences are also linked to bowel functions. Focusing on taxa that drive SCFA profiles and stool form may be a rational strategy for identifying relevant microbial targets in IBS and other DGBI.
Collapse
|
6
|
Sawaswong V, Chanchaem P, Klomkliew P, Rotcheewaphan S, Meesawat S, Kemthong T, Kaewparuehaschai M, Noradechanon K, Ekatat M, Kanitpun R, Srilohasin P, Warit S, Chaiprasert A, Malaivijitnond S, Payungporn S. Full-length 16S rDNA sequencing based on Oxford Nanopore Technologies revealed the association between gut-pharyngeal microbiota and tuberculosis in cynomolgus macaques. Sci Rep 2024; 14:3404. [PMID: 38337025 PMCID: PMC10858278 DOI: 10.1038/s41598-024-53880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the Mycobacterium tuberculosis complex (Mtbc), which develops from asymptomatic latent TB to active stages. The microbiome was purposed as a potential factor affecting TB pathogenesis, but the study was limited. The present study explored the association between gut-pharyngeal microbiome and TB stages in cynomolgus macaques using the full-length 16S rDNA amplicon sequencing based on Oxford Nanopore Technologies. The total of 71 macaques was divided into TB (-) control, TB (+) latent and TB (+) active groups. The differential abundance analysis showed that Haemophilus hemolyticus was decreased, while Prevotella species were increased in the pharyngeal microbiome of TB (+) macaques. In addition, Eubacterium coprostanoligenes in the gut was enriched in TB (+) macaques. Alteration of these bacteria might affect immune regulation and TB severity, but details of mechanisms should be further explored and validated. In summary, microbiota may be associated with host immune regulation and affect TB progression. The findings suggested the potential mechanisms of host-microbes interaction, which may improve the understanding of the role of microbiota and help develop therapeutics for TB in the future.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Prangwalai Chanchaem
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Pavit Klomkliew
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Suwatchareeporn Rotcheewaphan
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suthirote Meesawat
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mutchamon Kaewparuehaschai
- Wildlife Conservation Office, Department of National Parks Wildlife and Plant Conservation, Bangkok, 10900, Thailand
| | - Kirana Noradechanon
- Wildlife Conservation Office, Department of National Parks Wildlife and Plant Conservation, Bangkok, 10900, Thailand
| | - Monya Ekatat
- National Institute of Animal Health (NIAH), Bangkok, 10900, Thailand
| | - Reka Kanitpun
- National Institute of Animal Health (NIAH), Bangkok, 10900, Thailand
| | - Prapaporn Srilohasin
- Office for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Saradee Warit
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Angkana Chaiprasert
- Office for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|