1
|
Feng X, Wu X, Wu H, Li Y, Zhou B, Jiang Y, Zhang S, Wei J, Su S, Hou Z. Short-Photoperiod Induces Floral Induction Involving Carbohydrate Metabolism and Regulation by VcCO3 in Greenhouse Blueberry. PLANT, CELL & ENVIRONMENT 2025; 48:2145-2161. [PMID: 39558459 DOI: 10.1111/pce.15292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Blueberry flower buds cultivated in greenhouses develop during both autumn and spring, with floral induction being a critical process for flowering, influenced by environmental factors. This study aimed to clarify the regulatory mechanisms governing floral induction in greenhouse blueberries, focusing on the similarities and differences in flower bud differentiation between the spring and autumn seasons. Understanding these mechanisms is pivotal for enhancing blueberry production. In this study, we analysed the phenotypic characteristics associated with flower bud differentiation and observed that short photoperiods markedly affect the induction process. Transcriptomic analyses revealed distinct major metabolic pathways activated in autumn compared to spring. Seasonal variations in carbohydrate metabolism were also noted, with sucrose hydrolysis being prominent in autumn and sucrose synthesis prevailing in spring. The interplay between circadian rhythms and photosynthesis appeared to facilitate the allocation of sugars for bud development. Subsequent investigations underscored the sensitivity of VcCO3 to variations in photoperiod. Predominantly localised in the nucleus, VcCO3 facilitated floral induction in response to short photoperiods by activating the expression of downstream genes, including VcFT, VcLFY, VcAP3, and VcSOC1. Furthermore, VcCO3 exhibits a close association with the sugar metabolism gene VcSUS, promoting increased sucrose concentrations.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Xinliang Wu
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Huiling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Yang Li
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Bingjie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Ying Jiang
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Suilin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Jiali Wei
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Shuchai Su
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| | - Zhixia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Laboratory for Silviculture and Conservation of the Ministry of Education, Research & Development Center of Blueberry, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Magdalena S, Karolina C, Danuta S, Krzysztof K. Cross-species stability of reference genes in medicinal plants Arnica montana and Arnica chamissonis. Sci Rep 2024; 14:32049. [PMID: 39738550 DOI: 10.1038/s41598-024-83709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
A better understanding of secondary metabolites biosynthesis requires comprehensive research at the molecular level. Although the medicinal importance of secondary metabolites extracted from Arnica spp. has been well documented, the very plants themselves have been poorly studied. Characterization of biosynthetic pathways and their complex regulatory mechanisms may be enhanced via transcriptomic approach. To ensure the reliability of data, RT-qPCR based gene expression studies should be preceded by the reference genes selection step. Here, ten candidate reference genes were analyzed in terms of their expression stability in developing flowers of two arnica species, Arnica montana and Arnica chamissonis. After evaluating their expression stability with four distinct algorithms (geNorm, NormFinder, BestKeeper and delta Ct method), we found that SKIP16 and F-box were the most stable reference genes in A. montana, whereas SAND and F-box were best-performing genes in A. chamissonis. On the other hand, ACT1 in combination with F-box could be used as internal control for cross-species investigations. This study will aid in further research on molecular mechanisms underlying the processes of flowering and secondary metabolites production in medicinal plants.
Collapse
Affiliation(s)
- Sozoniuk Magdalena
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| | - Czapla Karolina
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Sugier Danuta
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| | - Kowalczyk Krzysztof
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka Street 15, 20-950, Lublin, Poland
| |
Collapse
|
3
|
Jiang J, Mu C, Bai Y, Cheng W, Geng R, Xu J, Dou Y, Cheng Z, Gao J. Selection and Validation of Reference Genes in Dendrocalamus brandisii for Quantitative Real-Time PCR. PLANTS (BASEL, SWITZERLAND) 2024; 13:2363. [PMID: 39273847 PMCID: PMC11396877 DOI: 10.3390/plants13172363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Dendrocalamus brandisii (Munro) Kurz is a sympodial bamboo species with a wide distribution in tropical and subtropical regions. Due to its remarkable regenerative ability and exceptional flavor, this species plays a pivotal role in bolstering the economies of numerous nations across these regions. We recently published a high-quality genome of this species. To date, no study results have identified the optimal reference genes for quantitative real-time polymerase chain reaction (qRT-PCR) normalization in Dendrocalamus brandisii. qRT-PCR offers a highly accurate and effective approach to analyzing gene expression. However, the precision of the resulting quantitative data hinges on the correct choice of reference genes. Twenty-one potential reference genes were identified from the D. brandisii transcriptomes. Their expression in 23 samples, including 8 different tissue organs and 15 samples of D. brandisii under various treatment conditions, were evaluated through qRT-PCR. Subsequently, four software programs-Delta CT, geNorm, NormFinder, and RefFinder-were employed to compare their expression stability. The results revealed that the selection of optimal reference genes varied based on the particular organ and condition being examined. EF-1-α-2 consistently exhibits the most stable expression across diverse tissues, while ACTIN-1, TUBULIN-1, and EF-1-α-2 were the most consistent reference genes in roots, culms, and leaves under various treatments, respectively. In this study, we identified and characterized appropriate internal genes utilized for calibrating qRT-PCR analyses of D. brandisii across different tissue organs and under various treatments. This research will provide key insights for advancing the study of gene functionality and molecular biology in D. brandisii and related species.
Collapse
Affiliation(s)
- Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Changhong Mu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Wenlong Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Junlei Xu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
4
|
Szentpéteri V, Virág E, Mayer Z, Duc NH, Hegedűs G, Posta K. First Peek into the Transcriptomic Response in Heat-Stressed Tomato Inoculated with Septoglomus constrictum. PLANTS (BASEL, SWITZERLAND) 2024; 13:2266. [PMID: 39204702 PMCID: PMC11359853 DOI: 10.3390/plants13162266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
In this study, we report the interaction between an arbuscular mycorrhizal fungus, Septoglomus constrictum, and tomato plants under heat stress. For the first time, this interaction was studied by Illumina RNA-seq, followed by a comprehensive bioinformatic analysis that investigated root and leaf tissue samples. The genome-wide transcriptional profiling displayed fewer transcriptomic changes in the root under heat-stress conditions caused by S. constrictum. The top 50 DEGs suggested significant changes in the expression of genes encoding heat-shock proteins, transporter proteins, and genes of phytohormone metabolism involving jasmonic acid signalling. S. constrictum induced the upregulation of genes associated with pathways such as 'drought-responsive' and the 'development of root hair' in the root, as well as 'glycolipid desaturation', 'intracellular auxin transport', and 'ethylene biosynthesis' in the leaf. The pathways 'biotin biosynthesis' and 'threonine degradation' were found in both investigated tissue types. Expression analysis of transcription factors showed 2 and 11 upregulated transcription factors in heat-stressed root and leaf tissues, respectively. However, we did not find shared transcription factors. Heat-stressed arbuscular mycorrhizal plants suffered less oxidative stress when exposed to high temperatures. Colorimetric tests demonstrated less accumulation of H2O2 and MDA in heat-stressed mycorrhizal plants. This phenomenon was accompanied by the higher expression of six stress genes that encode peroxidases, glutathione S-transferase and ubiquitin carboxyl-terminal hydrolase in roots and leaves. Our findings provide a new perspective on elucidating the functional metabolic processes of tomato plants under mycorrhizal-heat stressed conditions.
Collapse
Affiliation(s)
- Viktor Szentpéteri
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (V.S.); (Z.M.); (N.H.D.)
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Eszter Virág
- Institute of One Health, University of Debrecen, 4032 Debrecen, Hungary;
- Research Institute for Medicinal Plants and Herbs Ltd., 2011 Budakalász, Hungary
| | - Zoltán Mayer
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (V.S.); (Z.M.); (N.H.D.)
| | - Nguyen Hong Duc
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (V.S.); (Z.M.); (N.H.D.)
| | - Géza Hegedűs
- Department of Information Technology and Its Applications, Faculty of Information Technology, University of Pannonia, 8900 Zalaegerszeg, Hungary;
| | - Katalin Posta
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (V.S.); (Z.M.); (N.H.D.)
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
5
|
Zhao G, Liu W, Lin G, Wen J. Evaluation of reference genes and expression patterns of CONSTANS-LIKE genes in Tetrastigma hemsleyanum under different photoperiods. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23218. [PMID: 39038159 DOI: 10.1071/fp23218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
CONSTANS-LIKE (COL ) genes are a key signalling molecule that regulates plant growth and development during the photoperiod. Our preliminary experiments showed that the photoperiod greatly influence the formation of Tetrastigma hemsleyanum root tubers. In this study, we examined the oscillation patterns and expression characteristics of COL genes in leaves of T. hemsleyanum under different photoperiod conditions. Six genes were selected as candidate reference genes for further analyses: (1) 18S ribosomal RNA (18S rRNA ); (2) α-tubulin (TUBA ); (3) 30S ribosomal RNA (30S rRNA ); (4) TATA binding protein (TBP ); (5) elongation factor 1α (EF-1α ); and (6) RNA polymerase II (RPII ). The geNorm, NormFinder, and BestKeeper software programs were used to evaluate expression stability. Two ThCOL genes were screened in the T. hemsleyanum transcriptome library, and their expression patterns under different photoperiod conditions were analysed using quantitative reverse transcription PCR. The genes EF-1α , TUBA , and 18S rRNA were used to analyse the expression profiles of CONSTANS genes (ThCOL4 and ThCOL5 ) under different photoperiods. The expression peaks of ThCOL4 and ThCOL5 appeared at different times, demonstrating that their oscillation patterns were influenced by the photoperiod. We speculate that these two ThCOL genes may be involved in different biological processes.
Collapse
Affiliation(s)
- Gang Zhao
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Wenling Liu
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Guowei Lin
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Jing Wen
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| |
Collapse
|
6
|
Li JW, Zhou P, Hu ZH, Teng RM, Wang YX, Li T, Xiong AS, Li XH, Chen X, Zhuang J. CsPAT1, a GRAS transcription factor, promotes lignin accumulation by antagonistic interacting with CsWRKY13 in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1312-1326. [PMID: 38319894 DOI: 10.1111/tpj.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Lignin is an important component of plant cell walls and plays crucial roles in the essential agronomic traits of tea quality and tenderness. However, the molecular mechanisms underlying the regulation of lignin biosynthesis in tea plants remain unclear. CsWRKY13 acts as a negative regulator of lignin biosynthesis in tea plants. In this study, we identified a GRAS transcription factor, phytochrome A signal transduction 1 (CsPAT1), that interacts with CsWRKY13. Silencing CsPAT1 expression in tea plants and heterologous overexpression in Arabidopsis demonstrated that CsPAT1 positively regulates lignin accumulation. Further investigation revealed that CsWRKY13 directly binds to the promoters of CsPAL and CsC4H and suppresses transcription of CsPAL and CsC4H. CsPAT1 indirectly affects the promoter activities of CsPAL and CsC4H by interacting with CsWRKY13, thereby facilitating lignin biosynthesis in tea plants. Compared with the expression of CsWRKY13 alone, the co-expression of CsPAT1 and CsWRKY13 in Oryza sativa significantly increased lignin biosynthesis. Conversely, compared with the expression of CsPAT1 alone, the co-expression of CsPAT1 and CsWRKY13 in O. sativa significantly reduced lignin accumulation. These results demonstrated the antagonistic regulation of the lignin biosynthesis pathway by CsPAT1 and CsWRKY13. These findings improve our understanding of lignin biosynthesis mechanisms in tea plants and provide insights into the role of the GRAS transcription factor family in lignin accumulation.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ping Zhou
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Daude MM, Ságio SA, Rodrigues JN, Lima NMP, Lima AA, Sarmento MI, Sarmento RA, Barreto HG. Reference genes for Eucalyptus spp. under Beauveria bassiana inoculation and subsequently infestation by the galling wasp Leptocybe invasa. Sci Rep 2024; 14:2556. [PMID: 38297150 PMCID: PMC10830493 DOI: 10.1038/s41598-024-52948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Relative gene expression analysis through RT-qPCR is an important molecular technique that helps understanding different molecular mechanisms, such as the plant defense response to insect pests. However, the use of RT-qPCR for gene expression analysis can be affected by factors that directly affect the reliability of the results. Among these factors, the appropriate choice of reference genes is crucial and can strongly impact RT-qPCR relative gene expression analyses, highlighting the importance in correctly choosing the most suitable genes for the success of the analysis. Thus, this study aimed to select and validate reference genes for relative gene expression studies through RT-qPCR in hybrids of Eucalyptus tereticornis × Eucalyptus camaldulensis (drought tolerant and susceptible to Leptocybe invasa) under conditions of inoculation by the Beauveria bassiana fungus and subsequent infestation by L. invasa. The expression level and stability of eleven candidate genes were evaluated. Stability was analyzed using the RefFinder tool, which integrates the geNorm, NormFinder, BestKeeper, and Delta-Ct algorithms. The selected reference genes were validated through the expression analysis of the transcriptional factor EcDREB2 (dehydration-responsive element-binding protein 2). For all treatments evaluated, EcPTB, EcPP2A-1, and EcEUC12 were the best reference genes. The triplets EcPTB/EcEUC12/EcUBP6, EcPP2A-1/EcEUC12/EcPTB, EcIDH/EcSAND/Ecα-TUB, EcPP2A-1/Ecα-TUB/EcPTB, and EcPP2A-1/EcUPL7/EcSAND were the best reference genes for the control plants, mother plants, plants inoculated with B. bassiana, plants infested with L. invasa, and plants inoculated with B. bassiana and subsequently infested with L. invasa, respectively. The best determined reference genes were used to normalize the RT-qPCR expression data for each experimental condition evaluated. The results emphasize the importance of this type of study to ensure the reliability of relative gene expression analyses. Furthermore, the findings of this study can be used as a basis for future research, comprising gene expression analysis of different eucalyptus metabolic pathways.
Collapse
Affiliation(s)
- Matheus Martins Daude
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil
| | - Solange Aparecida Ságio
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Digital Agroenergy, Federal University of Tocantins, Palmas, TO, Brazil
| | - Jovielly Neves Rodrigues
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | | | - André Almeida Lima
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
| | - Maíra Ignacio Sarmento
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | - Renato Almeida Sarmento
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | - Horllys Gomes Barreto
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil.
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil.
- Postgraduate Program in Digital Agroenergy, Federal University of Tocantins, Palmas, TO, Brazil.
| |
Collapse
|
8
|
Wang J, Ye H, Li X, Lv X, Lou J, Chen Y, Yu S, Zhang L. Genome-Wide Analysis of the MADS-Box Gene Family in Hibiscus syriacus and Their Role in Floral Organ Development. Int J Mol Sci 2023; 25:406. [PMID: 38203576 PMCID: PMC10779063 DOI: 10.3390/ijms25010406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Hibiscus syriacus belongs to the Malvaceae family, and is a plant with medicinal, edible, and greening values. MADS-box transcription factor is a large family of regulatory factors involved in a variety of biological processes in plants. Here, we performed a genome-wide characterization of MADS-box proteins in H. syriacus and investigated gene structure, phylogenetics, cis-acting elements, three-dimensional structure, gene expression, and protein interaction to identify candidate MADS-box genes that mediate petal developmental regulation in H. syriacus. A total of 163 candidate MADS-box genes were found and classified into type I (Mα, Mβ, and Mγ) and type II (MIKC and Mδ). Analysis of cis-acting elements in the promoter region showed that most elements were correlated to plant hormones. The analysis of nine HsMADS expressions of two different H. syriacus cultivars showed that they were differentially expressed between two type flowers. The analysis of protein interaction networks also indicated that MADS proteins played a crucial role in floral organ identification, inflorescence and fruit development, and flowering time. This research is the first to analyze the MADS-box family of H. syriacus and provides an important reference for further study of the biological functions of the MADS-box, especially in flower organ development.
Collapse
Affiliation(s)
- Jie Wang
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Heng Ye
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Xiaolong Li
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China;
| | - Xue Lv
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Jiaqi Lou
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Yulu Chen
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Shuhan Yu
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| | - Lu Zhang
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; (J.W.); (H.Y.); (X.L.); (J.L.); (Y.C.)
| |
Collapse
|
9
|
Zhang W, Xu J, Wang Q, Li J, Li Y, Dong M, Sun H. Transcriptome-Based Identification of the Optimal Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Analyses of Lingonberry Fruits throughout the Growth Cycle. PLANTS (BASEL, SWITZERLAND) 2023; 12:4180. [PMID: 38140507 PMCID: PMC10748091 DOI: 10.3390/plants12244180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
(1) Background: Vaccinium vitis-idaea is a nutritionally and economically valuable natural wild plant species that produces berries useful for treating various diseases. There is growing interest in lingonberry, but there is limited information regarding lingonberry reference genes suitable for gene expression analyses of different tissues under various abiotic stress conditions. The objective of this study was to identify stable reference genes suitable for different lingonberry tissues in response to abiotic stress. (2) Methods: The delta Ct method and the GeNorm v3.5 and NormFinder v20 programs were used to comprehensively analyze gene expression stability. (3) Results: Actin Unigene23839 was the best reference gene for analyzing different cultivars, whereas Actin CL5740.Contig2 was the most suitable reference gene for analyzing different tissues and alkali stress. In contrast, 18S rRNA CL5051.Contig1 was the most stable reference gene under drought conditions. (4) Conclusions: These suitable reference genes may be used in future qRT-PCR analyses of different lingonberry tissues and the effects of abiotic stresses. Furthermore, the study data may be useful for functional genomics studies and the molecular breeding of lingonberry. In summary, internal reference genes or internal reference gene combinations should be carefully selected according to the experimental conditions to ensure that the generated gene expression data are accurate.
Collapse
Affiliation(s)
- Wanchen Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jian Xu
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| | - Qiang Wang
- Research Institute of Pomology of CAAS, Xingcheng 125100, China; (Q.W.); (J.L.)
| | - Jing Li
- Research Institute of Pomology of CAAS, Xingcheng 125100, China; (Q.W.); (J.L.)
| | - Yadong Li
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| | - Mei Dong
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| | - Haiyue Sun
- Joint International Research Laboratory of Modern Agricultural Technology, College of Horticulture, Jilin Agricultural University, Changchun 130118, China; (W.Z.); (J.X.); (Y.L.)
| |
Collapse
|
10
|
Renganathan VG, Renuka R, Vanniarajan C, Raveendran M, Elangovan A. Selection and validation of reliable reference genes for quantitative real-time PCR in Barnyard millet (Echinochloa spp.) under varied abiotic stress conditions. Sci Rep 2023; 13:15573. [PMID: 37731036 PMCID: PMC10511452 DOI: 10.1038/s41598-023-40526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/11/2023] [Indexed: 09/22/2023] Open
Abstract
Quantitative real-time polymerase chain reaction (RT-qPCR) using a stable reference gene is widely used for gene expression research. Barnyard millet (Echinochloa spp.) is an ancient crop in Asia and Africa that is widely cultivated for food and fodder. It thrives well under drought, salinity, cold, and heat environmental conditions, besides adapting to any soil type. To date, there are no gene expression studies performed to identify the potential candidate gene responsible for stress response in barnyard millet, due to lack of reference gene. Here, 10 candidate reference genes, Actin (ACT), α-tubulin (α-TUB), β-tubulin (β-TUB), RNA pol II (RP II), elongation factor-1 alpha (EF-1α), adenine phosphoribosyltransferase (APRT), TATA-binding protein-like factor (TLF), ubiquitin-conjugating enzyme 2 (UBC2), ubiquitin-conjugating enzyme E2L5 (UBC5) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were selected from mRNA sequences of E. crus-galli and E. colona var frumentacea. Five statistical algorithms (geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder) were applied to determine the expression stabilities of these genes in barnyard millet grown under four different abiotic stress (drought, salinity, cold and heat) exposed at different time points. The UBC5 and ɑ-TUB in drought, GAPDH in salinity, GAPDH and APRT in cold, and EF-1α and RP II in heat were the most stable reference genes, whereas ß-TUB was the least stable irrespective of stress conditions applied. Further Vn/Vn + 1 analysis revealed two reference genes were sufficient to normalize gene expression across all sample sets. The suitability of identified reference genes was validated with Cu-ZnSOD (SOD1) in the plants exposed to different abiotic stress conditions. The results revealed that the relative quantification of the SOD1 gene varied according to reference genes and the number of reference genes used, thus highlighting the importance of the choice of a reference gene in such experiments. This study provides a foundational framework for standardizing RT-qPCR analyses, enabling accurate gene expression profiling in barnyard millet.
Collapse
Affiliation(s)
- Vellaichamy Gandhimeyyan Renganathan
- Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Raman Renuka
- Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India.
| | - Chockalingam Vanniarajan
- Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, India
| | - Muthurajan Raveendran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Allimuthu Elangovan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
11
|
Raldugina GN, Bogoutdinova LR, Shelepova OV, Kondrateva VV, Platonova EV, Nechaeva TL, Kazantseva VV, Lapshin PV, Rostovtseva HI, Aniskina TS, Kharchenko PN, Zagoskina NV, Gulevich AA, Baranova EN. Heterologous codA Gene Expression Leads to Mitigation of Salt Stress Effects and Modulates Developmental Processes. Int J Mol Sci 2023; 24:13998. [PMID: 37762301 PMCID: PMC10531037 DOI: 10.3390/ijms241813998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Transgenic tobacco plants overexpressing the choline oxidase gene from A. globiformis showed an increase in resistance at the level of primary and secondary biosynthesis of metabolites, removing the damage characteristic of salinity and stabilizing the condition of plants. We used 200 mM NaCl, which inhibits the growth of tobacco plants at all stages of development. Leaves of transgenic and wild-type (WT) plants Nicotiána tabácum were used for biochemical, cytological and molecular biological analysis. However, for transgenic lines cultivated under normal conditions (without salinity), we noted juvenile characteristics, delay in flowering, and slowing down of development, including the photosynthetic apparatus. This caused changes in the amount of chlorophyll, a delay in the plastid grana development with the preservation of prolamellar bodies. It also caused changes in the amount of sugars and indirectly downstream processes. A significant change in the activity of antioxidant enzymes and a change in metabolism is probably compensated by the regulation of a number of genes, the expression level of which was also changed. Thus, the tolerance of transgenic tobacco plants to salinity, which manifested itself as a result of the constitutive expression of codA, demonstrates an advantage over WT plants, but in the absence of salinity, transgenic plants did not have such advantages due to juvenilization.
Collapse
Affiliation(s)
- Galina N. Raldugina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Lilia R. Bogoutdinova
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
| | - Olga V. Shelepova
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| | - Vera V. Kondrateva
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| | | | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Pyotr V. Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Helen I. Rostovtseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Tatiana S. Aniskina
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| | - Pyotr N. Kharchenko
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.L.N.); (V.V.K.); (P.V.L.); (H.I.R.); (N.V.Z.)
| | - Alexander A. Gulevich
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
| | - Ekaterina N. Baranova
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550 Moscow, Russia (P.N.K.); (A.A.G.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia (V.V.K.); (T.S.A.)
| |
Collapse
|
12
|
Moing A, Berton T, Roch L, Diarrassouba S, Bernillon S, Arrivault S, Deborde C, Maucourt M, Cabasson C, Bénard C, Prigent S, Jacob D, Gibon Y, Lemaire-Chamley M. Multi-omics quantitative data of tomato fruit unveils regulation modes of least variable metabolites. BMC PLANT BIOLOGY 2023; 23:365. [PMID: 37479985 PMCID: PMC10362748 DOI: 10.1186/s12870-023-04370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND The composition of ripe fruits depends on various metabolites which content evolves greatly throughout fruit development and may be influenced by the environment. The corresponding metabolism regulations have been widely described in tomato during fruit growth and ripening. However, the regulation of other metabolites that do not show large changes in content have scarcely been studied. RESULTS We analysed the metabolites of tomato fruits collected on different trusses during fruit development, using complementary analytical strategies. We identified the 22 least variable metabolites, based on their coefficients of variation. We first verified that they had a limited functional link with the least variable proteins and transcripts. We then posited that metabolite contents could be stabilized through complex regulations and combined their data with the quantitative proteome or transcriptome data, using sparse partial-least-square analyses. This showed shared regulations between several metabolites, which interestingly remained linked to early fruit development. We also examined regulations in specific metabolites using correlations with individual proteins and transcripts, which revealed that a stable metabolite does not always correlate with proteins and transcripts of its known related pathways. CONCLUSIONS The regulation of the least variable metabolites was then interpreted regarding their roles as hubs in metabolic pathways or as signalling molecules.
Collapse
Affiliation(s)
- Annick Moing
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Thierry Berton
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Léa Roch
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Salimata Diarrassouba
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: Laboratoire de Recherche en Sciences Végétales, UMR 5546 UPS/CNRS, Auzeville- Tolosane, F-31320 France
| | - Stéphane Bernillon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: INRAE, Mycologie et Sécurité des Aliments, UR 1264, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, am Muehlenberg 14476, Potsdam-Golm, Germany
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Present Address: INRAE, UR1268 BIA, Centre INRAE Pays de Loire – Nantes, Nantes, F-44000 France
- Present address: INRAE, BIBS Facility, Centre INRAE Pays de Loire – Nantes, Nantes, F-44000 France
| | - Mickaël Maucourt
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Cécile Cabasson
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Camille Bénard
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Sylvain Prigent
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| | - Martine Lemaire-Chamley
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine Bordeaux, Villenave d’Ornon, F-33140 France
| |
Collapse
|
13
|
Yin Z, Xie F, Michalak K, Murawska Z, Zhang B, Lebecka R. Evaluation of reference genes for miRNA and mRNA normalization in tobacco infected with PVY NTN, PVY N-Wi and PVY Z-NTN strains. Gene 2023; 862:147261. [PMID: 36764339 DOI: 10.1016/j.gene.2023.147261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
This is the first report on identification of the most suitable reference genes for RT-qPCR quantification of miRNA and mRNA in tobacco response to the prevalent recombinant potato virus Y (PVY) strains PVYNTN, PVYN-Wi and the newly identified PVYZ-NTN. Of 10 tested genes, the expression levels of neIF5C, nU2af and nPP2A were the most stable in samples taken from non-inoculated, mock-inoculated, and infected plants at three days post-inoculation (dpi) and 14 dpi. While the homologues of eIF5 were most stably expressed in tobacco in this study and in potato in our previous study (Yin et al., 2021) following inoculation with the same three PVY strains, the homologues of other two genes PP2A and U2af were stably expressed only in tobacco but unstable in potato. The tobacco homologue of PP2A, which was the most stably expressed one in tobacco interaction with PVYNTN, PVYN-Wi and PVYZ-NTN strains in this study, was the least stable one in tobacco interaction with the non-recombinant PVYO strain in a previous study (Baek et al., 2017). This study provides evidence on the influence of host species on expression of housekeeping genes and points out virus strain as a new factor influencing expression stability of reference gene. Caution should be taken when choosing reference genes in gene expression study in Solanaceae hosts response to different PVY strains.
Collapse
Affiliation(s)
- Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831 Młochów, Poland.
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Krystyna Michalak
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831 Młochów, Poland
| | - Zofia Murawska
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831 Młochów, Poland
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Renata Lebecka
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831 Młochów, Poland
| |
Collapse
|
14
|
Medina-Lozano I, Arnedo MS, Grimplet J, Díaz A. Selection of Novel Reference Genes by RNA-Seq and Their Evaluation for Normalising Real-Time qPCR Expression Data of Anthocyanin-Related Genes in Lettuce and Wild Relatives. Int J Mol Sci 2023; 24:3052. [PMID: 36769376 PMCID: PMC9917471 DOI: 10.3390/ijms24033052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Lettuce is a popular vegetable source of bioactive compounds, like anthocyanins, powerful antioxidants present in red and semi-red varieties. Selection of reliable reference genes (RGs) for the normalization of real-time quantitative PCR (qPCR) data is crucial to obtain accurate gene expression results. Among the genes with totally unrelated biological functions, six candidate RGs (ADF2, CYB5, iPGAM, SCL13, TRXL3-3, and VHA-H) with low variation in expression according to RNA-seq analyses, were selected for future expression studies of anthocyanin-related genes in three different experiments: leaf colour comparison (green vs. red) in commercial varieties; tissue comparison (leaf vs. stem) in a wild relative; and drought stress experiment in commercial and traditional varieties, and a wild relative. Expression profiles of the candidate RGs were obtained by qPCR and their stability was assessed by four different analytical tools, geNorm, NormFinder, BestKeeper, and Delta Ct method, all integrated in RefFinder. All results considered, we recommend CYB5 to be used as RG for the leaf colour experiment and TRXL3-3 for the tissue and drought stress ones, as they were the most stable genes in each case. RNA-seq is useful to preselect novel RGs although validation by qPCR is still advisable. These results provide helpful information for gene expression studies in Lactuca spp. under the described conditions.
Collapse
Affiliation(s)
- Inés Medina-Lozano
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Avd. Montañana 930, 50059 Zaragoza, Spain
- AgriFood Institute of Aragon–IA2, CITA-University of Zaragoza, 50013 Zaragoza, Spain
| | - María Soledad Arnedo
- Ramiro Arnedo S.A. Paraje La Molina 54, Las Norias de Daza, 04716 Almería, Spain
| | - Jérôme Grimplet
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Avd. Montañana 930, 50059 Zaragoza, Spain
- AgriFood Institute of Aragon–IA2, CITA-University of Zaragoza, 50013 Zaragoza, Spain
| | - Aurora Díaz
- Department of Plant Sciences, Agrifood Research and Technology Centre of Aragon (CITA), Avd. Montañana 930, 50059 Zaragoza, Spain
- AgriFood Institute of Aragon–IA2, CITA-University of Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
15
|
Bharati R, Sen MK, Kumar R, Gupta A, Žiarovská J, Fernández-Cusimamani E, Leuner O. Systematic Identification of Suitable Reference Genes for Quantitative Real-Time PCR Analysis in Melissa officinalis L. PLANTS (BASEL, SWITZERLAND) 2023; 12:470. [PMID: 36771553 PMCID: PMC9919226 DOI: 10.3390/plants12030470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Melissa officinalis L. is well known for its lemon-scented aroma and various pharmacological properties. Despite these valuable properties, the genes involved in the biosynthetic pathways in M. officinalis are not yet well-explored when compared to other members of the mint family. For that, gene expression studies using quantitative real-time PCR (qRT-PCR) are an excellent tool. Although qRT-PCR can provide accurate results, its accuracy is highly reliant on the expression and stability of the reference gene used for normalization. Hence, selecting a suitable experiment-specific reference gene is very crucial to obtain accurate results. However, to date, there are no reports for experiment-specific reference genes in M. officinalis. Therefore, in the current study, ten commonly used reference genes were assessed for their suitability as optimal reference genes in M. officinalis under various abiotic stress conditions and different plant organs. The candidate genes were ranked based on BestKeeper, comparative ΔCt, geNorm, NormFinder, and RefFinder. Based on the results, we recommend the combination of EF-1α and GAPDH as the best reference genes to normalize gene expression studies in M. officinalis. On the contrary, HLH71 was identified as the least-performing gene. Thereafter, the reliability of the optimal gene combination was assessed by evaluating the relative gene expression of the phenylalanine ammonia lyase (PAL) gene under two elicitor treatments (gibberellic acid and jasmonic acid). PAL is a crucial gene involved directly or indirectly in the production of various economically important secondary metabolites in plants. Suitable reference genes for each experimental condition are also discussed. The findings of the current study form a basis for current and future gene expression studies in M. officinalis and other related species.
Collapse
Affiliation(s)
- Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Ram Kumar
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Jana Žiarovská
- Research Centre AgroBioTech, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
16
|
Feng X, Zhou B, Wu X, Wu H, Zhang S, Jiang Y, Wang Y, Zhang Y, Cao M, Guo B, Su S, Hou Z. Molecular characterization of SPL gene family during flower morphogenesis and regulation in blueberry. BMC PLANT BIOLOGY 2023; 23:40. [PMID: 36650432 PMCID: PMC9847132 DOI: 10.1186/s12870-023-04044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The SPL gene is a plant-specific transcription factor involved in the regulation of plant growth and development, which have been identified in woody plants. The process of floral bud differentiation affects the timing of flowering and fruit set and regulates plant growth, however, the mechanism of regulation of flower development by SPL genes is less studied. In this study, 56 VcSPL genes were identified in the tetraploid blueberry. The VcSPL gene family was classified into six subfamilies, and analysis of cis-elements showed that VcSPL genes were regulated by light, phytohormones (abscisic acid, MeJA), and low temperature. In the evolutionary analysis, segmental replication may play an important role in VcSPL gene amplification. Interestingly, we also studied diploid blueberry (Bilberry), in which 24 SPL genes were identified, and 36 homologous pairs were found, suggesting a high degree of convergence in the syntenic relationship between blueberry (Vaccinium corymbosum L) and bilberry (Vaccinium darrowii). Based on the expression profile, VcSPL genes were expressed at high levels in flowers, shoots, and roots, indicating a diversity of gene functions. Then we selected 20 differentially-expressed SPL genes to further investigate the role of VcSPL in floral induction and initiation. It showed that the genes VcSPL40, VcSPL35, VcSPL45, and VcSPL53 may play a crucial role in the blueberry floral transition phase (from vegetative growth to flower initiation). These results provided important information for understanding and exploring the role of VcSPLs in flower morphogenesis and plant growth.
Collapse
Affiliation(s)
- Xin Feng
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Bingjie Zhou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Xinliang Wu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Huiling Wu
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Suilin Zhang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Ying Jiang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Yaping Wang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Yaqian Zhang
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Man Cao
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Baoshi Guo
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Shuchai Su
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Research and Development Center of Blueberry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
17
|
Álvarez-Urdiola R, Bustamante M, Ribes J, Riechmann JL. Gene Expression Analysis by Quantitative Real-Time PCR for Floral Tissues. Methods Mol Biol 2023; 2686:403-428. [PMID: 37540371 DOI: 10.1007/978-1-0716-3299-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Real-time, or quantitative, reverse transcription polymerase chain reaction (qRT-PCR) is a powerful method for rapid and reliable quantification of mRNA abundance. Although it has not featured prominently in flower development research in the past, the availability of novel techniques for the synchronized induction of flower development, or for the isolation of cell-specific mRNA populations, suggests that detailed quantitative analyses of gene expression over time and in specific tissues and cell types by qRT-PCR will become more widely used. In this chapter, we discuss specific considerations for studying gene expression by using qRT-PCR, such as the identification of suitable reference genes for the experimental set-up used. In addition, we provide protocols for performing qRT-PCR experiments in a multiwell plate format (with the LightCycler® 480 system, Roche) and with nanofluidic arrays (BioMark™ system, Fluidigm), which allow the automatic combination of sets of samples with sets of assays, and significantly reduce reaction volume and the number of liquid-handling steps performed during the experiment.
Collapse
Affiliation(s)
- Raquel Álvarez-Urdiola
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Mariana Bustamante
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Joana Ribes
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
18
|
Ma D, Zhang Q, Zhou J, Lu Y, Duan X, He C, Yu J. Identification of Reliable Reference Genes under Different Stresses and in Different Tissues of Toxicodendron succedaneum. Genes (Basel) 2022; 13:genes13122396. [PMID: 36553662 PMCID: PMC9778191 DOI: 10.3390/genes13122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Toxicodendron succedaneum (L.) Kuntze (T. succedaneum) is an economic tree species that produces urushiol and urushi wax, and it is of great value in industry and medicine. However, the stability of reference genes (RGs) has not been systematically reported in T. succedaneum to date. In this study, the expression of 10 candidate RGs was analyzed by RT-qPCR in different tissues (roots, stems, leaves), stress treatments (high/low temperature, drought), and hormone stimulation (jasmonic acid, JA). Then, the stability ranking of 10 candidate genes was evaluated by ∆Ct analysis and three software programs: geNorm, NormFinder, and BestKeeper. Finally, RefFinder was used to comprehensively analyze the expression stability of 10 candidate genes. The comprehensive analysis showed that TsRG05/06, TsRG01/06, and TsRG03/ACT were stable under high/low-temperature stress, drought stress, and JA treatment, respectively. TsRG03 and ACT had stable expression in different tissues. While the TsRG03 and ACT were recommended as the suitable RGs for T. succedaneum in all samples. Meanwhile, UBQ was the least suitable as a reference gene for T. succedaneum. In addition, the results of geNorm showed that the combination of two stable RGs could make the results of gene expression more accurate. These results provide alternative RGs for the study of gene function, correction, and normalization of target gene expression and directed molecular breeding in T. succedaneum.
Collapse
Affiliation(s)
- Dongxiao Ma
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Qin Zhang
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Jintao Zhou
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu Lu
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Xiaomeng Duan
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| | - Chengzhong He
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| | - Jinde Yu
- College of Life Sciences, Southwest Forestry University, Kunming 650224, China
- Correspondence:
| |
Collapse
|
19
|
Ji T, Ma S, Liang M, Wang X, Gao L, Tian Y. Reference genes identification for qRT-PCR normalization of gene expression analysis in Cucumis sativus under Meloidogyne incognita infection and Pseudomonas treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:1061921. [PMID: 36589116 PMCID: PMC9799720 DOI: 10.3389/fpls.2022.1061921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
qRT-PCR is a common and key technical means to study gene expression in biological research. However, reliability and accuracy of quantification by qRT-PCR is entirely dependent on the identification of appropriate reference genes. Cucumber as an economical vegetable is widely cultivated worldwide and is subject to serious nematode infection, especially from M. incognita. Plant could employ beneficial soil bacteria in the rhizosphere to enhance plant adaptability to various stresses. In this study, the optimal reference genes in cucumber under M. incognita stress and Pseudomonas treatment were calculated and confirmed. A total of thirteen candidate reference genes were identified across three different treatments. Of these, geNorm, NormFinder and BestKeeper programs combined RefFinder software identified EF1 and UBI are the most suitable reference gene in the root knot and whole root of cucumber infected M. incognita, respectively, and CACS is the most suitable reference gene in the whole root of cucumber treated by Pseudomonas. The work first validated the most suitable reference genes for the normalization gene expression in cucumber by nematode infected or Pseudomonas inoculated, and these results would facilitate the further research on M. incognita or Pseudomonas soil rhizosphere microbe interaction with cucumber.
Collapse
Affiliation(s)
| | | | | | | | - Lihong Gao
- *Correspondence: Yongqiang Tian, ; Lihong Gao,
| | | |
Collapse
|
20
|
Garassino F, Wijfjes RY, Boesten R, Reyes Marquez F, Becker FFM, Clapero V, van den Hatert I, Holmer R, Schranz ME, Harbinson J, de Ridder D, Smit S, Aarts MGM. The genome sequence of Hirschfeldia incana, a new Brassicaceae model to improve photosynthetic light-use efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1298-1315. [PMID: 36239071 PMCID: PMC10100226 DOI: 10.1111/tpj.16005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis is a key process in sustaining plant and human life. Improving the photosynthetic capacity of agricultural crops is an attractive means to increase their yields. While the core mechanisms of photosynthesis are highly conserved in C3 plants, these mechanisms are very flexible, allowing considerable diversity in photosynthetic properties. Among this diversity is the maintenance of high photosynthetic light-use efficiency at high irradiance as identified in a small number of exceptional C3 species. Hirschfeldia incana, a member of the Brassicaceae family, is such an exceptional species, and because it is easy to grow, it is an excellent model for studying the genetic and physiological basis of this trait. Here, we present a reference genome of H. incana and confirm its high photosynthetic light-use efficiency. While H. incana has the highest photosynthetic rates found so far in the Brassicaceae, the light-saturated assimilation rates of closely related Brassica rapa and Brassica nigra are also high. The H. incana genome has extensively diversified from that of B. rapa and B. nigra through large chromosomal rearrangements, species-specific transposon activity, and differential retention of duplicated genes. Duplicated genes in H. incana, B. rapa, and B. nigra that are involved in photosynthesis and/or photoprotection show a positive correlation between copy number and gene expression, providing leads into the mechanisms underlying the high photosynthetic efficiency of these species. Our work demonstrates that the H. incana genome serves as a valuable resource for studying the evolution of high photosynthetic light-use efficiency and enhancing photosynthetic rates in crop species.
Collapse
Affiliation(s)
| | - Raúl Y. Wijfjes
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
- Present address:
Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - René Boesten
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| | | | - Frank F. M. Becker
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| | - Vittoria Clapero
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
- Present address:
Max Planck Institute for Molecular Plant PhysiologyGolmGermany
| | | | - Rens Holmer
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen University & ResearchWageningenNetherlands
| | - Jeremy Harbinson
- Laboratory of BiophysicsWageningen University & ResearchWageningenNetherlands
| | - Dick de Ridder
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - Sandra Smit
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| |
Collapse
|
21
|
Bharati R, Sen MK, Kumar R, Gupta A, Sur VP, Melnikovová I, Fernández-Cusimamani E. Selection and Validation of the Most Suitable Reference Genes for Quantitative Real-Time PCR Normalization in Salvia rosmarinus under In Vitro Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2878. [PMID: 36365331 PMCID: PMC9655146 DOI: 10.3390/plants11212878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Salvia rosmarinus L. (rosemary) is known to have a wide range of pharmacological effects including antidiabetic, anticarcinogenic, and antitumorigenic properties owing to its secondary metabolites. Studies aiming to elevate these metabolites have utilized various elicitors and stresses under in vitro conditions, although underlying molecular mechanisms remain unexplored. Gene expression studies using RT-qPCR might provide valuable information regarding how plant and plant cells interact and perceive various treatments and elicitors. However, despite being able to calculate accurate fold changes, the accuracy of the RT-qPCR data highly depends on the expression of reference genes. To the best of our knowledge, there is no information available on the stable reference genes in rosemary under in vitro conditions. Thus, in this paper, we assessed the stability of seven commonly used reference genes under different elicitor and stress conditions using RT-qPCR. Thereafter, the five most commonly used software and algorithms (comparative ΔCt, BestKeeper, NormFinder, geNorm, and RefFinder) were used to rank the candidates based on their expression stabilities. In conclusion, we recommend using a combination of F1-ATPase, ATP synthase and ACCase to normalize the gene expression experiments in rosemary under in vitro conditions. The selected reference genes were verified using 4-coumarate-CoA ligase, a pharmacologically important gene, whose expression might alter under nanoparticle treatment. Additionally, reference genes for several plant tissues, elicitors, and stresses are also proposed. The conclusions obtained from this current study will accelerate the future molecular work in S. rosmarinus and other related species.
Collapse
Affiliation(s)
- Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Ram Kumar
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Vishma Pratap Sur
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ingrid Melnikovová
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| |
Collapse
|
22
|
Zheng H, Zhao H, Zhang X, Liang Z, He Q. Systematic Identification and Validation of Suitable Reference Genes for the Normalization of Gene Expression in Prunella vulgaris under Different Organs and Spike Development Stages. Genes (Basel) 2022; 13:1947. [PMID: 36360184 PMCID: PMC9689956 DOI: 10.3390/genes13111947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 08/01/2023] Open
Abstract
The quantitative real-time PCR (qRT-PCR) is an efficient and sensitive method for determining gene expression levels, but the accuracy of the results substantially depends on the stability of the reference gene (RG). Therefore, choosing an appropriate reference gene is a critical step in normalizing qRT-PCR data. Prunella vulgaris L. is a traditional Chinese medicine herb widely used in China. Its main medicinal part is the fruiting spike which is termed Spica Prunellae. However, thus far, few studies have been conducted on the mechanism of Spica Prunellae development. Meanwhile, no reliable RGs have been reported in P. vulgaris. The expression levels of 14 candidate RGs were analyzed in this study in various organs and at different stages of Spica Prunellae development. Four statistical algorithms (Delta Ct, BestKeeper, NormFinder, and geNorm) were utilized to identify the RGs' stability, and an integrated stability rating was generated via the RefFinder website online. The final ranking results revealed that eIF-2 was the most stable RG, whereas VAB2 was the least suitable as an RG. Furthermore, eIF-2 + Histon3.3 was identified as the best RG combination in different periods and the total samples. Finally, the expressions of the PvTAT and Pv4CL2 genes related to the regulation of rosmarinic acid synthesis in different organs were used to verify the stable and unstable RGs. The stable RGs in P. vulgaris were originally identified and verified in this work. This achievement provides strong support for obtaining a reliable qPCR analysis and lays the foundation for in-depth research on the developmental mechanism of Spica Prunellae.
Collapse
Affiliation(s)
- Hui Zheng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongguang Zhao
- Tasly Botanical Pharmaceutical Co., Ltd., Shangluo 726000, China
| | - Xuemin Zhang
- Tasly R&D Institute, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Zongsuo Liang
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312000, China
| | - Qiuling He
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
23
|
García JA, Garrido I, Ortega A, del Moral J, Llerena JL, Espinosa F. Physiological and Molecular Responses of Vitis vinifera cv. Tempranillo Affected by Esca Disease. Antioxidants (Basel) 2022; 11:antiox11091720. [PMID: 36139794 PMCID: PMC9495647 DOI: 10.3390/antiox11091720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Esca is a multi-fungal disease affecting grapevines. The objective of the study was to evaluate the physiological and molecular response of the grapevine cv. Tempranillo to esca disease, carried out in a vineyard under Mediterranean climatic conditions in western Spain. The photosynthetic pigments in the leaves decreased, with a strong decrease in the photosynthetic efficiency. The proline content increased significantly in the early stages of affected leaves, being possibly involved in the maintenance of lipid peroxidation levels in leaves, which do not increase. The phenol, flavonoid, and phenylpropanoid content decreased in esca-affected leaves, as does the total antioxidant capacity (FRAP), while the polyphenol oxidase (PPO) activity suffers a strong increase with the development of the disease. In affected grapes, the lipid peroxidation and the total phenol content decrease, but not the anthocyanin content. The ascorbate pool decreases with the disease and with time. On the other hand, pool GSH + GSSG is lower in affected leaves, but increases with time. These alterations show a clear change in the redox homeostasis. The expression of genes phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), superoxide dismutase (SOD), and chalcone synthase (ChaS1 and ChaS3) become considerably higher in response to esca, being even higher when the infection time increases. The alteration of AsA and GSH levels, phenolic compounds, PPO activity, proline content, and FRAP, together with the increase of the PAL, PPO, SOD,ChaS1, and ChaS3 gene expression, are clearly implicated in the esca response in plants. The expression of these genes, similar to the PPO activity, can be used as markers of state in the development of the disease.
Collapse
Affiliation(s)
- José Antonio García
- Centro Tecnológico Nacional Agroalimentario “Extremadura” (CTAEX), Ctra. Villafranco-Balboa 1.2, 06195 Badajoz, Spain
| | - Inmaculada Garrido
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Alfonso Ortega
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Jerónimo del Moral
- Grupo Investigación Calidad y Microbiología de los Alimentos (AGAO17), Instituto Universitario de Investigación de Recursos Agrarios (INURA), 06071 Badajoz, Spain
| | - José Luis Llerena
- Centro Tecnológico Nacional Agroalimentario “Extremadura” (CTAEX), Ctra. Villafranco-Balboa 1.2, 06195 Badajoz, Spain
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Francisco Espinosa
- Grupo Investigación Fisiología y Biología Celular y Molecular de Plantas (BBB015), Facultad de Ciencias, Campus Avenida de Elvas s/n, Universidad de Extremadura, 06071 Badajoz, Spain
- Correspondence:
| |
Collapse
|
24
|
Zhao J, Yang J, Wang X, Xiong Y, Xiong Y, Dong Z, Lei X, Yan L, Ma X. Selection and Validation of Reference Genes for qRT-PCR Gene Expression Analysis in Kengyilia melanthera. Genes (Basel) 2022; 13:genes13081445. [PMID: 36011356 PMCID: PMC9408421 DOI: 10.3390/genes13081445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Kengyilia is a newly established genus. Most species in this genus survive in hash environment, which might be an indicator of an acquirement of stress resistance genes and the potential for molecular breeding in Triticeae species. Quantitative real-time PCR (qRT-PCR) is a widely used technique with varied sensitivity heavily dependent on the optimal level of the reference genes. K. melanthera is a typical psammophyte species which has high drought resistance. The reference genes of K. melanthera are not yet reported. This study aims to evaluate the expression stability of 14 candidate reference genes (EF1A, GAPDH, ACT1, UBI, TUBB3, TIPRL, CACS, PPP2R1B, TUBA1A, EIF4A1, CYPA3, TCTP, ABCG11L, and FBXO6L) under five treatments (drought, heat, cold, salt, and ABA) and find the most stable and suitable one even upon stressed conditions. The software NormFinder, GeNorm, BestKeeper, and RefFinder were used for data analysis. In general, the genes CACS and PPP2R1B are concluded to have the best overall performance under the various treatments. With the ABA treatment, TCTP and TIPRL show the best stability. CACS and TCTP, as well as TIPRL and CYPA3, were most stable under the treatments of cold and salt, respectively. CACS and FBXO6L were ranked the highest with the heat treatment and drought treatment, respectively. Finally, the Catalase-1 (CAT1) gene was used to verify the reliability of the above reference genes. Accordingly, CAT1’s expression pattern remained unchanged after normalization with stable reference genes. This study provides beneficial information about the stability and reliability of potential reference genes for qRT-PCR in K. melanthera.
Collapse
Affiliation(s)
- Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 611731, China
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu 611731, China
- Correspondence: (L.Y.); (X.M.)
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.Y.); (X.M.)
| |
Collapse
|
25
|
Lim PK, Zheng X, Goh JC, Mutwil M. Exploiting plant transcriptomic databases: Resources, tools, and approaches. PLANT COMMUNICATIONS 2022; 3:100323. [PMID: 35605200 PMCID: PMC9284291 DOI: 10.1016/j.xplc.2022.100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 04/06/2022] [Indexed: 05/11/2023]
Abstract
There are now more than 300 000 RNA sequencing samples available, stemming from thousands of experiments capturing gene expression in organs, tissues, developmental stages, and experimental treatments for hundreds of plant species. The expression data have great value, as they can be re-analyzed by others to ask and answer questions that go beyond the aims of the study that generated the data. Because gene expression provides essential clues to where and when a gene is active, the data provide powerful tools for predicting gene function, and comparative analyses allow us to study plant evolution from a new perspective. This review describes how we can gain new knowledge from gene expression profiles, expression specificities, co-expression networks, differential gene expression, and experiment correlation. We also introduce and demonstrate databases that provide user-friendly access to these tools.
Collapse
Affiliation(s)
- Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xinghai Zheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jong Ching Goh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
26
|
Zhong Y, Gai Y, Gao J, Nie W, Bao Z, Wang W, Xu X, Wu J, He Y. Selection and validation of reference genes for quantitative real-time PCR normalization in Psoralea corylifolia (Babchi) under various abiotic stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153722. [PMID: 35605384 DOI: 10.1016/j.jplph.2022.153722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Psoralea corylifolia L. is a popular herb and has long been used in traditional Ayurvedic and Chinese medicine owing to its extensive pharmacological activities, especially in the treatment of various shin diseases. To date, the systematic evaluation and selection of the optimum reference genes for gene expression analysis of P. corylifolia were not reported. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a method for gene expression quantification. Selecting appropriate reference genes is the prerequisite for accurate normalization of RT-qPCR results. This study assessed the expression stability of 10 candidate reference genes under different abiotic stresses. First, amplification primers for RT-qPCR were designed and received testing and optimization. Then, expression data from each candidate gene were evaluated based on three statistical algorithms, and their results were further integrated into a comprehensive ranking based on the geometric mean. Additionally, one target gene, i.e., 1-aminocyclopropane-1-carboxylate oxidase (ACO), was used to validate the effectiveness of the selected reference. Our analysis suggested that thioredoxin-like protein YLS8 (YLS8), TIP41-like family protein (TIP41), and cyclophilin 2 (CYP2) genes provided superior expression normalization under different abiotic stresses. Overall, this work constitutes the first effort to select optimal endogenous controls for RT-qPCR studies of gene expression in P. corylifolia. It also provides a reasonable normalization standard and basis for further analysis of the gene expression of bioactive components in P. corylifolia.
Collapse
Affiliation(s)
- Yuan Zhong
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Yanan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Jiajia Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Weifen Nie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Zhenzhen Bao
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Weiqi Wang
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Xiaoqing Xu
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Jie Wu
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing, 211800, China.
| | - Yuedong He
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
27
|
Lucioli A, Tavazza R, Baima S, Fatyol K, Burgyan J, Tavazza M. CRISPR-Cas9 Targeting of the eIF4E1 Gene Extends the Potato Virus Y Resistance Spectrum of the Solanum tuberosum L. cv. Desirée. Front Microbiol 2022; 13:873930. [PMID: 35722301 PMCID: PMC9198583 DOI: 10.3389/fmicb.2022.873930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Translation initiation factors and, in particular, the eIF4E family are the primary source of recessive resistance to potyviruses in many plant species. However, no eIF4E-mediated resistance to this virus genus has been identified in potato (Solanum tuberosum L.) germplasm. As in tomato, the potato eIF4E gene family consists of eIF4E1, its paralog eIF4E2, eIF(iso)4E, and nCBP. In tomato, eIF4E1 knockout (KO) confers resistance to a subset of potyviruses, while the eIF4E1/2 double KO, although conferring a broader spectrum of resistance, leads to plant developmental defects. Here, the tetraploid potato cv. Desirée owning the dominant Ny gene conferring resistance to potato virus Y (PVY) strain O but not NTN was used to evaluate the possibility to expand its PVY resistance spectrum by CRISPR-Cas9-mediated KO of the eIF4E1 susceptibility gene. After a double process of plant protoplast transfection-regeneration, eIF4E1 KO potatoes were obtained. The knockout was specific for the eIF4E1, and no mutations were identified in its eIF4E2 paralog. Expression analysis of the eIF4E family shows that the disruption of the eIF4E1 does not alter the RNA steady-state level of the other family members. The eIF4E1 KO lines challenged with a PVYNTN isolate showed a reduced viral accumulation and amelioration of virus-induced symptoms suggesting that the eIF4E1 gene was required but not essential for its multiplication. Our data show that eIF4E1 editing can be usefully exploited to broaden the PVY resistance spectrum of elite potato cultivars, such as Desirée, by pyramiding eIF4E-mediated recessive resistance.
Collapse
Affiliation(s)
- Alessandra Lucioli
- Biotechnology Laboratory, Biotechnology and Agroindustry Division, Department for Sustainability, ENEA, CR Casaccia, Rome, Italy
| | - Raffaela Tavazza
- Biotechnology Laboratory, Biotechnology and Agroindustry Division, Department for Sustainability, ENEA, CR Casaccia, Rome, Italy
| | - Simona Baima
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Karoly Fatyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Godollo, Hungary
| | - Jozsef Burgyan
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Godollo, Hungary
| | - Mario Tavazza
- Biotechnology Laboratory, Biotechnology and Agroindustry Division, Department for Sustainability, ENEA, CR Casaccia, Rome, Italy
| |
Collapse
|
28
|
Rozov SM, Permyakova NV, Sidorchuk YV, Deineko EV. Optimization of Genome Knock-In Method: Search for the Most Efficient Genome Regions for Transgene Expression in Plants. Int J Mol Sci 2022; 23:ijms23084416. [PMID: 35457234 PMCID: PMC9027324 DOI: 10.3390/ijms23084416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Plant expression systems are currently regarded as promising alternative platforms for the production of recombinant proteins, including the proteins for biopharmaceutical purposes. However, the accumulation level of a target protein in plant expression systems is still rather low compared with the other existing systems, namely, mammalian, yeast, and E. coli cells. To solve this problem, numerous methods and approaches have been designed and developed. At the same time, the random nature of the distribution of transgenes over the genome can lead to gene silencing, variability in the accumulation of recombinant protein, and also to various insertional mutations. The current research study considered inserting target genes into pre-selected regions of the plant genome (genomic “safe harbors”) using the CRISPR/Cas system. Regions of genes expressed constitutively and at a high transcriptional level in plant cells (housekeeping genes) that are of interest as attractive targets for the delivery of target genes were characterized. The results of the first attempts to deliver target genes to the regions of housekeeping genes are discussed. The approach of “euchromatization” of the transgene integration region using the modified dCas9 associated with transcription factors is considered. A number of the specific features in the spatial chromatin organization allowing individual genes to efficiently transcribe are discussed.
Collapse
|
29
|
Evaluation of Reference Genes for Quantitative PCR in Eustoma grandiflorum under Different Experimental Conditions. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eustoma grandiflorum, commonly known as prairie gentian or Texas bluebells, is among the most popular agriculturally propagated species of cut flowers. Due to its widespread appeal, there is increasing interest in understanding the molecular genetic factors underlying floral development and resistance to abiotic stresses. We analyzed 18 potential reference genes in different organs, at different floral developmental stages and under drought- and salt-stress treatments, for use in RT-qPCR analysis. A total of four analytical tool packages, including geNorm, NormFinder, BestKeeper, and RefFinder were employed to determine the most appropriate reference genes under each treatment condition. The results demonstrate that different reference genes should be used for normalization under different experimental treatments. EgPP and EgPP2A2 were the most stable internal control genes across different organ types, EgPP and Eg18S were the most stable under salt-stress, EgPP and EgACT1 were the most stable across different floral development stages, and EgEF1A and EgTUA were the most stable reference genes under drought-stress. Additional gene expression analyses of EgMIXTA1, EgTOE1, and EgP5CS1 further confirmed the applicability of these reference genes. The results represent a significant contribution to future studies of reference gene selection for the normalization of gene expression in Eustoma grandiflorum.
Collapse
|
30
|
Huang J, Zhang L, Lin X, Gao Y, Zhang J, Huang W, Zhao D, Ferrarezi RS, Fan G, Chen L. CsiLAC4 modulates boron flow in Arabidopsis and Citrus via high-boron-dependent lignification of cell walls. THE NEW PHYTOLOGIST 2022; 233:1257-1273. [PMID: 34775618 PMCID: PMC9299972 DOI: 10.1111/nph.17861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The mechanisms underlying plant tolerance to boron (B) excess are far from fully understood. Here we characterized the role of the miR397-CsiLAC4/CsiLAC17 (from Citrus sinensis) module in regulation of B flow. Live-cell imaging techniques were used in localization studies. A tobacco transient expression system tested modulations of CsiLAC4 and CsiLAC17 by miR397. Transgenic Arabidopsis were generated to analyze the biological functions of CsiLAC4 and CsiLAC17. CsiLAC4's role in xylem lignification was determined by mRNA hybridization and cytochemistry. In situ B distribution was analyzed by laser ablation inductively coupled plasma mass spectrometry. CsiLAC4 and CsiLAC17 are predominantly localized in the apoplast of tobacco epidermal cells. Overexpression of CsiLAC4 in Arabidopsis improves the plants' tolerance to boric acid excess by triggering high-B-dependent lignification of the vascular system's cell wall and reducing free B content in roots and shoots. In Citrus, CsiLAC4 is expressed explicitly in the xylem parenchyma and is modulated by B-responsive miR397. Upregulation of CsiLAC4 in Citrus results in lignification of the xylem cell walls, restricting B flow from xylem vessels to the phloem. CsiLAC4 contributes to plant tolerance to boric acid excess via high-B-dependent lignification of cell walls, which set up a 'physical barrier' preventing B flow.
Collapse
Affiliation(s)
- Jing‐Hao Huang
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
- Institute of Plant Nutritional Physiology and Molecular BiologyCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Ling‐Yuan Zhang
- Fujian University of Traditional Chinese MedicineFuzhou350122China
| | - Xiong‐Jie Lin
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
| | - Yuan Gao
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Jiang Zhang
- Institute of Plant Nutritional Physiology and Molecular BiologyCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Wei‐Lin Huang
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
| | - Daqiu Zhao
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225009China
| | | | - Guo‐Cheng Fan
- Pomological InstituteFujian Academy of Agricultural SciencesFuzhou350013China
- Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhou350013China
| | - Li‐Song Chen
- Institute of Plant Nutritional Physiology and Molecular BiologyCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
- Fujian Provincial Key Laboratory of Soil Environmental Health and RegulationCollege of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhou350002China
| |
Collapse
|
31
|
Selection and Validation of Reliable Reference Genes for Gene Expression Studies in Different Genotypes and TRV-Infected Fruits of Peach (Prunus persica L. Batsch) during Ripening. Genes (Basel) 2022; 13:genes13010160. [PMID: 35052500 PMCID: PMC8775616 DOI: 10.3390/genes13010160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Real-time quantitative PCR (RT-qPCR) is a powerful tool to detect and quantify transcription abundance, and the stability of the reference gene determines its success. However, the most suitable reference gene for different genotypes and tobacco rattle virus (TRV) infected fruits was unclear in peach (Prunus persica L. Batsch). In this study, 10 reference genes were selected and gene expression was characterized by RT-qPCR across all samples, including different genotypes and TRV-infected fruits during ripening. Four statistical algorithms (geNorm, NormFinder, BestKeeper, and RefFinder) were used to calculate the stability of 10 reference genes. The geNorm analysis indicated that two suitable reference genes should be used for gene expression normalization. In general, the best combination of reference genes was CYP2 and Tua5 for TRV-infected fruits and CYP2 and Tub1 for different genotypes. In 18S, GADPH, and TEF2, there is an unacceptable variability of gene expression in all experimental conditions. Furthermore, to confirm the validity of the reference genes, the expression levels of PpACO1, PpEIN2, and PpPL were normalized at different fruit storage periods. In summary, our results provide guidelines for selecting reliable reference genes in different genotypes and TRV-infected fruits and lay the foundation for accurate evaluation of gene expression for RT-qPCR analysis in peach.
Collapse
|
32
|
Shymanovich T, Vandenbrink JP, Herranz R, Medina FJ, Kiss JZ. Spaceflight studies identify a gene encoding an intermediate filament involved in tropism pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:191-200. [PMID: 35007950 DOI: 10.1016/j.plaphy.2021.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
We performed a series of experiments to study the interaction between phototropism and gravitropism in Arabidopsis thaliana as part of the Seedling Growth Project on the International Space Station. Red-light-based and blue-light-based phototropism were examined in microgravity and at 1g, a control that was produced by an on-board centrifuge. At the end of the experiments, seedlings were frozen and brought back to Earth for gene profiling studies via RNASeq methods. In this paper, we focus on five genes identified in these space studies by their differential expression in space: one involved in auxin transport and four others encoding genes for: a methyltransferase subunit, a transmembrane protein, a transcription factor for endodermis formation, and a cytoskeletal element (an intermediate filament protein). Time course studies using mutant strains of these five genes were performed for blue-light and red-light phototropism studies as well as for gravitropism assays on ground. Interestingly, all five of the genes had some effects on all the tropisms under the conditions studied. In addition, RT-PCR analyses examined expression of the five genes in wild-type seedlings during blue-light-based phototropism. Previous studies have supported a role of both microfilaments and microtubules in tropism pathways. However, the most interesting finding of the present space studies is that NFL, a gene encoding an intermediate filament protein, plays a role in phototropism and gravitropism, which opens the possibility that this cytoskeletal element modulates signal transduction in plants.
Collapse
Affiliation(s)
- Tatsiana Shymanovich
- Department of Biology, University of North Carolina-Greensboro, Greensboro, NC, 27402, USA
| | - Joshua P Vandenbrink
- Department of Biology, University of North Carolina-Greensboro, Greensboro, NC, 27402, USA; School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, E-28040, Madrid, Spain
| | - F Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, E-28040, Madrid, Spain
| | - John Z Kiss
- Department of Biology, University of North Carolina-Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
33
|
Syngelaki E, Paetzold C, Hörandl E. Gene Expression Profiles Suggest a Better Cold Acclimation of Polyploids in the Alpine Species Ranunculus kuepferi (Ranunculaceae). Genes (Basel) 2021; 12:1818. [PMID: 34828424 PMCID: PMC8625111 DOI: 10.3390/genes12111818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Alpine habitats are shaped by harsh abiotic conditions and cold climates. Temperature stress can affect phenotypic plasticity, reproduction, and epigenetic profiles, which may affect acclimation and adaptation. Distribution patterns suggest that polyploidy seems to be advantageous under cold conditions. Nevertheless, whether temperature stress can induce gene expression changes in different cytotypes, and how the response is initialized through gene set pathways and epigenetic control remain vague for non-model plants. The perennial alpine plant Ranunculus kuepferi was used to investigate the effect of cold stress on gene expression profiles. Diploid and autotetraploid individuals were exposed to cold and warm conditions in climate growth chambers and analyzed via transcriptome sequencing and qRT-PCR. Overall, cold stress changed gene expression profiles of both cytotypes and induced cold acclimation. Diploids changed more gene set pathways than tetraploids, and suppressed pathways involved in ion/cation homeostasis. Tetraploids mostly activated gene set pathways related to cell wall and plasma membrane. An epigenetic background for gene regulation in response to temperature conditions is indicated. Results suggest that perennial alpine plants can respond to temperature extremes via altered gene expression. Tetraploids are better acclimated to cold conditions, enabling them to colonize colder climatic areas in the Alps.
Collapse
Affiliation(s)
- Eleni Syngelaki
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| | - Claudia Paetzold
- Department of Botany and Molecular Evolution, Senckenberg Research Institute, 60325 Frankfurt am Main, Germany;
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
34
|
Palma CFF, Castro-Alves V, Rosenqvist E, Ottosen CO, Strid Å, Morales LO. Effects of UV radiation on transcript and metabolite accumulation are dependent on monochromatic light background in cucumber. PHYSIOLOGIA PLANTARUM 2021; 173:750-761. [PMID: 34510478 DOI: 10.1111/ppl.13551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
During recent years, we have advanced our understanding of plant molecular responses to ultraviolet radiation (UV, 280-400 nm); however, how plants respond to UV radiation under different spectral light qualities is poorly understood. In this study, cucumber plants (Cucumis sativus "Lausanna RZ F1") were grown under monochromatic blue, green, red, and broadband white light in combination with UV radiation. The effects of light quality and UV radiation on acclimatory responses were assessed by measuring transcript accumulation of ELONGATED HYPOCOTYL 5 (HY5), CHALCONE SYNTHASE 2 (CHS2), and LIGHT HARVESTING COMPLEX II (LHCII), and the accumulation of flavonoids and hydroxycinnamic acids in the leaves. The growth light backgrounds differentially regulated gene expression and metabolite accumulation. While HY5 and CHS2 transcripts were induced by blue and white light, LHCII was induced by white and red light. Furthermore, UV radiation antagonized the effects of blue, red, green, and white light on transcript accumulation in a gene-dependent manner. Plants grown under blue light with supplementary UV radiation increased phenylalanine, flavonol disaccharide I and caffeic acid contents compared to those exposed only to blue light. UV radiation also induced the accumulation of flavonol disaccharide I and II, ferulic acid hexose and coumaric acid hexose in plants grown under green light. Our findings provide a further understanding of plant responses to UV radiation in combination with different light spectra and contribute to the design of light recipes for horticultural practices that aim to modify plant metabolism and ultimately improve crop quality.
Collapse
Affiliation(s)
| | - Victor Castro-Alves
- School of Science and Technology, Life Science Centre, Örebro University, Örebro, Sweden
| | - Eva Rosenqvist
- Section of Crop Sciences, Institute of Plant and Environmental Sciences, University of Copenhagen, Tåstrup, Denmark
| | | | - Åke Strid
- School of Science and Technology, Life Science Centre, Örebro University, Örebro, Sweden
| | - Luis Orlando Morales
- School of Science and Technology, Life Science Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
35
|
Constitutive Defense Strategy of Coffee Under Field Conditions: A Comparative Assessment of Resistant and Susceptible Cultivars to Rust. Mol Biotechnol 2021; 64:263-277. [PMID: 34595725 DOI: 10.1007/s12033-021-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Coffea arabica is the most economically important coffee species worldwide. However, its production is severely limited by diseases such as rust. The mechanisms underlying constitutive defense responses in coffee are still poorly understood, compared with induced defense mechanisms. We aimed to characterize constitutive defense responses of thirteen cultivars of C. arabica. Cultivars were classified under field conditions according to the level of resistance to rust: resistant (R), moderately resistant (MR), and susceptible (S). Based on this classification, the stability of eight reference genes (RGs) was evaluated. The most stable RGs were EF1α, APT1, and 24S. We also evaluated the expression of CaWRKY1, CaPAL1, CaCAD1, and CaPOX1, and activities of PAL, CAD, and POX, which are involved in lignin biosynthesis, and leaf content of total phenolic compounds and lignin. Gene expression and enzymatic activity were not correlated with defense metabolites in the R cultivar group but showed a negative correlation with phenolic compounds in MR cultivars. Cultivar S showed positive correlations of gene expression and enzyme activity with phenolic compounds. These results may assist coffee breeding programs regarding selection of genotypes and in optimization of rust resistance.
Collapse
|
36
|
Wu Y, Zhang C, Yang H, Lyu L, Li W, Wu W. Selection and Validation of Candidate Reference Genes for Gene Expression Analysis by RT-qPCR in Rubus. Int J Mol Sci 2021; 22:ijms221910533. [PMID: 34638877 PMCID: PMC8508773 DOI: 10.3390/ijms221910533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Due to the lack of effective and stable reference genes, studies on functional genes in Rubus, a genus of economically important small berry crops, have been greatly limited. To select the best internal reference genes of different types, we selected four representative cultivars of blackberry and raspberry (red raspberry, yellow raspberry, and black raspberry) as the research material and used RT-qPCR technology combined with three internal stability analysis software programs (geNorm, NormFinder, and BestKeeper) to analyze 12 candidate reference genes for the stability of their expression. The number of most suitable internal reference genes for different cultivars, tissues, and fruit developmental stages of Rubus was calculated by geNorm software to be two. Based on the results obtained with the three software programs, the most stable genes in the different cultivars were RuEEF1A and Ru18S. Finally, to validate the reliability of selected reference genes, the expression pattern of the RuCYP73A gene was analyzed, and the results highlighted the importance of appropriate reference gene selection. RuEEF1A and Ru18S were screened as reference genes for their relatively stable expression, providing a reference for the further study of key functional genes in blackberry and raspberry and an effective tool for the analysis of differential gene expression.
Collapse
Affiliation(s)
- Yaqiong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Chunhong Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Haiyan Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Lianfei Lyu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (W.L.); (W.W.); Tel.: +86-25-8542-8531 (W.L.); +86-25-8434-7063 (W.W.)
| | - Wenlong Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Qian Hu Hou Cun No. 1, Nanjing 210014, China; (Y.W.); (C.Z.); (H.Y.); (L.L.)
- Correspondence: (W.L.); (W.W.); Tel.: +86-25-8542-8531 (W.L.); +86-25-8434-7063 (W.W.)
| |
Collapse
|
37
|
Selection and validation of reference genes for RT-qPCR analysis in Desmodium styracifolium Merr. 3 Biotech 2021; 11:403. [PMID: 34458065 DOI: 10.1007/s13205-021-02954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
Abstract
Gene expression valuated by reverse transcription-quantitative PCR (RT-qPCR) are often applied to study the gene function. To obtain accurate and reliable results, the usage of stable reference genes is essential for RT-qPCR analysis. The traditional southern Chinese medicinal herb, Desmodium styracifolium Merr is well known for its remarkable effect on the treatment of urination disturbance, urolithiasis, edema and jaundice. However, there are no ready-made reference genes identified for D. styracifolium. In this study, 13 novel genes retrieved from transcriptome datasets of four different tissues were reported according to the coefficient of variation (CV) and maximum fold change (MFC) of gene expression. The expression stability of currently used Leguminosae ACT6 was compared to the 13 candidate reference genes in different tissues and 7-day-old seedlings under different experimental conditions, which was evaluated by five statistical algorithms (geNorm/NormFinder/BestKeeper/ΔCT/RefFinder). Our results indicated that the reference gene combinations of PP + UFM1, CCRP4 + BRM and NFD6 + NCLN1 were the most stable reference genes in leaf, stem and root tissues, respectively. The most stable reference gene combination for all tissues was CCRP4 + CUL1. In addition, the most stable reference genes for different experimental conditions were distinct, for instance SMUP1 for MeJA treatment, ERDJ2A + SMUP1 for SA treatment, NCLN1 + ERDJ2A for ABA treatment and SF3B + VAMP721d for salt stress, respectively. Our results lay a foundation for achieving accurate and reliable RT-qPCR results so as to correctly understand the function of genes in D. styracifolium. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02954-x.
Collapse
|
38
|
Identification of the most suitable reference gene for gene expression studies with development and abiotic stress response in Bromus sterilis. Sci Rep 2021; 11:13393. [PMID: 34183710 PMCID: PMC8238991 DOI: 10.1038/s41598-021-92780-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
Bromus sterilis is an annual weedy grass, causing high yield losses in winter cereals. Frequent use of herbicides had led to the evolution of herbicide resistance in this species. Mechanisms underlying herbicide resistance in B. sterilis must be uncovered because this problem is becoming a global threat. qRT-PCR and the next-generation sequencing technologies can elucidate the resistance mechanisms. Although qRT-PCR can calculate precise fold changes, its preciseness depends on the expression of reference genes. Regardless of stable expression in any given condition, no gene can act as a universal reference gene. Hence, it is necessary to identify the suitable reference gene for each species. To our knowledge, there are no reports on the suitable reference gene in any brome species so far. Thus, in this paper, the stability of eight genes was evaluated using qRT-PCR experiments followed by expression stability ranking via five most commonly used software for reference gene selection. Our findings suggest using a combination of 18S rRNA and ACCase to normalise the qRT-PCR data in B. sterilis. Besides, reference genes are also recommended for different experimental conditions. The present study outcomes will facilitate future molecular work in B. sterilis and other related grass species.
Collapse
|
39
|
Soni P, Shivhare R, Kaur A, Bansal S, Sonah H, Deshmukh R, Giri J, Lata C, Ram H. Reference gene identification for gene expression analysis in rice under different metal stress. J Biotechnol 2021; 332:83-93. [PMID: 33794279 DOI: 10.1016/j.jbiotec.2021.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Real-time quantitative polymerase chain reaction (RT-qPCR) is the most common approach to quantify changes in gene expression. Appropriate internal reference genes are essential for normalization of data of RT-qPCR. In the present study, we identified suitable reference genes for analysis of gene expression in rice seedlings subjected to different heavy metal stresses such as deficiencies of iron and zinc and toxicities of cobalt, cadmium and nickel. First, from publically available RNA-Seq data we identified 10 candidate genes having stable expression. We also included commonly used house-keeping gene OsUBQ5 (Ubiquitin 5) in our analysis. Expression stability of all the 11 genes was determined by two independent tools, NormFinder and geNorm. Our results show that selected candidate reference genes have higher stability in their expression compared to that of OsUBQ5. Genes with locus ID LOC_Os03g16690, encoding an oxysterol-binding protein (OsOBP) and LOC_Os01g56580, encoding Casein Kinase_1a.3 (OsCK1a.3) were identified to be the most stably expressed reference genes under most of the conditions tested. Finally, the study reveals that it is better to use a specific reference gene for a specific heavy metal stress condition rather than using a common reference gene for multiple heavy metal stress conditions. The reference genes identified here would be very useful for gene expression studies under heavy metal stresses in rice.
Collapse
Affiliation(s)
- Praveen Soni
- Department of Botany, University of Rajasthan, Jaipur, 302004, India
| | - Radha Shivhare
- CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Amandeep Kaur
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Sakshi Bansal
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, 140308, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Charu Lata
- CSIR-National Institute of Science Communication and Information Resources, New Delhi, 110067, India.
| | - Hasthi Ram
- National Agri-Food Biotechnology Institute, Mohali, 140308, India; National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
40
|
Li T, Yuan W, Qiu S, Shi J. Selection of reference genes for gene expression analysis in Liriodendron hybrids' somatic embryogenesis and germinative tissues. Sci Rep 2021; 11:4957. [PMID: 33654231 PMCID: PMC7925589 DOI: 10.1038/s41598-021-84518-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/15/2021] [Indexed: 01/29/2023] Open
Abstract
The differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.
Collapse
Affiliation(s)
- Tingting Li
- Zhejiang Academy of Forestry, Hangzhou, 310023, China.
| | - Weigao Yuan
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Shuai Qiu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,Research and Development Center, Hangzhou Landscaping Incorporated, Hangzhou, 310020, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
41
|
Fernández MB, Lukaszewicz G, Lamattina L, Cassia R. Selection and optimization of reference genes for RT-qPCR normalization: A case study in Solanum lycopersicum exposed to UV-B. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:269-280. [PMID: 33529802 DOI: 10.1016/j.plaphy.2021.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/18/2021] [Indexed: 05/11/2023]
Abstract
Quantitative RT- PCR is one of the most common methods to study gene expression in response to stress. Therefore, it is crucial to have suitable reference genes (RGs) for result normalization. Although several reports describe UV-B-modulated gene expression in Solanum lycopersicum, there are no suitable RGs identified until now. The aim of this work was to evaluate the suitability of seven traditional genes: actin (ACT), tubulin (TUB), ubiquitin (UBI), glyceraldehyde- 3 phosphate dehydrogenase (GAPDH), elongation factor 1α (EF1α), phosphatase 2A catalytic subunit (PP2A) and GAGA binding transcriptional activator (GAGA); and two non-traditional genes: thioredoxin h1 (TRX h1) and UV-B RESISTANCE LOCUS 8 (UVR8), as candidate RGs for their potential use as reliable internal controls in leaves, stems and roots of tomato seedlings exposed to acute and chronic UV-B. The stability of these genes expression was evaluated using five statistical algorithms: geNorm, NormFinder, BestKeeper, Delta Ct and ANOVA. Considering the comprehensive stability ranking, we recommend ACT+TUB as the best pair of RGs for leaves, PP2A+GAPDH+TRX h1 for stems and TUB+UVR8 for roots. The reliability of the selected RGs for each tissue was verified amplifying tomato chalcone synthase 1 (CHS1) and cyclobutane pyrimidine dimer (CPD) photolyase (PHR1-LIKE). Under UV-B treatment, CHS1 was upregulated in leaves, stems and roots whereas PHR1-LIKE was only upregulated in leaves and stems. This interpretation differs when the most and least stable RGs are chosen. This is the first report regarding suitable RGs selection for accurate normalization of gene expression in tomato seedlings exposed to UV-B irradiation.
Collapse
Affiliation(s)
- María Belén Fernández
- Instituto de Investigaciones Biológicas- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas, CC1245 7600, Mar Del Plata, Buenos Aires, Argentina.
| | - Germán Lukaszewicz
- Instituto de Investigaciones Biológicas- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas, CC1245 7600, Mar Del Plata, Buenos Aires, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas, CC1245 7600, Mar Del Plata, Buenos Aires, Argentina
| | - Raúl Cassia
- Instituto de Investigaciones Biológicas- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas, CC1245 7600, Mar Del Plata, Buenos Aires, Argentina
| |
Collapse
|
42
|
Gao J, Liu J, Jiang C, Chen S, Huang L. Identification of suitable reference genes for studies of Syringa pinnatifolia Hemsl. FEBS Open Bio 2021; 11:1041-1053. [PMID: 33484622 PMCID: PMC8016119 DOI: 10.1002/2211-5463.13097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
Syringa pinnatifolia Hemsl. (Oleaceae) is a species of shrub with a limited distribution in China. Several chemical compounds with pharmacological effects have been isolated from S. pinnatifolia, including new lignans and sesquiterpenes. Studies of gene expression in this species require the identification of suitable reference genes that are stably expressed under different conditions and in different tissues. To identify candidate reference genes, here we used the geNorm, NormFinder, and BestKeeper algorithms to analyze the stability of 12 candidate genes. The geometric mean of the rankings generated with these algorithms was used to obtain a comprehensive ranking. TBP and PP2A were found to be appropriate reference genes for calli treated with different external stimuli, and TIP41 and TBP were found to be appropriate reference genes in differentiated tissues. When calli and differentiated tissues were considered together, TBP and TIP41 were found to be the most reliable reference genes. The selected genes were validated by analysis of HMGR expression in calli and differentiated tissues. This study is the first to screen candidate reference genes in the genus Syringa and could help guide future molecular studies in this genus.
Collapse
Affiliation(s)
- Jiaqi Gao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Juan Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Jiang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Suyile Chen
- Alashan Mongolian Hospital, Alashan East Banner of Alashan, Inner Mongolia, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
Wang W, Hu S, Cao Y, Chen R, Wang Z, Cao X. Selection and evaluation of reference genes for qRT-PCR of Scutellaria baicalensis Georgi under different experimental conditions. Mol Biol Rep 2021; 48:1115-1126. [PMID: 33511512 PMCID: PMC7842394 DOI: 10.1007/s11033-021-06153-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/12/2021] [Indexed: 10/28/2022]
Abstract
Scutellaria baicalensis Georgi is a famous medicinal plant with its dried roots having been used as a traditional Chinese medicinal for more than 2000 years. Although its genome sequence has previously been published and molecular biology methods have been used to study this species, no suitable internal reference genes have been investigated for standardization of gene expression via quantitative real-time polymerase chain reaction (qRT-PCR). Here, the stabilities of 10 candidate reference genes, ACT11, ACT7, α-TUB, β-TUB, GAPDH, UBC, RPL, SAM, HSP70, and PP2A, were analyzed by four different procedures of GeNorm, NormFinder, BestKeeper, and RefFinder. Their expression stabilities were evaluated under various conditions, including different tissue types (root, stem, leaf, and flower), hormone stimuli treatments (methyl jasmonate, salicylic acid, and abscisic acid), and abiotic stresses (heavy metal, salt, drought, cold, and wounding). The results indicated that β-TUB was the most stable gene for all tested samples, while ACT11 was the most unstable. The most stable reference gene was not consistent under different conditions. β-TUB exhibited the highest stability for different tissue types and abiotic stresses, while for hormone stimuli treatments, ACT7 showed the highest stability. To confirm the applicability of suitable reference genes, we selected to SbF6H and SbF8H as target genes to analyze their expression levels in different tissues. This study helps to the accurate quantification of the relative expression levels of interest genes in S. baicalensis via qRT-PCR analysis.
Collapse
Affiliation(s)
- Wentao Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Suying Hu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Yao Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Rui Chen
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China.
| | - Xiaoyan Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
44
|
Capoferri R, Parati K, Puglisi R, Moscati L, Sensi M, Lombardi G, Sandri G, Briani C, Galli A. Comparison between Single- and Group-housed Pregnant Sows for Direct and Indirect Physiological, Reproductive, Welfare Indicators and Gene Expression Profiling. J APPL ANIM WELF SCI 2020; 24:246-259. [PMID: 32894989 DOI: 10.1080/10888705.2020.1790369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Single- and group-housed pregnant sows were assessed during 8 weeks (4th and 8th to 14th) with regard to physiological, reproductive, welfare indicators and gene expression profiling. Compared to single-housed sows, group-housed sows had decreased non-return to estrus at 56 days after artificial insemination (AI) (83% vs 92%) and farrowing rate (78% vs 88%), respectively. Furthermore, group-housed sows showed a higher degree (p < 0.01) of advantageous physiological indicators, such as albumin (odds ratio [OR] = 4.4), alkaline phosphatase (OR = 1.5), bactericidal (OR = 3.2) and complement (OR = 24.3), and disadvantageous for alanine amino transferase (OR = 0.5), bilirubin (OR = 0.4), lysozyme (OR = 0.3) and C-reactive protein compared to single-housed. Eighty-seven genes related to immune response were underexpressed (log fold change ≤ 1.5; p < 0.05) during the 8th to 14th weeks in the group compared to single-housed sows, which in turn showed an immunomodulatory reduction on the expression of 43 genes during the 11th to 14th compared to the 4th week. Overall, the results were interpreted as indicative of greater comfort state of the group compared to single-housed sows.
Collapse
Affiliation(s)
- Rossana Capoferri
- Istituto Sperimentale Italiano "L. Spallanzani", Loc. La Quercia, Rivolta d'Adda (CR), Italy
| | - Katia Parati
- Istituto Sperimentale Italiano "L. Spallanzani", Loc. La Quercia, Rivolta d'Adda (CR), Italy
| | - Roberto Puglisi
- Istituto Sperimentale Italiano "L. Spallanzani", Loc. La Quercia, Rivolta d'Adda (CR), Italy
| | - Livia Moscati
- IZSUM, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via G. Salvemini 1, Perugia (PG), Italy
| | - Marco Sensi
- IZSUM, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Via G. Salvemini 1, Perugia (PG), Italy
| | - Guerino Lombardi
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 9, Brescia (BS), Italy
| | - Gianpietro Sandri
- Gruppo Veronesi, Via Valpantena 18/G, Quinto di Valpantena (VR), Italy
| | - Carlo Briani
- Gruppo Veronesi, Via Valpantena 18/G, Quinto di Valpantena (VR), Italy
| | - Andrea Galli
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via A. Lombardo, Lodi, Italy.,Associazione Regionale Allevatori della Lombardia (ARAL), Via Kennedy 30, Crema (CR), Italy
| |
Collapse
|
45
|
Deng Y, Li Y, Sun H. Selection of reference genes for RT-qPCR normalization in blueberry (Vaccinium corymbosum × angustifolium) under various abiotic stresses. FEBS Open Bio 2020; 10:1418-1435. [PMID: 32438500 PMCID: PMC7396441 DOI: 10.1002/2211-5463.12903] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 11/06/2022] Open
Abstract
As a small fruit rich in anthocyanins, blueberry (Vaccinium corymbosum × angustifolium) has become a focus of research in recent years for identifying genes related to anthocyanin transport and stress resistance mechanisms based on transcriptome sequencing. However, the lack of validated, stably expressed reference genes greatly limits the functional study of blueberry genes. Therefore, in this study, we selected 14 candidate reference genes from a blueberry transcriptome database and used three algorithms (geNorm, NormFinder and BestKeeper) to evaluate the expression stability of these genes in various organs at different fruit developmental stages under five abiotic stress conditions. EF1α, EIF and TBP were observed to be the most stable and were thus chosen as reference genes for quantitative real-time PCR. Measurement of the relative expression of VcMATE1 (European Nucleotide Archive accession number KF875433) in blueberry further verified the reliability of these reference genes, which may have great utility for determining the accuracy of gene expression analyses in future research on blueberry.
Collapse
Affiliation(s)
- Yu Deng
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yadong Li
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Haiyue Sun
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, China
| |
Collapse
|
46
|
Selection and Validation of Reference Genes for the qRT-PCR Assays of Populus ussuriensis Gene Expression under Abiotic Stresses and Related ABA Treatment. FORESTS 2020. [DOI: 10.3390/f11040476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Populus ussuriensis Kom. is one of the most important tree species for forest renewal in the eastern mountainous areas of Northeast China due to its fast growth, high yield, and significant commercial and ecological value. The selection of optimal reference genes for the normalization of qRT-PCR data is essential for the analysis of relative gene expression. In this study, fourteen genes were selected and assessed for their expression stability during abiotic stress (drought, high salinity, and cold stress) and after the treatment with the drought-related hormone ABA. Three algorithms were used, geNorm, NormFinder, and BestKeeper, and a comprehensive ranking of candidate reference genes was produced based on their output. The most appropriate reference genes were UBQ10 and RPL24 for drought and ABA treatment, UBQ10 and TUB3 for cold stress, and UBQ10 and 60S rRNA for high salinity. Overall, UBQ10 was the most stable reference gene for use as an internal control, whereas PP2A was the least stable. The expression of two target genes (P5CS2 and GI) was used to further verify that the selected reference genes were suitable for gene expression normalization. This work comprehensively assesses the stability of reference genes in Populus ussuriensis and identifies suitable reference genes for normalization during qRT-PCR analysis.
Collapse
|
47
|
Garrido J, Aguilar M, Prieto P. Identification and validation of reference genes for RT-qPCR normalization in wheat meiosis. Sci Rep 2020; 10:2726. [PMID: 32066846 PMCID: PMC7026057 DOI: 10.1038/s41598-020-59580-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/30/2020] [Indexed: 12/23/2022] Open
Abstract
Meiosis is a specialized type of cell division occurring in sexually reproducing organisms to generate haploid cells known as gametes. In flowering plants, male gametes are produced in anthers, being encased in pollen grains. Understanding the genetic regulation of meiosis key events such as chromosome recognition and pairing, synapsis and recombination, is needed to manipulate chromosome associations for breeding purposes, particularly in important cereal crops like wheat. Reverse transcription-quantitative PCR (RT-qPCR) is widely used to analyse gene expression and to validate the results obtained by other transcriptomic analyses, like RNA-seq. Selection and validation of appropriate reference genes for RT-qPCR normalization is essential to obtain reproducible and accurate expression data. In this work, twelve candidate reference genes were evaluated using the mainstream algorithms geNorm, Normfinder, BestKeeper and ΔCt, then ranked from most to least suitable for normalization with RefFinder. Different sets of reference genes were recommended to normalize gene expression data in anther meiosis of bread and durum wheat, their corresponding genotypes in the absence of the Ph1 locus and for comparative studies among wheat genotypes. Comparisons between meiotic (anthers) and somatic (leaves and roots) wheat tissues were also carried out. To the best of our knowledge, our study provides the first comprehensive list of reference genes for robust RT-qPCR normalization to study differentially expressed genes during male meiosis in wheat in a breeding framework.
Collapse
Affiliation(s)
- José Garrido
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, 14080, Córdoba, Spain
| | - Miguel Aguilar
- Área de Fisiología Vegetal. Universidad de Córdoba. Campus de Rabanales, edif. C4, 3ª planta, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, 14080, Córdoba, Spain.
| |
Collapse
|
48
|
Long X, Lu J, Kav NNV, Qin Y, Fang Y. Identification and evaluation of suitable reference genes for gene expression analysis in rubber tree leaf. Mol Biol Rep 2020; 47:1921-1933. [PMID: 32020426 DOI: 10.1007/s11033-020-05288-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 10/25/2022]
Abstract
Gene expression profiles are increasingly applied to investigate molecular mechanism for which, normalization with suitable reference genes is critical. Previously we have reported several suitable reference genes for laticifer samples from rubber tree, however, little is known in leaf. The main objective of this current study was to identify some stable expression reference genes at various developmental stages of leaf, as well as during abiotic (high and low temperature extremes) and biotic stresses (pathogen stress). Gene expression profilings identified the ubiquitin-proteasome system as excellent potential as reference genes for rubber tree leaf. Among a total of 30 tested genes investigated, 24 new candidate (including 11 genes involved in the ubiquitin-proteasome system), 4 previously identified and 2 specific genes, were further evaluated using quantitative real-time PCR. Our results indicated that the new candidate genes had better expression stability comparing with others. For instance, an ubiquitin conjugating enzyme (RG0099) and three ubiquitin-protein ligases (RG0928, RG2190 and RG0118) expressed stably in all samples, and were confirmed to be suitable reference genes for rubber tree leaf under four different conditions. Finally, we suggest that using more than one reference gene may be appropriate in gene expression studies when employing different software to normalize gene expression data. Our findings have significant implications for the reliability of data obtained from genomics studies in rubber tree and perhaps in other species.
Collapse
Affiliation(s)
- Xiangyu Long
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Jilai Lu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.,College of Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Yunxia Qin
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Yongjun Fang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| |
Collapse
|
49
|
Selection and Validation of Reference Genes for Gene Expression Studies in Codonopsis pilosula Based on Transcriptome Sequence Data. Sci Rep 2020; 10:1362. [PMID: 31992780 PMCID: PMC6987187 DOI: 10.1038/s41598-020-58328-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/31/2019] [Indexed: 01/30/2023] Open
Abstract
Relative gene expression analyses by RT-qPCR (reverse transcription-quantitative PCR) are highly dependent on the reference genes in normalizing the expression data of target genes. Therefore, inappropriate endogenous control genes will lead to inaccurate target gene expression profiles, and the selection and validation of suitable internal reference genes becomes essential. In this study, we retrieved the commonly used reference genes in transcriptome datasets of Codonopsis pilosula by RNA-Seq (unpublished data), and selected 15 candidate reference genes according to the coefficient of variation (CV) and fold change (FC) value of gene expression. The expression levels of candidate reference genes, which is at different growth stages, undergoing cold stress and drought stress, was determined by RT-qPCR. The expression stability of these genes was evaluated using software packages and algorithms including ΔCt, geNorm, NormFinder and Bestkeeper. Then appropriate reference genes were screened and validated by target gene-UDGPase (UDP glucose pyrophosphorylase). The optimal RGs combinations of C. pilosula, including PP2A59γ, CPY20-1, UBCE32, RPL5B and UBC18 for developmental stage, RPL5B, RPL13 and PP2A59γ for cold treatment, RPL13 and PP2A59γ for drought treatment, were found and proposed as reference genes for future work. This paper laid foundations for both the selection of reference genes and exploration in metabolic mechanism of C. pilosula.
Collapse
|
50
|
Naik BJ, Kim SC, Shin MJ, Kim CW, Lim CK, An HJ. Responses to Biotic and Abiotic Stresses and Transgenic Approaches in the Coffee Plant. ACTA ACUST UNITED AC 2019. [DOI: 10.12719/ksia.2019.31.4.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|