1
|
Do C, Skok JA. Factors that determine cell type-specific CTCF binding in health and disease. Curr Opin Genet Dev 2024; 88:102244. [PMID: 39146885 PMCID: PMC11383740 DOI: 10.1016/j.gde.2024.102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
A number of factors contribute to cell type-specific CTCF chromatin binding, but how they act in concert to determine binding stability and functionality has not been fully elucidated. In this review, we tie together different layers of regulation to provide a holistic view of what is known. What emerges from these studies is a multifaceted system in which DNA sequence, DNA and chromatin accessibility, and cell type-specific transcription factors together contribute to CTCF binding profile and function. We discuss these findings in the light of disease settings in which changes in the chromatin landscape and transcriptional programming can disrupt CTCF's binding profile and involvement in looping.
Collapse
Affiliation(s)
- Catherine Do
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Jane A Skok
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA. https://twitter.com/@Ryo2Iwata
| |
Collapse
|
2
|
Stasevich EM, Simonova AV, Bogomolova EA, Murashko MM, Uvarova AN, Zheremyan EA, Korneev KV, Schwartz AM, Kuprash DV, Demin DE. Cut from the same cloth: RNAs transcribed from regulatory elements. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195049. [PMID: 38964653 DOI: 10.1016/j.bbagrm.2024.195049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
A certain degree of chromatin openness is necessary for the activity of transcription-regulating regions within the genome, facilitating accessibility to RNA polymerases and subsequent synthesis of regulatory element RNAs (regRNAs) from these regions. The rapidly increasing number of studies underscores the significance of regRNAs across diverse cellular processes and diseases, challenging the paradigm that these transcripts are non-functional transcriptional noise. This review explores the multifaceted roles of regRNAs in human cells, encompassing rather well-studied entities such as promoter RNAs and enhancer RNAs (eRNAs), while also providing insights into overshadowed silencer RNAs and insulator RNAs. Furthermore, we assess notable examples of shorter regRNAs, like miRNAs, snRNAs, and snoRNAs, playing important roles. Expanding our discourse, we deliberate on the potential usage of regRNAs as biomarkers and novel targets for cancer and other human diseases.
Collapse
Affiliation(s)
- E M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A V Simonova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E A Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - M M Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Center for Advanced Studies, Moscow, Russia
| | - A N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - K V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A M Schwartz
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - D V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - D E Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Segev A, Heady L, Crewe M, Madabhushi R. Mapping catalytically engaged TOP2B in neurons reveals the principles of topoisomerase action within the genome. Cell Rep 2024; 43:113809. [PMID: 38377005 PMCID: PMC11064056 DOI: 10.1016/j.celrep.2024.113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
We trapped catalytically engaged topoisomerase IIβ (TOP2B) in covalent DNA cleavage complexes (TOP2Bccs) and mapped their positions genome-wide in cultured mouse cortical neurons. We report that TOP2Bcc distribution varies with both nucleosome and compartmental chromosome organization. While TOP2Bccs in gene bodies correlate with their level of transcription, highly expressed genes that lack the usually associated chromatin marks, such as H3K36me3, show reduced TOP2Bccs, suggesting that histone posttranslational modifications regulate TOP2B activity. Promoters with high RNA polymerase II occupancy show elevated TOP2B chromatin immunoprecipitation sequencing signals but low TOP2Bccs, indicating that TOP2B catalytic engagement is curtailed at active promoters. Surprisingly, either poisoning or inhibiting TOP2B increases nascent transcription at most genes and enhancers but reduces transcription within long genes. These effects are independent of transcript length and instead correlate with the presence of intragenic enhancers. Together, these results clarify how cells modulate the catalytic engagement of topoisomerases to affect transcription.
Collapse
Affiliation(s)
- Amir Segev
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lance Heady
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Morgan Crewe
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|