1
|
Pervaiz N, Mehmood R, Aithabathula RV, Kathuria I, Ahn W, Le BT, Kim KS, Singh UP, Csanyi G, Singla B. Smooth muscle cell-specific CD47 deletion suppresses atherosclerosis. Life Sci 2025; 361:123315. [PMID: 39675550 PMCID: PMC11740882 DOI: 10.1016/j.lfs.2024.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Recent smooth muscle cell (SMC)-lineage tracing and single-cell RNA sequencing (scRNA-seq) experiments revealed a significant role of SMC-derived cells in atherosclerosis development. Further, thrombospondin-1 (TSP1), a matricellular protein, and activation of its receptor cluster of differentiation (CD) 47 have been linked with atherosclerosis. However, the role of vascular SMC TSP1-CD47 signaling in regulating VSMC phenotype and atherogenesis remains unknown. METHODS We investigated the role of SMC CD47 activation by TSP1 in regulating VSMC phenotype and atherosclerosis development using various in vitro cell-based assays, molecular biological techniques, immunohistological approaches, reanalysis of publicly available scRNA-seq data, and cell-specific knockout mice. RESULTS We observed elevated TSP1 expression in human atherosclerotic vascular tissues and VSMCs. TSP1-treated VSMCs exhibited decreased expression of contractile SMC markers (ACTA2, CNN1, and TAGLN) and increased proliferation. Additional experiments and reanalysis of the scRNA-seq dataset showed CD47 as the major TSP1 receptor in VSMCs, with its expression increased in SMC-derived modulated cells of murine atherosclerotic arteries. Knockdown of CD47 gene in human VSMCs upregulated expression of contractile SMC markers and abrogated TSP1's effects on these genes. SMC-specific Cd47 deletion in mice suppressed atherosclerotic lesion formation, reduced macrophage accumulation, and decreased necrotic area. However, no significant differences were observed in weight gain, liver and adipose tissue mass, plasma total cholesterol, and fasting blood glucose between control and SMC-restricted Cd47-deficient mice. Further experiments demonstrated increased efferocytosis of apoptotic CD47-silenced VSMCs by macrophages. CONCLUSIONS These findings suggest that CD47 plays a crucial role in regulating VSMC phenotype, and SMC-specific-Cd47 deletion suppresses atherosclerosis. NEW AND NOTEWORTHY VSMC phenotypic switching contributes to atherosclerosis development. The present study reports the novel observations that Cd47 levels are upregulated in phenotypically modulated SMCs within atherosclerotic arteries and targeted deletion of Cd47 specifically in SMCs attenuates atherosclerosis. Mechanistic in vitro investigations further showed that TSP1-CD47 signaling regulates VSMC phenotype. Therefore, targeting SMC CD47 represents a promising therapeutic target to suppress atherogenesis.
Collapse
Affiliation(s)
- Naveed Pervaiz
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rashid Mehmood
- Department of Hematology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ishita Kathuria
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - WonMo Ahn
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Britney-Thuy Le
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ki-Suk Kim
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
2
|
Bedir Ö, Tavares Pereira M, Rehrauer H, Grazul-Bilska A, Kowalewski MP. Transcriptomic alterations in the ovine caruncular endometrium due to imbalanced nutrition and FSH-induced ovarian hyperstimulation. BMC Genomics 2024; 25:1216. [PMID: 39695382 DOI: 10.1186/s12864-024-10799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Imbalanced diet and exogenous gonadotrophins affect uterine function and morphology. In sheep, FSH-induced superovulation alters implantation-related gene expression, influenced by both treatment and diet. In this study, we used deep RNA sequencing (NGS, RNA-Seq) to expand our understanding of these effects on the caruncular endometrium. METHODS Ewes (n = 3-5/group) were separated into control fed (CF), overfed (OF), and underfed (UF) groups, with each group subdivided between FSH (superovulated; SOV) or saline (negative controls; CONT) treatment. Caruncular samples were collected on day 10 of diestrus of the subsequent estrous cycle, with samples from CF_CONT also collected on day 5 to assess time-dependent changes. RESULTS The 1484 differentially expressed genes (DEGs, P < 0.01, FDR < 0.05) identified between CF_CONT animals at days 5 and 10 were predominantly associated with increased immune activity and cellular metabolic processes and cellular proliferation. In CONT animals, imbalanced nutrition (i.e., both OF and UF) was associated with enrichment of terms associated with cell adhesion and differentiation, immune response and angiogenesis. The FSH carry-over effects resulted in a higher number of DEGs in CF animals (1374), than in OF (168) or UF (18), mostly associated with dysregulation of cell cycle and hormonal sensitivity. CONCLUSION The absence of genes concurrently affected by superovulation (SOV) in all feeding regimes indicates that the effects of FSH on the caruncular transcriptome are multidirectional and dependent upon body condition. Therefore, the homeostasis of ovine caruncles is influenced by both body condition and superovulation (SOV), potentially affecting uterine receptivity.
Collapse
Affiliation(s)
- Özlem Bedir
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Winterthurerstrasse 260, Zürich, CH-8057, Switzerland
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Harran University, Sanliurfa, Turkey
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Winterthurerstrasse 260, Zürich, CH-8057, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Anna Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, USA
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Winterthurerstrasse 260, Zürich, CH-8057, Switzerland.
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
3
|
Dobelmann V, Roos A, Hentschel A, Della Marina A, Leo M, Schmitt LI, Maggi L, Schara-Schmidt U, Hagenacker T, Ruck T, Kölbel H. Thrombospondin-4 as potential cerebrospinal fluid biomarker for therapy response in pediatric spinal muscular atrophy. J Neurol 2024; 271:7000-7011. [PMID: 39240344 PMCID: PMC11446971 DOI: 10.1007/s00415-024-12670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND AND PURPOSE Spinal muscular atrophy (SMA) as the second most common neurodegenerative disorder in childhood is characterized by the deficiency of survival of motor neuron (SMN) protein leading predominantly to degeneration of alpha motor neurons and consequently to progressive muscle weakness and atrophy. Besides some biomarkers like SMN2 copy number therapeutic biomarkers for SMA with known relevance for neuromuscular transmission are lacking. Here, we examined the potential of Thrombospondin-4 (TSP4) to serve as a cerebrospinal fluid (CSF) biomarker, which may also indicate treatment response. METHODS We used untargeted proteomic analyses to determine biomarkers in CSF samples derived from pediatric pre-symptomatic (n = 6) and symptomatic (n = 4) SMA patients. The identified biomarker TSP4 was then validated in additional 68 CSF samples (9 adult and 24 pediatric SMA patients, 5 adult and 13 pediatric non-disease controls in addition to 17 pediatric disease controls) by enzyme-linked immunosorbent assay (ELISA) as an additional analytical approach. RESULTS Untargeted proteomic analyses of CSF identified a dysregulation of TSP4 and revealed a difference between pre-symptomatic SMA patients and patients identified after the onset of first symptoms. Subsequent ELISA-analyses showed that TSP4 is decreased in pediatric but not adult SMA patients. CSF of pediatric patients with other neurological disorders demonstrated no alteration of TSP4 levels. Furthermore, CSF TSP4 levels of pediatric SMA patients increased after first dose of Nusinersen. CONCLUSIONS We found that TSP4 levels are exclusively reduced in CSF of pediatric SMA patients and increase after treatment, leading us to the hypothesis that TSP4 could serve as a CSF biomarker with the potential to monitor treatment response in pediatric SMA patients. Moreover, TSP4 enable to distinguish pre-symptomatic and symptomatic patients suggesting a potential to serve as a stratification marker.
Collapse
Affiliation(s)
- Vera Dobelmann
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Andreas Roos
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, K1H 5B2, Canada
| | | | - Adela Della Marina
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Markus Leo
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Linda-Isabell Schmitt
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology, and Social Pediatrics, Center for Neuromuscular Disorders in Children and Adolescents, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
4
|
Haberberger RV, Matusica D, Shiers S, Sankaranarayanan I, Price TJ. Transcriptomic and histological characterization of telocytes in the human dorsal root ganglion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614693. [PMID: 39386553 PMCID: PMC11463542 DOI: 10.1101/2024.09.24.614693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Telocytes are interstitial cells with long processes that cover distances in tissues and likely coordinate interacts with other cell types. Though present in central and peripheral neuronal tissues, their role remains unclear. Dorsal root ganglia (DRG) house pseudounipolar afferent neurons responsible for signals such as temperature, proprioception and nociception. This study aimed to investigate the presence and function of telocytes in human DRG by investigating their transcriptional profile, location and ultrastructure. Sequencing data revealed CD34 and PDGFRA expressing cells comprise roughly 1.5-3% of DRG cells. Combined expression of CD34 and PDGFRA is a putative marker gene set for telocytes. Further analysis identified nine subclusters with enriched cluster-specific genes. KEGG and GO pathway analysis suggested vascular, immune and connective tissue associated putative telocyte subtypes. Over 3000 potential receptor-ligand interactions between sensory neurons and these CD34 and PDGFRA expressing putative telocytes were identified using a ligand-receptors interactome platform. Immunohisto-chemistry showed CD34+ telocytes in the endoneural space of DRGs, next to neuron-satellite complexes, in perivascular spaces and in the endoneural space between nerve fibre bundles, consistent with pathway analysis. Transmission electron microscopy (TEM) confirmed their location identifying characteristic elongated nucleus, long and thin telopods containing vesicles, surrounded by a basal lamina. This is the first study that provides gene expression analysis of telocytes in complex human tissue such as the DRG, highlighting functional differences based on tissue location with no significant ultrastructural variation.
Collapse
Affiliation(s)
- Rainer V Haberberger
- Department of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Anatomy, Histology & Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Dusan Matusica
- Anatomy, Histology & Pathology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Stephanie Shiers
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas. Richardson, TX
| |
Collapse
|
5
|
Mzimela N, Dimba N, Sosibo A, Khathi A. Evaluating the impact of type 2 diabetes mellitus on pulmonary vascular function and the development of pulmonary fibrosis. Front Endocrinol (Lausanne) 2024; 15:1431405. [PMID: 39050565 PMCID: PMC11266053 DOI: 10.3389/fendo.2024.1431405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The increasing prevalence of type 2 diabetes mellitus (T2DM) is a significant worldwide health concern caused by sedentary lifestyles and unhealthy diets. Beyond glycemic control, T2DM impacts multiple organ systems, leading to various complications. While traditionally associated with cardiovascular and microvascular complications, emerging evidence indicates significant effects on pulmonary health. Pulmonary vascular dysfunction and fibrosis, characterized by alterations in vascular tone and excessive extracellular matrix deposition, are increasingly recognized in individuals with T2DM. The onset of T2DM is often preceded by prediabetes, an intermediate hyperglycemic state that is associated with increased diabetes and cardiovascular disease risk. This review explores the relationship between T2DM, pulmonary vascular dysfunction and pulmonary fibrosis, with a focus on potential links with prediabetes. Pulmonary vascular function, including the roles of nitric oxide (NO), prostacyclin (PGI2), endothelin-1 (ET-1), thromboxane A2 (TxA2) and thrombospondin-1 (THBS1), is discussed in the context of T2DM and prediabetes. Mechanisms linking T2DM to pulmonary fibrosis, such as oxidative stress, dysregulated fibrotic signaling, and chronic inflammation, are explained. The impact of prediabetes on pulmonary health, including endothelial dysfunction, oxidative stress, and dysregulated vasoactive mediators, is highlighted. Early detection and intervention during the prediabetic stage may reduce respiratory complications associated with T2DM, emphasizing the importance of management strategies targeting blood glucose regulation and vascular health. More research that looks into the mechanisms underlying pulmonary complications in T2DM and prediabetes is needed.
Collapse
Affiliation(s)
- Nhlakanipho Mzimela
- Department of Human Physiology, Faculty of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | | |
Collapse
|
6
|
Yin Y, Liu J, Xu C, Zeng D, Zhu Y, Wu X, Fan Q, Zhao S, Wang J, Liu Y, Li Y, Lu W. Whole-transcriptome RNA sequencing reveals CeRNA regulatory network under long-term space composite stress in Rats. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:136-145. [PMID: 38670640 DOI: 10.1016/j.lssr.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 04/28/2024]
Abstract
To systematically evaluate the effect of simulated long-term spaceflight composite stress (LSCS) in hippocampus and gain more insights into the transcriptomic landscape and molecular mechanism, we performed whole-transcriptome sequencing based on the control group (Ctrl) and the simulated long-term spaceflight composite stress group (LSCS) from six hippocampus of rats. Subsequently, differential expression analysis was performed on the Ctrl and LSCS groups, followed by enrichment analysis and functional interaction prediction analysis to investigate gene-regulatory circuits in LSCS. In addition, competitive endogenous RNA (ceRNA) network was constructed to gain insights into genetic interaction. The result showed that 276 differentially expressed messenger RNAs (DEmRNAs), 139 differentially expressed long non-coding RNAs (DElncRNAs), 103 differentially expressed circular RNAs (DEcircRNAs), and 52 differentially expressed microRNAs (DEmiRNAs) were found in LSCS samples compared with the controls, which were then subjected to enrichment analysis of Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to find potential functions. PI3K-Akt signaling pathway and MAPK signaling pathway may play fundamental roles in the pathogenesis of LSCS. A ceRNA network was constructed with the predicted 340 DE pairs, which revealed the interaction roles of 220 DEmiRNA-DEmRNA pairs, 76 DEmiRNA-DElncRNA pairs, and 44 DEmiRNA-DEcircRNA pairs. Further, Thrombospondins2 was found to be a key target among those ceRNAs. Overall, we conducted for the first time a full transcriptomic analysis of the response of hippocampus to the LSCS that involved a potential ceRNA network, thus providing a basis to study the underlying mechanism of the LSCS.
Collapse
Affiliation(s)
- YiShu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China
| | - JunLian Liu
- China Astronaut Research and Training Center, Beijing 100094, PR China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - DeYong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China
| | - YuanBing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China
| | - XiaoRui Wu
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - QuanChun Fan
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Shuang Zhao
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - JiaPing Wang
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Yu Liu
- China Astronaut Research and Training Center, Beijing 100094, PR China
| | - YongZhi Li
- China Astronaut Research and Training Center, Beijing 100094, PR China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, PR China.
| |
Collapse
|
7
|
Li B, Li X, Yang Q, Jiang Y, Zhang Q, Zhang J, Cui W, Xu F. Overexpression of SPP1 is a prognostic indicator of immune infiltration in lung adenocarcinoma. Aging (Albany NY) 2024; 16:2953-2977. [PMID: 38329443 PMCID: PMC10911343 DOI: 10.18632/aging.205526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE The extracellular phosphoprotein, secreted phosphoprotein 1 (SPP1), plays a crucial role in various tumors and regulating the immune system. This study aimed to evaluate its prognostic value and relationship to immune infiltration in lung adenocarcinoma (LUAD). METHODS In the TCGA and GEO datasets, the information on clinic and transcriptome analysis of SPP1 in non-small-cell lung cancer (NSCLC) was examined accordingly. The association of SPP1 expression with overall survival and clinicopathologic characteristics was investigated by univariate and multivariate analysis. CancerSEA database was utilized to investigate the role of SPP1 at the cellular level by single-cell analysis. Additionally, the CIBERSORT algorithm was utilized to assess the correlation among the immune cells that infiltrated. RESULTS NSCLC tissues exhibited a notable rise in SPP1 expression compared with that of normal tissues. Furthermore, the overexpression of SPP1 was substantially associated with clinicopathological features and unfavorable survival outcomes in individuals with LUAD, whereas no such correlation was observed in lung squamous cell carcinoma. Immune cells that infiltrate tumors and their corresponding genes were associated with SPP1 expression levels in LUAD. CONCLUSIONS SPP1 is a reliable indicator for assessing LUAD immune infiltration status and prognosis. With this approach, SPP1 can help earlier LUAD diagnosis and act as a possible immunotherapy target.
Collapse
Affiliation(s)
- Binbin Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xue Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qingfeng Yang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yiyang Jiang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qianwen Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jingtao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Fei Xu
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
8
|
Cowan DB, Wu H, Chen H. Epsin Endocytic Adaptor Proteins in Angiogenic and Lymphangiogenic Signaling. Cold Spring Harb Perspect Med 2024; 14:a041165. [PMID: 37217282 PMCID: PMC10759987 DOI: 10.1101/cshperspect.a041165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Circulating vascular endothelial growth factor (VEGF) ligands and receptors are central regulators of vasculogenesis, angiogenesis, and lymphangiogenesis. In response to VEGF ligand binding, VEGF receptor tyrosine kinases initiate the chain of events that transduce extracellular signals into endothelial cell responses such as survival, proliferation, and migration. These events are controlled by intricate cellular processes that include the regulation of gene expression at multiple levels, interactions of numerous proteins, and intracellular trafficking of receptor-ligand complexes. Endocytic uptake and transport of macromolecular complexes through the endosome-lysosome system helps fine-tune endothelial cell responses to VEGF signals. Clathrin-dependent endocytosis remains the best understood means of macromolecular entry into cells, although the importance of non-clathrin-dependent pathways is increasingly recognized. Many of these endocytic events rely on adaptor proteins that coordinate internalization of activated cell-surface receptors. In the endothelium of both blood and lymphatic vessels, epsins 1 and 2 are functionally redundant adaptors involved in receptor endocytosis and intracellular sorting. These proteins are capable of binding both lipids and proteins and are important for promoting curvature of the plasma membrane as well as binding ubiquitinated cargo. Here, we discuss the role of epsin proteins and other endocytic adaptors in governing VEGF signaling in angiogenesis and lymphangiogenesis and discuss their therapeutic potential as molecular targets.
Collapse
Affiliation(s)
- Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, and Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
9
|
Huang J, Wang C, Hou Y, Tian Y, Li Y, Zhang H, Zhang L, Li W. Molecular mechanisms of Thrombospondin-2 modulates tumor vasculogenic mimicry by PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2023; 167:115455. [PMID: 37696083 DOI: 10.1016/j.biopha.2023.115455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Vasculogenic mimicry (VM) differs from the classical tumor angiogenesis model. VM does not depend on endothelial cells; instead, highly aggressive tumor cells mimic endothelial cells to form a vascular-like channel structure. VM mediated by tumor cells is significantly and positively associated with a poor prognosis and low survival rates in patients with highly aggressive cancer. In the treatment of highly aggressive malignancies, the presence of VM is considered an important reason for the unsatisfactory clinical efficacy of anti-tumor-angiogenesis therapy (e.g., therapy targeting vascular endothelial growth factor A). Many targeted therapeutic drugs based on traditional tumor blood vessels have been used clinically. Although some progress has been made in certain tumors, problems such as drug resistance have restricted the expected therapeutic effects. Thrombospondin 2 (THBS2) is one of the most important genes associated with angiogenesis, and this gene exerts angiogenesis-related functions through the PI3K/AKT signaling pathway. Although the PI3K/AKT/mTOR signaling pathway is closely related to the progression of VM, the mechanism by which the promising biomarker THBS2 participates in and regulates tumor VM by activating the PI3K/AKT/mTOR signaling pathway is unclear. In this review, we analyze the monomer structure and biological activity of THBS2, the structure and potential synthesis mechanisms of VM, and the complex mechanisms between THBS2, the PI3K/AKT/mTOR signaling pathway, and VM.
Collapse
Affiliation(s)
- Ju Huang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Congcong Wang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yixuan Hou
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yuanyuan Tian
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lihong Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
10
|
Cao S, Wang L, Feng Y, Peng XD, Li LM. A data integration approach unveils a transcriptional signature of type 2 diabetes progression in rat and human islets. PLoS One 2023; 18:e0292579. [PMID: 37816033 PMCID: PMC10564241 DOI: 10.1371/journal.pone.0292579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Pancreatic islet failure is a key characteristic of type 2 diabetes besides insulin resistance. To get molecular insights into the pathology of islets in type 2 diabetes, we developed a computational approach to integrating expression profiles of Goto-Kakizaki and Wistar rat islets from a designed experiment with those of the human islets from an observational study. A principal gene-eigenvector in the expression profiles characterized by up-regulated angiogenesis and down-regulated oxidative phosphorylation was identified conserved across the two species. In the case of Goto-Kakizaki versus Wistar islets, such alteration in gene expression can be verified directly by the treatment-control tests over time, and corresponds to the alteration of α/β-cell distribution obtained by quantifying the islet micrographs. Furthermore, the correspondence between the dual sample- and gene-eigenvectors unveils more delicate structures. In the case of rats, the up- and down-trend of insulin mRNA levels before and after week 8 correspond respectively to the top two principal eigenvectors. In the case of human, the top two principal eigenvectors correspond respectively to the late and early stages of diabetes. According to the aggregated expression signature, a large portion of genes involved in the hypoxia-inducible factor signaling pathway, which activates transcription of angiogenesis, were significantly up-regulated. Furthermore, top-ranked anti-angiogenic genes THBS1 and PEDF indicate the existence of a counteractive mechanism that is in line with thickened and fragmented capillaries found in the deteriorated islets. Overall, the integrative analysis unravels the principal transcriptional alterations underlying the islet deterioration of morphology and insulin secretion along type 2 diabetes progression.
Collapse
Affiliation(s)
- Shenghao Cao
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Linting Wang
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yance Feng
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-ding Peng
- Department of Biochemistry and Molecular Genetics, The University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lei M. Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Qi C, Shi H, Fan M, Chen W, Yao H, Jiang C, Meng L, Pang S, Lin R. Microvesicles from bone marrow-derived mesenchymal stem cells promote Helicobacter pylori-associated gastric cancer progression by transferring thrombospondin-2. Cell Commun Signal 2023; 21:274. [PMID: 37798762 PMCID: PMC10552243 DOI: 10.1186/s12964-023-01127-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/09/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Our previous study found that bone marrow-derived mesenchymal stem cells (BMSCs) promote Helicobacter pylori (H pylori)-associated gastric cancer (GC) progression by secreting thrombospondin-2 (THBS2). Extracellular vesicles (EVs) are important carriers for intercellular communication, and EVs secreted by BMSCs have been shown to be closely related to tumor development. The aim of this study was to investigate whether BMSC-derived microvesicles (MVs, a main type of EV) play a role in H. pylori-associated GC by transferring THBS2. METHODS BMSCs and THBS2-deficient BMSCs were treated with or without the supernatant of H. pylori for 12 h at a multiplicity of infection of 50, and their EVs were collected. Then, the effects of BMSC-derived MVs and THBS2-deficient BMSC-derived MVs on the GC cell line MGC-803 were assessed by in vitro proliferation, migration, and invasion assays. In addition, a subcutaneous xenograft tumor model, a nude mouse intraperitoneal metastasis model, and a tail vein injection metastasis model were constructed to evaluate the effects of BMSC-derived MVs and THBS2-deficient BMSC-derived MVs on GC development and metastasis in vivo. RESULTS BMSC-derived MVs could be readily internalized by MGC-803 cells. BMSC-derived MVs after H. pylori treatment significantly promoted their proliferation, migration and invasion in vitro (all P < 0.05) and promoted tumor development and metastasis in a subcutaneous xenograft tumor model, a nude mouse intraperitoneal metastasis model, and a tail vein injection metastasis model in vivo (all P < 0.05). The protein expression of THBS2 was significantly upregulated after H. pylori treatment in BMSC-derived MVs (P < 0.05). Depletion of the THBS2 gene reduces the tumor-promoting ability of BMSC-MVs in an H. pylori infection microenvironment both in vitro and in vivo. CONCLUSION Overall, these findings indicate that MVs derived from BMSCs can promote H. pylori-associated GC development and metastasis by delivering the THBS2 protein. Video Abstract.
Collapse
Affiliation(s)
- Cuihua Qi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
- Department of Gastroenterology, The First Affiliated Hospital of Shihezi University, Shihezi, 832002 China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Weigang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shihezi University, Shihezi, 832002 China
| | - Hailing Yao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Chen Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Lingjun Meng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| |
Collapse
|
12
|
Wang Y, Liu L, Wang J, Gao Y. Hsa_circ_0015382 is involved in the pathogenesis of preeclampsia by mediating THBS2 expression. Am J Reprod Immunol 2023; 90:e13760. [PMID: 37641374 DOI: 10.1111/aji.13760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a hypertensive disorder of pregnancy that causes significant maternal and perinatal morbidity and mortality. Circular RNA (circRNA) hsa_circ_0015382 is associated with the pathogenesis of PE, but its underlying regulatory mechanism remains to be explored. METHODS Relative RNA levels of hsa_circ_0015382, microRNA-616-3p and thrombospondin-2 (THBS2) were detected by quantitative reverse transcription-polymerase chain reaction. In vitro regulatory effects of hsa_circ_0015382 on the proliferation, migration, invasion and angiogenesis of trophoblasts were evaluated by CCK-8, flow cytometry for cell cycle, EdU, transwell, wound healing and HUVEC tube formation assays, respectively. Targeting interaction was verified by dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS Hsa_circ_0015382 was highly expressed in placental tissues from PE patients. Upregulation of hsa_circ_0015382 repressed trophoblast proliferation, migration, invasion and lowered trophoblast-induced HUVEC tube formation. Hsa_circ_0015382 was validated as a miR-616-3p sponge and miR-616-3p targeted THBS2. Hsa_circ_0015382 could mediate trophoblast proliferation, migration, invasion and regulate trophoblast-induced HUVEC tube formation by sponging miR-616-3p and regulating THBS2 expression. CONCLUSION Hsa_circ_0015382 is associated with the pathogenesis of PPE by regulating the miR-616-3p/THBS2 axis. HIGHLIGHTS Hsa_circ_0015382 is overexpressed in preeclampsia patients. Hsa_circ_0015382 inhibits trophoblast proliferation, migration, invasion and decreases trophoblast-induced HUVEC tube formation. Hsa_circ_0015382 interacts with miR-616-3p to regulate THBS2 expression.
Collapse
Affiliation(s)
- Yang Wang
- Department of Obstetrics, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Lingfang Liu
- Department of Obstetrics, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Jiayao Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Yan Gao
- Department of Obstetrics, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| |
Collapse
|
13
|
Hayashi KG, Sakumoto R. Differential expression of pro- and anti-angiogenic factors in the endometrium between repeat breeder and normally fertile cows. Anim Reprod Sci 2023; 254:107265. [PMID: 37270879 DOI: 10.1016/j.anireprosci.2023.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
In cattle, the establishment of appropriate endometrial vasculature during the estrous cycle is required for preparing a receptive endometrium. This study aimed to investigate 1) mRNA expression of potent pro- and anti-angiogenic factors, 2) protein localization of the anti-angiogenic factor thrombospondin (TSP), and 3) vascularity in the endometrium of repeat breeder (RB) and normally fertile (non-RB) cows. Caruncular and intercaruncular endometrium was collected from RB and non-RB cows during the luteal phase of the estrous cycle. RB cows had greater mRNA expression levels of TSP ligands (TSP1 and TSP2) and receptors (CD36 and CD47) than non-RB cows. Although the mRNA expression levels of most angiogenic factors did not change by repeat breeding, RB cows had greater mRNA expression of fibroblast growth factor receptor 1 (FGFR1), angiopoietin 1 (ANGPT1), and ANGPT2 and a less mRNA expression of vascular endothelial growth factor B (VEGFB) than non-RB cows. By immunohistochemistry, TSP1, TSP2, CD36, and CD47 were detected in the luminal epithelium, glandular epithelium, stromal cells, and blood vessels of the endometrium. Two indexes of vascularity, the number of blood vessels and the percentage of area stained positive for the von Willebrand factor, were lower in the endometrium of RB than in that of non-RB cows. These results demonstrate that RB cows have a greater expression of both ligands and receptors for the anti-angiogenic factor TSP and a reduced vascular distribution in the endometrium compared with non-RB cows, suggesting suppressed endometrial angiogenesis.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba 305-0901, Japan.
| | - Ryosuke Sakumoto
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba 305-0901, Japan.
| |
Collapse
|
14
|
Bhat SM, Prasad PR, Joshi MB. Novel insights into DNA methylation-based epigenetic regulation of breast tumor angiogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:63-96. [PMID: 37657860 DOI: 10.1016/bs.ircmb.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Breast tumors are highly vascularized and dependent on angiogenesis for growth, progression and metastasis. Like other solid tumors, vasculature in breast tumors also display leaky and tortuous phenotype and hence inhibit immune cell infiltration, show reduced efficacy to anticancer drugs and radiotherapy. Epigenetic reprogramming including significant alterations in DNA methylation in tumor and stromal cells generate an imbalance in expression of pro- and anti-angiogenic factors and subsequently lead to disordered angiogenesis. Hence, understanding DNA methylation-based regulation of angiogenesis in breast tumors may open new avenues for designing therapeutic targets. Our present review manuscript summarized contemporary knowledge of influence of DNA methylation in regulating angiogenesis. Further, we identified novel set of pro-angiogenic genes enriched in endothelial cells which are coregulated with DNMT isoforms in breast tumors and harboring CpG islands. Our analysis revealed promoters of pro-angiogenic genes were hypomethylated and anti-angiogenic genes were hypermethylated in tumors and further reflected on their expression patterns. Interestingly, promoter DNA methylation intensities of novel set of pro-angiogenic genes significantly correlated to patient survival outcome.
Collapse
Affiliation(s)
- Sharath Mohan Bhat
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Palla Ranga Prasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
15
|
Rapp AE, Zaucke F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am J Physiol Cell Physiol 2023; 324:C377-C394. [PMID: 36571440 DOI: 10.1152/ajpcell.00464.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is among the most frequent diseases of the musculoskeletal system. Degradation of cartilage extracellular matrix (ECM) is a hallmark of OA. During the degradation process, intact/full-length proteins and proteolytic fragments are released which then might induce different downstream responses via diverse receptors, therefore leading to different biological consequences. Collagen type II and the proteoglycan aggrecan are the most abundant components of the cartilage ECM. However, over the last decades, a large number of minor components have been identified and for some of those, a role in the manifold processes associated with OA has already been demonstrated. To date, there is still no therapy able to halt or cure OA. A better understanding of the matrikine landscape occurring with or even preceding obvious degenerative changes in joint tissues is needed and might help to identify molecules that could serve as biomarkers, druggable targets, or even be blueprints for disease modifying drug OA drugs. For this narrative review, we screened PubMed for relevant literature in the English language and summarized the current knowledge regarding the function of selected ECM molecules and the derived matrikines in the context of cartilage and OA.
Collapse
Affiliation(s)
- Anna E Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, Mitola S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev 2023; 69:61-72. [PMID: 35953434 DOI: 10.1016/j.cytogfr.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy.
| |
Collapse
|
17
|
Lyttle BD, Vaughn AE, Bardill JR, Apte A, Gallagher LT, Zgheib C, Liechty KW. Effects of microRNAs on angiogenesis in diabetic wounds. Front Med (Lausanne) 2023; 10:1140979. [PMID: 37020673 PMCID: PMC10067680 DOI: 10.3389/fmed.2023.1140979] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetes mellitus is a morbid condition affecting a growing number of the world population, and approximately one third of diabetic patients are afflicted with diabetic foot ulcers (DFU), which are chronic non-healing wounds that frequently progress to require amputation. The treatments currently used for DFU focus on reducing pressure on the wound, staving off infection, and maintaining a moist environment, but the impaired wound healing that occurs in diabetes is a constant obstacle that must be faced. Aberrant angiogenesis is a major contributor to poor wound healing in diabetes and surgical intervention is often necessary to establish peripheral blood flow necessary for healing wounds. Over recent years, microRNAs (miRNAs) have been implicated in the dysregulation of angiogenesis in multiple pathologies including diabetes. This review explores the pathways of angiogenesis that become dysregulated in diabetes, focusing on miRNAs that have been identified and the mechanisms by which they affect angiogenesis.
Collapse
Affiliation(s)
- Bailey D. Lyttle
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Bailey D. Lyttle,
| | - Alyssa E. Vaughn
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - James R. Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - Anisha Apte
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| | - Lauren T. Gallagher
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, School of Medicine, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, College of Medicine, University of Arizona Health Sciences College of Medicine—Tucson, Tucson, AZ, United States
| |
Collapse
|
18
|
He J, Steffen JH, Thulstrup PW, Pedersen JN, Sauerland MB, Otzen DE, Hawkins CL, Gourdon P, Davies MJ, Hägglund P. Anastellin impacts on the processing of extracellular matrix fibronectin and stimulates release of cytokines from coronary artery smooth muscle cells. Sci Rep 2022; 12:22051. [PMID: 36543832 PMCID: PMC9772232 DOI: 10.1038/s41598-022-26359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Anastellin, a recombinant protein fragment from the first type III module of fibronectin, mimics a partially unfolded intermediate implicated in the assembly of fibronectin fibrils. Anastellin influences the structure of fibronectin and initiates in vitro fibrillation, yielding "superfibronectin", a polymer with enhanced cell-adhesive properties. This ability is absent in an anastellin double mutant, L37AY40A. Here we demonstrate that both wild-type and L37AY40A anastellin affect fibronectin processing within the extracellular matrix (ECM) of smooth muscle cells. Fibronectin fibrils are diminished in the ECM from cells treated with anastellin, but are partially rescued by supplementation with plasma fibronectin in cell media. Proteomic analyses reveal that anastellin also impacts on the processing of other ECM proteins, with increased collagen and decreased laminin detected in media from cells exposed to wild-type anastellin. Moreover, both anastellin forms stimulate release of inflammatory cytokines, including interleukin 6. At the molecular level, L37AY40A does not exhibit major perturbations of structural features relative to wild-type anastellin, though the mutant showed differences in heparin binding characteristics. These findings indicate that wild-type and L37AY40A anastellin share similar molecular features but elicit slightly different, but partially overlapping, responses in smooth muscle cells resulting in altered secretion of cytokines and proteins involved in ECM processing.
Collapse
Affiliation(s)
- Jianfei He
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Hyld Steffen
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- grid.5254.60000 0001 0674 042XDepartment of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Nedergaard Pedersen
- grid.7048.b0000 0001 1956 2722Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark ,grid.432104.0Present Address: Arla Foods Ingredients Group P/S, Sønderupvej 26, 6920 Videbæk, Denmark
| | - Max B. Sauerland
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel E. Otzen
- grid.7048.b0000 0001 1956 2722Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Clare L. Hawkins
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pontus Gourdon
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J. Davies
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per Hägglund
- grid.5254.60000 0001 0674 042XDepartment of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Grochowalska K, Pikul P, Piwkowska A. Insights into the regulation of podocyte and glomerular function by lactate and its metabolic sensor G-protein-coupled receptor 81. J Cell Physiol 2022; 237:4097-4111. [PMID: 36084306 DOI: 10.1002/jcp.30874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
Podocytes and their foot processes are an important cellular layer of the renal filtration barrier that is involved in regulating glomerular permeability. Disturbances of podocyte function play a central role in the development of proteinuria in diabetic nephropathy. The retraction and effacement of podocyte foot processes that form slit diaphragms are a common feature of proteinuria. Correlations between the retraction of foot processes and the development of proteinuria are not well understood. Unraveling peculiarities of podocyte energy metabolism notably under diabetic conditions will provide insights into the pathogenesis of diabetic nephropathy. Intracellular metabolism in the cortical area of podocytes is regulated by glycolysis, whereas energy balance in the central area is controlled by oxidative phosphorylation and glycolysis. High glucose concentrations were recently reported to force podocytes to switch from mitochondrial oxidative phosphorylation to glycolysis, resulting in lactic acidosis. In this review, we hypothesize that the lactate receptor G-protein-coupled receptor 81 (also known as hydroxycarboxylic acid receptor 81) may contribute to the control of podocyte function in both health and disease.
Collapse
Affiliation(s)
- Klaudia Grochowalska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Piotr Pikul
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
20
|
Tabary M, Gheware A, Peñaloza HF, Lee JS. The matricellular protein thrombospondin-1 in lung inflammation and injury. Am J Physiol Cell Physiol 2022; 323:C857-C865. [PMID: 35912991 PMCID: PMC9467471 DOI: 10.1152/ajpcell.00182.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Matricellular proteins comprise a diverse group of molecular entities secreted into the extracellular space. They interact with the extracellular matrix (ECM), integrins, and other cell-surface receptors, and can alter matrix strength, cell attachment to the matrix, and cell-cell adhesion. A founding member of this group is thrombospondin-1 (TSP-1), a high molecular-mass homotrimeric glycoprotein. Given the importance of the matrix and ECM remodeling in the lung following injury, TSP-1 has been implicated in a number of lung pathologies. This review examines the role of TSP-1 as a damage controller in the context of lung inflammation, injury resolution, and repair in noninfectious and infectious models. This review also discusses the potential role of TSP-1 in human diseases as it relates to lung inflammation and injury.
Collapse
Affiliation(s)
- Mohammadreza Tabary
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Atish Gheware
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Anti-Angiogenic Therapy in ALK Rearranged Non-Small Cell Lung Cancer (NSCLC). Int J Mol Sci 2022; 23:ijms23168863. [PMID: 36012123 PMCID: PMC9407780 DOI: 10.3390/ijms23168863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The management of advanced lung cancer has been transformed with the identification of targetable oncogenic driver alterations. This includes anaplastic lymphoma kinase (ALK) gene rearrangements. ALK tyrosine kinase inhibitors (TKI) are established first-line treatment options in advanced ALK rearranged non-small cell lung cancer (NSCLC), with several next-generation ALK TKIs (alectinib, brigatinib, ensartinib and lorlatinib) demonstrating survival benefit compared with the first-generation ALK TKI crizotinib. Still, despite high objective response rates and durable progression-free survival, drug resistance inevitably ensues, and treatment options beyond ALK TKI are predominantly limited to cytotoxic chemotherapy. Anti-angiogenic therapy targeting the vascular endothelial growth factor (VEGF) signaling pathway has shown efficacy in combination with platinum-doublet chemotherapy in advanced NSCLC without a driver alteration, and with EGFR TKI in advanced EGFR mutated NSCLC. The role for anti-angiogenic therapy in ALK rearranged NSCLC, however, remains to be elucidated. This review will discuss the pre-clinical rationale, clinical trial evidence to date, and future directions to evaluate anti-angiogenic therapy in ALK rearranged NSCLC.
Collapse
|
22
|
Ionescu C, Oprea B, Ciobanu G, Georgescu M, Bică R, Mateescu GO, Huseynova F, Barragan-Montero V. The Angiogenic Balance and Its Implications in Cancer and Cardiovascular Diseases: An Overview. Medicina (B Aires) 2022; 58:medicina58070903. [PMID: 35888622 PMCID: PMC9316440 DOI: 10.3390/medicina58070903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is the process of developing new blood vessels from pre-existing ones. This review summarizes the main features of physiological and pathological angiogenesis and those of angiogenesis activation and inhibition. In healthy adults, angiogenesis is absent apart from its involvement in female reproductive functions and tissue regeneration. Angiogenesis is a complex process regulated by the action of specific activators and inhibitors. In certain diseases, modulating the angiogenic balance can be a therapeutic route, either by inhibiting angiogenesis (for example in the case of tumor angiogenesis), or by trying to activate the process of new blood vessels formation, which is the goal in case of cardiac or peripheral ischemia.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Bogdan Oprea
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
- Correspondence: (C.I.); (B.O.)
| | - Georgeta Ciobanu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
| | - Milena Georgescu
- Clinic for Plastic Surgery and Burns, County Emergency Hospital Craiova, 200642 Craiova, Romania;
| | - Ramona Bică
- General Hospital—“Victor Babes”, 281 Mihai Bravu St., Sector III, 030303 Bucharest, Romania;
| | - Garofiţa-Olivia Mateescu
- Histology Department, University of Medicine and Pharmacy, 2-4 Petru Rares, 200349 Craiova, Romania;
| | - Fidan Huseynova
- LBN, University of Montpellier, 34193 Montpellier, France; (F.H.); (V.B.-M.)
- Institute of Molecular Biology and Biotechnologies, Azerbaïjan National Academy of Sciences (ANAS), AZ1073 Baku, Azerbaijan
- Department of Histology, Cytology and Embryology, Azerbaijan Medical University, AZ1078 Baku, Azerbaijan
| | | |
Collapse
|
23
|
Chaudhari P, Madaan A, Rivera JC, Charfi I, Habelrih T, Hou X, Nezhady M, Lodygensky G, Pineyro G, Muanza T, Chemtob S. Neuronal GPR81 regulates developmental brain angiogenesis and promotes brain recovery after a hypoxic ischemic insult. J Cereb Blood Flow Metab 2022; 42:1294-1308. [PMID: 35107038 PMCID: PMC9207492 DOI: 10.1177/0271678x221077499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Perinatal hypoxic/ischemic (HI) brain injury is a major clinical problem with devastating neurodevelopmental outcomes in neonates. During HI brain injury, dysregulated factor production contributes to microvascular impairment. Glycolysis-derived lactate accumulated during ischemia has been proposed to protect against ischemic injury, but its mechanism of action is poorly understood. Herein, we hypothesize that lactate via its G-protein coupled receptor (GPR81) controls postnatal brain angiogenesis and plays a protective role after HI injury. We show that GPR81 is predominantly expressed in neurons of the cerebral cortex and hippocampus. GPR81-null mice displayed a delay in cerebral microvascular development linked to reduced levels of various major angiogenic factors and augmented expression of anti-angiogenic Thrombospondin-1 (TSP-1) in comparison to their WT littermates. Coherently, lactate stimulation induced an increase in growth factors (VEGF, Ang1 and 2, PDGF) and reduced TSP-1 expression in neurons, which contributed to accelerating angiogenesis. HI injury in GPR81-null animals curtailed vascular density and consequently increased infarct size compared to changes seen in WT mice; conversely intracerebroventricular lactate injection increased vascular density and diminished infarct size in WT but not in GPR81-null mice. Collectively, we show that lactate acting via GPR81 participates in developmental brain angiogenesis, and attenuates HI injury by restoring compromised microvasculature.
Collapse
Affiliation(s)
- Prabhas Chaudhari
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada
| | - Ankush Madaan
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Canada.,Department of Pharmacology, McGill University, Montréal, Canada
| | - José Carlos Rivera
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Canada.,Department of Opthalmology, Université de Montréal, Montréal, Canada.,Maisonneuve-Rosemont Hospital, Research Center, Montréal, Canada
| | - Iness Charfi
- Department of Experimental Medicine, McGill University, Montréal, Canada.,Department of Pharmacology, McGill University, Montréal, Canada
| | - Tiffany Habelrih
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Canada
| | - Xin Hou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Canada
| | - Mohammad Nezhady
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Canada
| | - Gregory Lodygensky
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Canada
| | - Graciela Pineyro
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Canada.,Department of Experimental Medicine, McGill University, Montréal, Canada.,Department of Pharmacology, McGill University, Montréal, Canada
| | - Thierry Muanza
- Department of Experimental Medicine, McGill University, Montréal, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Canada.,Department of Pharmacology, McGill University, Montréal, Canada.,Department of Opthalmology, Université de Montréal, Montréal, Canada.,Maisonneuve-Rosemont Hospital, Research Center, Montréal, Canada
| |
Collapse
|
24
|
Effects of ACTH-Induced Long-Term Hypercortisolism on the Transcriptome of Canine Visceral Adipose Tissue. Vet Sci 2022; 9:vetsci9060250. [PMID: 35737302 PMCID: PMC9228614 DOI: 10.3390/vetsci9060250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cushing’s syndrome, or hypercortisolism (HC), a common endocrinopathy in adult dogs, is caused by chronic hypercortisolemia. Among different metabolic disorders, this syndrome is associated with enhanced subcutaneous lipolysis and visceral adiposity. However, effects of HC in adipose tissue, especially regarding visceral adipose tissue (VAT), are still poorly understood. Herein, the transcriptomic effects of chronic HC on VAT of dogs were evaluated. For this, subcutaneously implanted ACTH-releasing pumps were used, followed by deep RNA sequencing of the canine VAT. Prolonged HC seems to affect a plethora of regulatory mechanisms in VAT of treated dogs, with 1190 differentially expressed genes (DEGs, p and FDR < 0.01) being found. The 691 downregulated DEGs were mostly associated with functional terms like cell adhesion and migration, intracellular signaling, immune response, extracellular matrix and angiogenesis. Treatment also appeared to modulate local glucocorticoid and insulin signaling and hormonal sensitivity, and several factors, e.g., TIMP4, FGF1, CCR2, CXCR4 and HSD11B1/2, were identified as possible important players in the glucocorticoid-related expansion of VAT. Modulation of their function during chronic HC might present interesting targets for further clinical studies. Similarities in the effects of chronic HC on VAT of dogs and humans are highlighted.
Collapse
|
25
|
Carson JP, Robinson MW, Ramm GA, Gobert GN. Synthetic peptides derived from the Schistosoma mansoni secretory protein Sm16 induce contrasting responses in hepatic stellate cells. Exp Parasitol 2022; 236-237:108255. [PMID: 35385714 DOI: 10.1016/j.exppara.2022.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
26
|
Parkes MD, Halloran K, Hirji A, Pon S, Weinkauf J, Timofte IL, Snell GI, Westall GP, Havlin J, Lischke R, Zajacová A, Hachem R, Kreisel D, Levine D, Kubisa B, Piotrowska M, Juvet S, Keshavjee S, Jaksch P, Klepetko W, Halloran PF. Transcripts associated with chronic lung allograft dysfunction in transbronchial biopsies of lung transplants. Am J Transplant 2022; 22:1054-1072. [PMID: 34850543 DOI: 10.1111/ajt.16895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/07/2021] [Indexed: 01/25/2023]
Abstract
Transplanted lungs suffer worse outcomes than other organ transplants with many developing chronic lung allograft dysfunction (CLAD), diagnosed by physiologic changes. Histology of transbronchial biopsies (TBB) yields little insight, and the molecular basis of CLAD is not defined. We hypothesized that gene expression in TBBs would reveal the nature of CLAD and distinguish CLAD from changes due simply to time posttransplant. Whole-genome mRNA profiling was performed with microarrays in 498 prospectively collected TBBs from the INTERLUNG study, 90 diagnosed as CLAD. Time was associated with increased expression of inflammation genes, for example, CD1E and immunoglobulins. After correcting for time, CLAD manifested not as inflammation but as parenchymal response-to-wounding, with increased expression of genes such as HIF1A, SERPINE2, and IGF1 that are increased in many injury and disease states and cancers, associated with development, angiogenesis, and epithelial response-to-wounding in pathway analysis. Fibrillar collagen genes were increased in CLAD, indicating matrix changes, and normal transcripts were decreased-dedifferentiation. Gene-based classifiers predicted CLAD with AUC 0.70 (no time-correction) and 0.87 (time-corrected). CLAD related gene sets and classifiers were strongly prognostic for graft failure and correlated with CLAD stage. Thus, in TBBs, molecular changes indicate that CLAD primarily reflects severe parenchymal injury-induced changes and dedifferentiation.
Collapse
Affiliation(s)
| | | | - Alim Hirji
- University of Alberta, Edmonton, Alberta, Canada
| | - Shane Pon
- University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Greg I Snell
- Alfred Hospital Lung Transplant Service, Melbourne, Australia
| | - Glen P Westall
- Alfred Hospital Lung Transplant Service, Melbourne, Australia
| | - Jan Havlin
- University Hospital Motol, Prague, Czech Republic
| | | | | | - Ramsey Hachem
- Washington University in St Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Washington University in St Louis, St. Louis, Missouri, USA
| | - Deborah Levine
- University of Texas San Antonio, San Antonio, Texas, USA
| | - Bartosz Kubisa
- Pomeranian Medical University of Szczecin, Szczecin, Poland
| | | | - Stephen Juvet
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Li Y, Chen J, Song S. Circ‐OPHN1 suppresses the proliferation, migration, and invasion of trophoblast cells through mediating miR‐558/THBS2 axis. Drug Dev Res 2022; 83:1034-1046. [PMID: 35277867 DOI: 10.1002/ddr.21931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Yu Li
- Department of Obstetrics and Gynecology The Affiliated Hospital of Putian University Putian City Fujian Province China
| | - Jinzao Chen
- Department of Internal Medicine‐Cardiovascular The First Hospital of Putian Putian City Fujian Province China
| | - Shuqin Song
- Department of Obstetrics and Gynecology The Affiliated Hospital of Putian University Putian City Fujian Province China
| |
Collapse
|
28
|
Bartoli F, Debant M, Chuntharpursat-Bon E, Evans EL, Musialowski KE, Parsonage G, Morley LC, Futers TS, Sukumar P, Bowen TS, Kearney MT, Lichtenstein L, Roberts LD, Beech DJ. Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. J Clin Invest 2022; 132:141775. [PMID: 35025768 PMCID: PMC8884896 DOI: 10.1172/jci141775] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Piezo1 forms mechanically activated nonselective cation channels that contribute to endothelial response to fluid flow. Here we reveal an important role in the control of capillary density. Conditional endothelial cell-specific deletion of Piezo1 in adult mice depressed physical performance. Muscle microvascular endothelial cell apoptosis and capillary rarefaction were evident and sufficient to account for the effect on performance. There was selective upregulation of thrombospondin-2 (TSP2), an inducer of endothelial cell apoptosis, with no effect on TSP1, a related important player in muscle physiology. TSP2 was poorly expressed in muscle endothelial cells but robustly expressed in muscle pericytes, in which nitric oxide (NO) repressed the Tsp2 gene without an effect on Tsp1. In endothelial cells, Piezo1 was required for normal expression of endothelial NO synthase. The data suggest an endothelial cell-pericyte partnership of muscle in which endothelial Piezo1 senses blood flow to sustain capillary density and thereby maintain physical capability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - T. Scott Bowen
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Pergialiotis V, Frountzas M, Fasoulakis Z, Daskalakis G, Chrisochoidi M, Kontzoglou K, Perrea DN. Peroxisome Proliferator-Activated Receptor Alpha (PPAR-α) as a Regulator of the Angiogenic Profile of Endometriotic Lesions. Cureus 2022; 14:e22616. [PMID: 35371629 PMCID: PMC8958147 DOI: 10.7759/cureus.22616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Endometriosis is a disease that affects a significant proportion of women and its infiltrative pattern is entirely dependent on the vascular supply of lesions. Several factors seem to trigger the process of angiogenesis in endometriotic lesions. During the last years, peroxisome proliferator-activated receptors (PPARs), a group of nuclear proteins that regulate gene transcription and that seem to regulate energy consumption and expenditure, have been also implicated in the pathophysiology of angiogenesis. Their ability to regulate the course of cancer and improve the survival rates of patients has been extensively studied and seems to be partially dependent on alteration of the vascular supply of malignant lesions. Research in the field of endometriosis is scarce in the international literature and mainly focused on PPAR-gamma. However, indirect evidence suggests that PPAR-alpha (PPAR-α) may also regulate the vascular supply of endometriotic lesions as well. Specifically, PPAR-α agonists seem to downregulate angiogenesis by increasing the expression of several anti-angiogenic molecules, including thrombospondin-1 (TSP-1) and gypenoside 140 (gp140), as well as factors that are involved in the mitogen-activated protein kinase cascade. In the present article, we summarize existing indirect and direct evidence that indicates the existence of an association between the expression of PPAR-α and endometriosis to help future research in this field.
Collapse
|
30
|
The essential anti-angiogenic strategies in cartilage engineering and osteoarthritic cartilage repair. Cell Mol Life Sci 2022; 79:71. [PMID: 35029764 PMCID: PMC9805356 DOI: 10.1007/s00018-021-04105-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 01/16/2023]
Abstract
In the cartilage matrix, complex interactions occur between angiogenic and anti-angiogenic components, growth factors, and environmental stressors to maintain a proper cartilage phenotype that allows for effective load bearing and force distribution. However, as seen in both degenerative disease and tissue engineering, cartilage can lose its vascular resistance. This vascularization then leads to matrix breakdown, chondrocyte apoptosis, and ossification. Research has shown that articular cartilage inflammation leads to compromised joint function and decreased clinical potential for regeneration. Unfortunately, few articles comprehensively summarize what we have learned from previous investigations. In this review, we summarize our current understanding of the factors that stabilize chondrocytes to prevent terminal differentiation and applications of these factors to rescue the cartilage phenotype during cartilage engineering and osteoarthritis treatment. Inhibiting vascularization will allow for enhanced phenotypic stability so that we are able to develop more stable implants for cartilage repair and regeneration.
Collapse
|
31
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
32
|
Xie Y, Zhang J, Jin W, Tian R, Wang R. Role of Thrombospondin‑1 in sepsis‑induced myocardial injury. Mol Med Rep 2021; 24:869. [PMID: 34698361 DOI: 10.3892/mmr.2021.12509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2021] [Indexed: 11/05/2022] Open
Abstract
Sepsis often causes myocardial injury with a high mortality. The aim of the present study was to investigate the effects of thrombospondin‑1 (THBS1) on myocardial cell injury, oxi‑dative stress and apoptosis in sepsis. The expression of THBS1 mRNA in lipopolysaccharide (LPS)‑induced mouse primary cardiomyocytes was detected by reverse transcription‑quantitative PCR (RT‑qPCR). A eukaryotic small interfering (si)RNA expression vector was constructed and transfected into myocardial cells to knockdown THBS1 mRNA expression, which was confirmed by RT‑qPCR. Four in vitro experimental groups were used: i) Control, ii) LPS, iii) THBS1 siRNA (siTHBS1) and iv) siTHBS + LPS. ELISA was used to detect cardiac troponin I (cTnI), pro‑brain natriuretic peptide (proBNP), reactive oxygen species (ROS), caspase‑3, IL‑6 and TNF‑α. In vivo mouse sepsis models were also established, and H&E, TUNEL and caspase‑3 staining were used to evaluate myocardial cell injury and apoptosis. Clinical samples were collected to analyze the serum THBS1 levels and to associate this with the prognosis of patients with sepsis‑induced myocardial injury. The expression level of THBS1 mRNA in myocardial cells induced by LPS was increased, and the serum THBS1 level in patients with myocardial injury in sepsis was also significantly increased compared with patients without sepsis‑induced myocardial injury. In the siTHBS1‑treated mice with myocardial injury, the levels of cTnI and proBNP were significantly decreased, the levels of the inflammatory cytokines IL‑6 and TNF‑α were significantly decreased, ROS were significantly decreased, caspase‑3 was significantly decreased, and myocardial cell apoptosis was also reduced, compared with the LPS group. Data from the present study suggested that THBS1 may be closely related to the biological behavior of myocardial cells and may be a therapeutic target for myocardial injury in sepsis.
Collapse
Affiliation(s)
- Yun Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Jiaxiang Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Wei Jin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Rui Tian
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P.R. China
| |
Collapse
|
33
|
Zhang S, Sharaf Eldin HE, Gu WL, Li TS. Laminin alpha-3 and thrombospondin-1 differently regulate the survival and differentiation of hepatocytes and hepatic stem cells from neonatal mice. Am J Transl Res 2021; 13:12684-12693. [PMID: 34956483 PMCID: PMC8661240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/31/2021] [Indexed: 06/14/2023]
Abstract
The aim of this study was to search and identify the extracellular matrix/adhesion molecules potentially regulating liver regeneration. By using pathway-focused PCR array, we investigated the dynamic changes in the expression of extracellular matrix and adhesion molecules in normal livers or cholestatic livers following partial hepatectomy in adult mice. To confirm the data from PCR array, we further evaluated how laminin alpha-3 and thrombospondin-1 mediate the survival and differentiation of matured hepatocytes and immature hepatic stem cells by using primarily isolated liver cells from neonatal mice. According to the different changes in the expression of extracellular matrix and adhesion molecules between normal livers and cholestatic livers, we could find a number of potential molecules involved in liver regeneration. Our in vitro evaluations indicated that laminin alpha-3 significantly increased the number of liver cells (P<0.01 vs. Control) but decreased the proportion of claudin-3-positive hepatic stem cells (P<0.05 vs. Control). In contrast, thrombospondin-1 significantly reduced cell apoptosis (P<0.05 vs. Control) and maintained the proportion of claudin-3-positive hepatic stem cells. Otherwise, the combination of laminin alpha-3 and thrombospondin-1 increased the proliferation of liver cells. Based on our data, laminin alpha-3 and trombospondin-1 differently regulate the survival and differentiation of hepatocytes and hepatic stem cells, but relevant mechanisms are required to be elucidated by further study.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People’s HospitalGuangzhou 510180, China
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Heba E Sharaf Eldin
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta UniversityEgypt
| | - Wei-Li Gu
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People’s HospitalGuangzhou 510180, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
34
|
Clinical Value of Serum Thrombospondin-2 Combined with CA19-9 in Early Diagnosis of Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:2483964. [PMID: 34659407 PMCID: PMC8516522 DOI: 10.1155/2021/2483964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Gastric cancer (GC) is a kind of common cancer worldwide. Too late in diagnosis results in poor prognosis of patients with GC. Thrombospondin-2 (THBS2) is a type of secreted protein that has been found to be a diagnostic biomarker in a variety of cancers. Our study aimed to uncover the clinical value of THBS2 in early detection for patients with gastric cancer. THBS2 was upregulated in gastric cancer tissue compared with normal tissue via analyzing data obtained from The Cancer Genome Atlas (TCGA) database. Additionally, the enzyme-linked immunosorbent assay revealed that the level of serum THBS2 and carcinoembryonic antigen, CA19-9, was higher dramatically in patients with early gastric cancer (EGC) than that in healthy control (HC) in addition to patients with benign gastric tumor (BGT), which suggested that THBS2 indeed associated with GC. Receiver operator characteristic (ROC) curve assay was conducted to demonstrate that serum THBS2 was similar to CA19-9 to distinguish patients with early gastric cancer from healthy control and patients with benign gastric tumor and that THBS2 combined with CA19-9 improved the detective performance of THBS2 for early gastric cancer. Furthermore, we applied the gene set enrichment analysis assay to analyze signaling pathways related to THBS2. We found that THBS2 positively controlled MAPK and WNT signaling pathways, which indicated that THBS2 might exert its functions via the pathway mentioned above. Thus, our study expounded that serum THBS2 could serve as a vital early diagnostic marker for patients with gastric cancer.
Collapse
|
35
|
Prognostic and Immunological Role of THBS2 in Colorectal cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1124985. [PMID: 34471634 PMCID: PMC8405306 DOI: 10.1155/2021/1124985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
Objective Thrombospondin 2 (THBS2) acts as oncogenic or tumor suppressive gene in diverse cancers. Here we studied the prognostic and immunological role of THBS2 in colorectal cancer (CRC) using bioinformatic analysis. Methods The genetic and protein expression of THBS2 in CRC were explored across several databases, including ONCOMINE, GEPIA2, TIMER 2.0, UALCAN and HPA databases. Correlation between THBS2 expression and clinical features in CRC was assessed using UALCAN tool. Prognostic analysis was performed using GEPIA2 and PrognoScan. Immune infiltration correlation with THBS2 in CRC was investigated with TIMER 2.0 and TISIDB. THBS2 binding and correlated genes were analyzed using String, GEPIA2, and TIMER 2.0. Results THBS2 was significantly higher in CRC across multiple databases. Age and histological subtype were correlated with THBS2 level. High THBS2 expression correlated with short overall and disease-free survival. THBS2 expression was positively correlated with immune infiltrates in CRC. Moreover, extracellular matrix structural constituent and organization, PI3K-Akt pathway, were involved in the functional mechanisms of THBS2. Conclusions THBS2 correlates with poor prognosis and immune infiltration in CRC. THBS2 may act as a prognostic and immunological biomarker for CRC.
Collapse
|
36
|
Wang YH, Huang TL, Chen X, Yu SX, Li W, Chen T, Li Y, Kuang YQ, Shu HF. Glioma-Derived TSP2 Promotes Excitatory Synapse Formation and Results in Hyperexcitability in the Peritumoral Cortex of Glioma. J Neuropathol Exp Neurol 2021; 80:137-149. [PMID: 33382873 DOI: 10.1093/jnen/nlaa149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Seizures are common in patients with glioma, especially low-grade glioma (LGG). However, the epileptogenic mechanisms are poorly understood. Recent evidence has indicated that abnormal excitatory synaptogenesis plays an important role in epileptogenesis. The thrombospondin (TSP) family is a key regulator of synaptogenesis. Thus, this study aimed to elucidate the role of TSP2 in epileptogenesis in glioma-related epilepsy. The expression of TSP2 was increased in tumor tissue specimens from LGG patients, and this increase may have contributed to an increase in the density of spines and excitatory synapses in the peritumoral area. A glioma cell-implanted rat model was established by stereotactic implantation of wild-type TSP2-expressing, TSP2-overexpressing or TSP2-knockout C6 cells into the neocortex. Similarly, an increase in the density of excitatory synapses was also observed in the peritumoral area of the implanted tumor. In addition, epileptiform discharges occurred in the peritumoral cortex and were positively correlated with the TSP2 level in glioma tissues. Moreover, α2δ1/Rac1 signaling was enhanced in the peritumoral region, and treatment with the α2δ1 antagonist gabapentin inhibited epileptiform discharges in the peritumoral cortex. In conclusion, glioma-derived TSP2 promotes excitatory synapse formation, probably via the α2δ1/Rac1 signaling pathway, resulting in hyperexcitability in the peritumoral cortical networks, which may provide new insight into the epileptogenic mechanisms underlying glioma-related epilepsy.
Collapse
Affiliation(s)
- Yao-Hui Wang
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tian-Lan Huang
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Chen
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Si-Xun Yu
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Wei Li
- Central Lab, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Tao Chen
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Yang Li
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Yong-Qin Kuang
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China
| | - Hai-Feng Shu
- From the Department of Neurosurgery, General Hospital of Western Theater Command of PLA, Sichuan Province, China.,College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
37
|
Chou K, Chang A, Ho C, Tsai T, Chen H, Chen P, Hwang TI. Thrombospondin-4 promotes bladder cancer cell migration and invasion via MMP2 production. J Cell Mol Med 2021; 25:6046-6055. [PMID: 34142438 PMCID: PMC8406484 DOI: 10.1111/jcmm.16463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer (BC) is the second most common urological tumour in Western countries. Approximately, 80% of patients with BC will present with non-muscle invasive bladder cancer (NMIBC), whereas a quarter will have muscle invasive disease (MIBC) at the time of BC diagnosis. However, patients with NMIBC are at risk of BC recurrence or progression into MIBC, and an MIBC prognosis is determined by the presence of progression and metastasis. Matrix metalloproteinase 2 (MMP2), a type of matrix metalloproteinase (MMP), plays a major role in tumour invasion and is well-characterized in BC prognosis. In BC, the mechanisms regulating MMP2 expression, and, in turn, promote cancer invasion, have hardly been explored. Thrombospondin-4 (THBS4/TSP4) is a matricellular glycoprotein that regulates multiple biological functions, including proliferation, angiogenesis, cell adhesion and extracellular matrix modelling. Based on the results of a meta-analysis in the Gene Expression Profiling Interactive Analysis 2 database, we observed that TSP4 expression levels were consistent with overall survival (OS) rate and BC progression, with the highest expression levels observed in the advanced stages of BC and associated with poor OS rate. In our pilot experiments, incubation with recombinant TSP4 promoted the migration and invasion in BC cells. Furthermore, MMP2 expression levels increased after recombinant TSP4 incubation. TSP4-induced-MMP2 expression and cell motility were regulated via the AKT signalling pathway. Our findings facilitate further investigation into TSP4 silencing-based therapeutic strategies for BC.
Collapse
Affiliation(s)
- Kuang‐Yu Chou
- Division of UrologyDepartment of SurgeryShin‐Kong Wu Ho‐Su Memorial HospitalTaipeiTaiwan
- Division of UrologySchool of MedicineFu‐Jen Catholic UniversityNew TaipeiTaiwan
| | - An‐Chen Chang
- Translational Medicine CenterShin‐Kong Wu Ho‐Su Memorial HospitalTaipeiTaiwan
| | - Chao‐Yen Ho
- Division of UrologyDepartment of SurgeryShin‐Kong Wu Ho‐Su Memorial HospitalTaipeiTaiwan
- School of MedicineInstitute of Traditional MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| | - Te‐Fu Tsai
- Division of UrologyDepartment of SurgeryShin‐Kong Wu Ho‐Su Memorial HospitalTaipeiTaiwan
- Division of UrologySchool of MedicineFu‐Jen Catholic UniversityNew TaipeiTaiwan
| | - Hung‐En Chen
- Division of UrologyDepartment of SurgeryShin‐Kong Wu Ho‐Su Memorial HospitalTaipeiTaiwan
| | - Po‐Chun Chen
- Translational Medicine CenterShin‐Kong Wu Ho‐Su Memorial HospitalTaipeiTaiwan
- Department of BiotechnologyCollege of Health ScienceAsia UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityTaichungTaiwan
| | - Thomas I‐Sheng Hwang
- Division of UrologyDepartment of SurgeryShin‐Kong Wu Ho‐Su Memorial HospitalTaipeiTaiwan
- Division of UrologySchool of MedicineFu‐Jen Catholic UniversityNew TaipeiTaiwan
- Department of UrologyTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
38
|
De Bem THC, Tinning H, Vasconcelos EJR, Wang D, Forde N. Endometrium On-a-Chip Reveals Insulin- and Glucose-induced Alterations in the Transcriptome and Proteomic Secretome. Endocrinology 2021; 162:6167824. [PMID: 33693651 PMCID: PMC8143652 DOI: 10.1210/endocr/bqab054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 12/28/2022]
Abstract
The molecular interactions between the maternal environment and the developing embryo are key for early pregnancy success and are influenced by factors such as maternal metabolic status. Our understanding of the mechanism(s) through which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success is, however, limited. Here we report, for the first time, the use of an endometrium-on-a-chip microfluidics approach to produce a multicellular endometrium in vitro. Isolated endometrial cells (epithelial and stromal) from the uteri of nonpregnant cows in the early luteal phase (Days 4-7) were seeded in the upper chamber of the device (epithelial cells; 4-6 × 104 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 × 104 cells/mL). Exposure of cells to different concentrations of glucose (0.5, 5.0, or 50 mM) or insulin (Vehicle, 1 or 10 ng/mL) was performed at a flow rate of 1 µL/minute for 72 hours. Quantitative differences in the cellular transcriptome and the secreted proteome of in vitro-derived uterine luminal fluid were determined by RNA-sequencing and tandem mass tagging mass spectrometry, respectively. High glucose concentrations altered 21 and 191 protein-coding genes in epithelial and stromal cells, respectively (P < .05), with a dose-dependent quantitative change in the protein secretome (1 and 23 proteins). Altering insulin concentrations resulted in limited transcriptional changes including transcripts for insulin-like binding proteins that were cell specific but altered the quantitative secretion of 196 proteins. These findings highlight 1 potential mechanism by which changes to maternal glucose and insulin alter uterine function.
Collapse
Affiliation(s)
- Tiago H C De Bem
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- LeedsOmics, University of Leeds, Leeds, UK
- Correspondence: Niamh Forde, PhD, University of Leeds, LIGHT Laboratories, Clarendon Way, LS2 9JT, Leeds, UK.
| |
Collapse
|
39
|
Patil K, Hinduja I, Mukherjee S. Alteration in angiogenic potential of granulosa-lutein cells and follicular fluid contributes to luteal defects in polycystic ovary syndrome. Hum Reprod 2021; 36:1052-1064. [PMID: 33377483 DOI: 10.1093/humrep/deaa351] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Is angiogenic potential of follicular fluid (FF) and granulosa-lutein cells (GLCs) altered in polycystic ovary syndrome (PCOS) and does it play a role in corpus luteum (CL) defect observed in them? SUMMARY ANSWER FF and GLCs of women with PCOS show reduced expression of pro-angiogenic factors compared to controls and exhibit a diminished capacity to induce angiogenesis. WHAT IS KNOWN ALREADY In women with PCOS, CL insufficiency and frequent miscarriage are reported, which may be due to defect in CL. The development of new blood vessels is essential to promote ovarian folliculogenesis and functional CL formation. The vasculature formation in CL which is important for its function is still unexplored in these women. STUDY DESIGN, SIZE, DURATION This case-control study was conducted in 30 healthy control women and 30 women with PCOS undergoing controlled ovarian hyperstimulation for IVF. The FF, GLCs and serum were collected from all participants during ovum pick up. PARTICIPANTS/MATERIALS, SETTING, METHODS The capacity of FF to induce angiogenesis was assessed by measuring levels of pro-angiogenic factors vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) and its tube formation and wound healing potential using human umbilical vein endothelial cells (HUVECs). We investigated the angiogenic potential and endothelial cell-like nature of GLCs using several approaches such as the expression of angiogenic genes by quantitative PCR, DiI-conjugated acetylated low-density lipoproteins (Dil-Ac-LDL) internalization assay, tube formation assay, expression of endothelial cell markers by immunofluorescence analysis. In addition, correlation of transcript levels of angiogenic genes with oocyte parameters was studied. MAIN RESULTS AND THE ROLE OF CHANCE FF and serum levels of VEGF and FGF2 were significantly higher and lower, respectively, in PCOS compared to controls. The tube formation and wound healing capacity of HUVECs was found to be reduced when measured after supplementation with FF of women with PCOS compared to controls. This suggests a decreased angiogenic capacity of FF in women with PCOS. Tube formation (P = 0.003) and Dil-Ac-LDL internalization (P = 0.03) ability of GLCs were significantly reduced in women with PCOS compared to controls. Protein expression levels of endothelial markers, vascular endothelial growth factor A (VEGFA) (P = 0.004), vascular endothelial growth factor receptor 2 (VEGFR2) (P = 0.011), TEK Receptor Tyrosine Kinase (Tie-2) (P = 0.026), fibroblast growth factor receptor 1 (FGFR1) (P = 0.026) and CD31 (P = 0.035) and transcript levels of angiogenic genes VEGFA (P = 0.042), hypoxia inducing factor 1A (HIF1A) (P = 0.025), FGF2 (P = 0.038), angiopoietin 1 (ANGPT1) (P = 0.028), heparin sulfate proteoglycan 2 (HSPG2) (P = 0.016), ADAM metallopeptidase with thrombospondin type1 motif, 1 (ADAMTS1) (P = 0.027) and fibronectin 1 (FN1) (P = 0.016) were found to be low in GLCs of PCOS compared to controls. Thus, the findings of this study indicate that endothelial cell-like characteristics of GLCs were significantly decreased in PCOS. Furthermore, transcript levels of VEGFA (r = 0.46, P = 0.009), ADAMTS1 (r = 0.55, P = 0.001), FGF2 (r = 0.42, P = 0.022) and ANGPT2 (r = 0.47, P = 0.008) showed a positive correlation with oocyte fertilization rate. LIMITATIONS, REASONS FOR CAUTION The vasculature formation in CL is not possible to study in women, but we explored the angiogenic characteristics of FF and GLC obtained from women with PCOS to speculate any vascularization defect of CL in these women. The FF and GLCs were obtained from the stimulated cycle during oocyte retrieval, which may not exactly mimic the in-vivo condition. The small sample size is another limitation of this study. Larger sample size and support by color Doppler studies on CL blood flow would help to strengthen our findings. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest that the altered angiogenic potential of FF and GLCs may affect vasculature development required for CL formation and function in PCOS. These findings pave the way to devise therapeutic strategies to support angiogenesis process in follicle of women with PCOS, which may improve CL insufficiency, progesterone levels and prevent frequent miscarriages in these women. Furthermore, our study also hypothesizes that the vascularization around the ovarian follicles is also compromised which may lead to the growth arrest of the follicles in PCOS, however, this needs thorough investigations. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Grant BT/PR16524/MED/97/346/2016 from the Department of Biotechnology, Government of India. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Krutika Patil
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| | - Indira Hinduja
- Hinduja IVF Centre, P.D. Hinduja National Hospital and Medical Research Centre, Mumbai 400016, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India
| |
Collapse
|
40
|
Rani V, Prabhu A. Combining Angiogenesis Inhibitors with Radiation: Advances and Challenges in Cancer Treatment. Curr Pharm Des 2021; 27:919-931. [PMID: 33006535 DOI: 10.2174/1381612826666201002145454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radiation therapy is a widely employed modality that is used to destroy cancer cells, but it also tends to induce changes in the tumor microenvironment and promote angiogenesis. Radiation, when used as a sole means of therapeutic approach to treat cancer, tends to trigger the angiogenic pathways, leading to the upregulation of several angiogenic growth factors such as VEGF, bFGF, PDGF and angiogenin. This uncontrolled angiogenesis leads to certain angiogenic disorders like vascular outgrowth and an increase in tumor progression that can pose a serious threat to patients. OBJECTIVE This review emphasizes on various components of the tumor microenvironment, angiogenic growth factors and biological effects of radiation on tumors in provoking the relapse. It also describes the angiogenic mechanisms that trigger the tumor relapse after radiation therapy and how angiogenesis inhibitors can help in overcoming this phenomenon. It gives an overview of various angiogenesis inhibitors in pre-clinical as well as in clinical trials. CONCLUSION The review focuses on the beneficial effects of the combinatorial therapeutic approach of anti-angiogenesis therapy and radiation in tumor management.
Collapse
Affiliation(s)
- Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka, India
| |
Collapse
|
41
|
Anti-Angiogenic Therapy: Current Challenges and Future Perspectives. Int J Mol Sci 2021; 22:ijms22073765. [PMID: 33916438 PMCID: PMC8038573 DOI: 10.3390/ijms22073765] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Anti-angiogenic therapy is an old method to fight cancer that aims to abolish the nutrient and oxygen supply to the tumor cells through the decrease of the vascular network and the avoidance of new blood vessels formation. Most of the anti-angiogenic agents approved for cancer treatment rely on targeting vascular endothelial growth factor (VEGF) actions, as VEGF signaling is considered the main angiogenesis promotor. In addition to the control of angiogenesis, these drugs can potentiate immune therapy as VEGF also exhibits immunosuppressive functions. Despite the mechanistic rational that strongly supports the benefit of drugs to stop cancer progression, they revealed to be insufficient in most cases. We hypothesize that the rehabilitation of old drugs that interfere with mechanisms of angiogenesis related to tumor microenvironment might represent a promising strategy. In this review, we deepened research on the molecular mechanisms underlying anti-angiogenic strategies and their failure and went further into the alternative mechanisms that impact angiogenesis. We concluded that the combinatory targeting of alternative effectors of angiogenic pathways might be a putative solution for anti-angiogenic therapies.
Collapse
|
42
|
Zou S, Li J, Yan J, Xu J, Lin M, Cao D. Distribution of serum Thrombospondin-2, a novel tumor marker, in general population and cancer patients in China. Clin Chim Acta 2021; 518:123-127. [PMID: 33794141 DOI: 10.1016/j.cca.2021.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Distribution of serum thrombospondin-2 in general population and cancer patients in China have not been reported. METHODS This study evaluated the expression level of serum thrombospondin-2 in general population and various cancer patients, the 95% confidence interval was used for the derivation of reference range. The comparison of the expression levels in controls for age and gender was performed. The associations between candidate biomarkers (thrombospondin-2 [THBS2]) expression and tumor metastasis status were also explored. RESULTS 125 healthy controls and 193 various cancer patients were enrolled. The mean ± SD in serum THBS2 levels in general population was 42.37 ± 12.24 ng/ml, there was no significant sex and age difference, the reference range is 18.37-66.36 ng/ml. Most cancer patients present a decreased serum THBS2 level except hepatoma and lymphoma which most patients showed a relatively high level of THBS2. There was no statistical difference of serum THBS2 level between metastasis and non-metastasis group in breast, lung, cervical, colorectal cancer, nasopharyngeal carcinoma and hepatoma (P > 0.05) while a significant negative correlation was observed in ovarian cancer (P = 0.0209). CONCLUSIONS The distribution of serum THBS2 displayed an obvious heterogeneity among various cancers comparing to health controls, ovarian cancer patients detected with low THBS2 expression may be more prone to develop metastasis in China.
Collapse
Affiliation(s)
- Seyin Zou
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Jie Li
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Junping Yan
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jinhong Xu
- Guangdong Medical University, Guangdong 523000, China
| | - Maorui Lin
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
43
|
Extracellular Vesicle-Derived microRNAs of Human Wharton's Jelly Mesenchymal Stromal Cells May Activate Endogenous VEGF-A to Promote Angiogenesis. Int J Mol Sci 2021; 22:ijms22042045. [PMID: 33669517 PMCID: PMC7922033 DOI: 10.3390/ijms22042045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Despite low levels of vascular endothelial growth factor (VEGF)-A, the secretome of human Wharton’s jelly (WJ) mesenchymal stromal cells (MSCs) effectively promoted proangiogenic responses in vitro, which were impaired upon the depletion of small (~140 nm) extracellular vesicles (EVs). The isolated EVs shared the low VEGF-A profile of the secretome and expressed five microRNAs, which were upregulated compared to fetal dermal MSC-derived EVs. These upregulated microRNAs exclusively targeted the VEGF-A gene within 54 Gene Ontology (GO) biological processes, 18 of which are associated with angiogenesis. Moreover, 15 microRNAs of WJ-MSC-derived EVs were highly expressed (Ct value ≤ 26) and exclusively targeted the thrombospondin 1 (THBS1) gene within 75 GO biological processes, 30 of which are associated with the regulation of tissue repair. The relationship between predicted microRNA target genes and WJ-MSC-derived EVs was shown by treating human umbilical-vein endothelial cells (HUVECs) with appropriate doses of EVs. The exposure of HUVECs to EVs for 72 h significantly enhanced the release of VEGF-A and THBS1 protein expression compared to untreated control cells. Finally, WJ-MSC-derived EVs stimulated in vitro tube formation along with the migration and proliferation of HUVECs. Our findings can contribute to a better understanding of the molecular mechanisms underlying the proangiogenic responses induced by human umbilical cord-derived MSCs, suggesting a key regulatory role for microRNAs delivered by EVs.
Collapse
|
44
|
Hu W, Liu Z, Salato V, North PE, Bischoff J, Kumar SN, Fang Z, Rajan S, Hussain MM, Miao QR. NOGOB receptor-mediated RAS signaling pathway is a target for suppressing proliferating hemangioma. JCI Insight 2021; 6:142299. [PMID: 33400686 PMCID: PMC7934876 DOI: 10.1172/jci.insight.142299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022] Open
Abstract
Infantile hemangioma is a vascular tumor characterized by the rapid growth of disorganized blood vessels followed by slow spontaneous involution. The underlying molecular mechanisms that regulate hemangioma proliferation and involution still are not well elucidated. Our previous studies reported that NOGOB receptor (NGBR), a transmembrane protein, is required for the translocation of prenylated RAS from the cytosol to the plasma membrane and promotes RAS activation. Here, we show that NGBR was highly expressed in the proliferating phase of infantile hemangioma, but its expression decreased in the involuting phase, suggesting that NGBR may have been involved in regulating the growth of proliferating hemangioma. Moreover, we demonstrate that NGBR knockdown in hemangioma stem cells (HemSCs) attenuated growth factor-stimulated RAS activation and diminished the migration and proliferation of HemSCs, which is consistent with the effects of RAS knockdown in HemSCs. In vivo differentiation assay further shows that NGBR knockdown inhibited blood vessel formation and adipocyte differentiation of HemSCs in immunodeficient mice. Our data suggest that NGBR served as a RAS modulator in controlling the growth and differentiation of HemSCs.
Collapse
Affiliation(s)
- Wenquan Hu
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhong Liu
- Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Valerie Salato
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paula E North
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Suresh N Kumar
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhi Fang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sujith Rajan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Qing R Miao
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
45
|
Bioinformatics analysis identifies COL1A1, THBS2 and SPP1 as potential predictors of patient prognosis and immunotherapy response in gastric cancer. Biosci Rep 2021; 41:227392. [PMID: 33345281 PMCID: PMC7796188 DOI: 10.1042/bsr20202564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The present study aimed to use bioinformatics tools to explore pivotal genes associated with the occurrence of gastric cancer (GC) and assess their prognostic significance, and link with clinicopathological parameters. We also investigated the predictive role of COL1A1, THBS2, and SPP1 in immunotherapy. Materials and methods: We identified differential genes (DEGs) that were up- and down-regulated in the three datasets (GSE26942, GSE13911, and GSE118916) and created protein–protein interaction (PPI) networks from the overlapping DEGs. We then investigated the potential functions of the hub genes in cancer prognosis using PPI networks, and explored the influence of such genes in the immune environment. Results: Overall, 268 overlapping DEGs were identified, of which 230 were up-regulated and 38 were down-regulated. CytoHubba selected the top ten hub genes, which included SPP1, TIMP1, SERPINE1, MMP3, COL1A1, BGN, THBS2, CDH2, CXCL8, and THY1. With the exception of SPP1, survival analysis using the Kaplan–Meier database showed that the levels of expression of these genes were associated with overall survival. Genes in the most dominant module explored by MCODE, COL1A1, THBS2, and SPP1, were primarily enriched for two KEGG pathways. Further analysis showed that all three genes could influence clinicopathological parameters and immune microenvironment, and there was a significant correlation between COL1A1, THBS2, SPP1, and PD-L1 expression, thus indicating a potential predictive role for GC response to immunotherapy. Conclusion: ECM–receptor interactions and focal adhesion pathways are of great significance in the progression of GC. COL1A1, THBS2, and SPP1 may help predict immunotherapy response in GC patients.
Collapse
|
46
|
Sung PH, Chiang HJ, Li YC, Chiang JY, Chu CH, Shao PL, Lee FY, Lee MS, Yip HK. Baseline factors identified for the prediction of good responders in patients with end-stage diffuse coronary artery disease undergoing intracoronary CD34+ cell therapy. Stem Cell Res Ther 2020; 11:324. [PMID: 32727585 PMCID: PMC7391819 DOI: 10.1186/s13287-020-01835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Treating patients with end-stage diffuse coronary artery disease (EnD-CAD) unsuitable for coronary intervention remains a clinical challenge. They usually express refractory angina and have a high risk of mortality. Although growing data have indicated cell therapy is an alternative solution to medical or invasive therapy, there are still lacking useful markers to predict whether heart function will improve in the EnD-CAD patients who underwent circulatory-derived CD34+ cell therapy. By utilizing the baseline variables and results from our previous phase I/II clinical trials, the aim of this study tried to elucidate the variables predictive of the “good response” to CD34+ cell therapy. Methods This retrospective study included 38 patients in phase I clinical trial (2011–2014), and 30 patients in phase II clinical trial (2013–2017). These patients were categorized into “good responders” and “non-responders” according to their 1-year improvement of LVEF ≥ 7.0% or < 7.0% after intracoronary CD34+ cell therapy. Univariate and multivariate logistic regression models were performed to identify potential independent predictors of a good responder to cell therapy, followed by Hosmer–Lemeshow (H-L) test for goodness of fit and prediction power. Results Among baseline data, multivariate analysis demonstrated that the history of a former smoker was independently predictive of good responders (p = 0.006). On the other hand, male gender, the baseline Canadian Cardiovascular Society angina score ≥ 3, and grades of LV diastolic dysfunction ≥ 2 were significantly negative predictors of good responders (all p < 0.01). After administration of subcutaneous granulocyte-colony stimulating factor (G-CSF), a higher post-G-CSF neutrophil count in addition to the above four baseline variables also played crucial roles in early prediction of good response to CD34+ cell therapy for EnD-CAD (all p < 0.03). The H-L test displayed a good prediction power with sensitivity 83.3%, specificity 85.3%, and accuracy 84.4%. Conclusions Using the results of our phase I/II clinical trials, previous smoking habit, female sex, lower grades of angina score, and diastolic dysfunction were identified to be independently predictive of “good response” to CD34+ cell therapy in the patients with EnD-CAD. Trial registration This is a retrospective analysis based on phase I (ISRCTN72853206) and II (ISRCTN26002902) clinical trials.
Collapse
Affiliation(s)
- Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, No. 123, Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Hsin-Ju Chiang
- Department of Obstetrics and Gynecology, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, 83301, Taiwan.,Chung Shan Medical University School of Medicine, Taichung, 40201, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, No. 123, Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chi-Hsiang Chu
- Department of Statistics, National Cheng Kung University, Tainan, 70101, Taiwan.,Institute of Statistics, National University of Kaohsiung, Kaohsiung, 80708, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - Fan-Yen Lee
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Mel S Lee
- Department of Orthopedics, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, 83301, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, No. 123, Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan. .,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan. .,Department of Nursing, Asia University, Taichung, 41354, Taiwan. .,Institute for Translational Research in Biomedicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, 83301, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Memorial Hospital, Xiamen, 361028, Fujian, China.
| |
Collapse
|
47
|
Transcriptome Sequencing to Detect the Potential Role of Long Noncoding RNAs in Salt-Sensitive Hypertensive Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2816959. [PMID: 31886193 PMCID: PMC6925802 DOI: 10.1155/2019/2816959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/18/2019] [Indexed: 01/11/2023]
Abstract
Backgrounds Long noncoding RNAs (lncRNAs) play an important role in various biological processes. However, their functions in salt-sensitive hypertension are largely unknown. In this study, the lncRNA-seq technique was employed to compare the expression profiles of lncRNAs and mRNAs in salt-sensitive hypertensive rats. Methods Blood pressure, serum sodium, and urinary creatinine were texted in salt-sensitive and salt-insensitive rats fed with different salt concentrations. High-throughput sequencing was used to detect the expression of lncRNAs and mRNA in the renal medulla of the two groups. Results Blood pressure and urinary sodium/creatinine of high-salt diets of the sensitive group were significantly higher than that in the control group. Serum sodium has no significant difference between the two groups in high-salt diets. NONRATG007131.2 and NONRATG012674.2 were the most different lncRNAs in the high salt-sensitive group. Correlation analysis reveals that Matn1, Serpinb12, Anxa8, and Hspa5 may play an important role in salt-sensitive hypertension. Conclusion This study analyzed the difference in lncRNA and mRNA between salt-sensitive and salt-insensitive rats with different salt diets by high-throughput sequencing. Salt sensitivity and salt concentration were two key factors for the induction of hypertension. We found some potential genes that play an important role in salt-sensitive hypertension.
Collapse
|
48
|
Wang J, Yu XF, Ouyang N, Zhao S, Yao H, Guan X, Tong J, Chen T, Li JX. MicroRNA and mRNA Interaction Network Regulates the Malignant Transformation of Human Bronchial Epithelial Cells Induced by Cigarette Smoke. Front Oncol 2019; 9:1029. [PMID: 31649886 PMCID: PMC6794608 DOI: 10.3389/fonc.2019.01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/23/2019] [Indexed: 12/25/2022] Open
Abstract
This study analyzes the correlation and interaction of miRNAs and mRNAs and their biological function in the malignant transformation of BEAS-2B cells induced by cigarette smoke (CS). Normal human bronchial epithelial cells (BEAS-2B) were continuously exposed to CS for 30 passages (S30) to establish an in vitro cell model of malignant transformation. The transformed cells were validated by scratch wound healing assay, transwell migration assay, colony formation and tumorigenicity assay. The miRNA and mRNA sequencing analysis were performed to identify differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) between normal BEAS-2B and S30 cells. The miRNA-seq data of lung cancer with corresponding clinical data obtained from TCGA was used to further identify lung cancer-related DEMs and their correlations with smoking history. The target genes of these DEMs were predicted using the miRDB database, and their functions were analyzed using the online tool “Metascape.” It was found that the migration ability, colony formation rate and tumorigenicity of S30 cells enhanced. A total of 42 miRNAs and 753 mRNAs were dysregulated in S30 cells. The change of expression of top five DEGs and DEMs were consistent with our sequencing results. Among these DEMs, eight miRNAs were found dysregulated in lung cancer tissues based on TCGA data. In these eight miRNAs, six of them including miR-96-5p, miR-93-5p, miR-106-5p, miR-190a-5p, miR-195-5p, and miR-1-3p, were found to be associated with smoking history. Several DEGs, including THBS1, FN1, PIK3R1, CSF1, CORO2B, and PREX1, were involved in many biological processes by enrichment analysis of miRNA and mRNA interaction. We identified the negatively regulated miRNA-mRNA pairs in the CS-induced lung cancer, which were implicated in several cancer-related (especially EMT-related) biological process and KEGG pathways in the malignant transformation progress of lung cells induced by CS. Our result demonstrated the dysregulation of miRNA-mRNA profiles in cigarette smoke-induced malignant transformed cells, suggesting that these miRNAs might contribute to cigarette smoke-induced lung cancer. These genes may serve as biomarkers for predicting lung cancer pathogenesis and progression. They can also be targets of novel anticancer drug development.
Collapse
Affiliation(s)
- Jin Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiao-Fan Yu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Nan Ouyang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shiyu Zhao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Haiping Yao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xifei Guan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tao Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jian-Xiang Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
49
|
McQuilling JP, Burnette M, Kimmerling KA, Kammer M, Mowry KC. A mechanistic evaluation of the angiogenic properties of a dehydrated amnion chorion membrane in vitro and in vivo. Wound Repair Regen 2019; 27:609-621. [PMID: 31425636 PMCID: PMC6900065 DOI: 10.1111/wrr.12757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/10/2019] [Indexed: 12/20/2022]
Abstract
Angiogenesis is essential for the successful repair of tissues; however, in many chronic conditions, angiogenesis is inhibited. Placental tissues have been shown to illicit an angiogenic response both in vitro and in vivo, and the angiogenic properties of these tissues likely contribute to observed clinical outcomes. Although there is some work describing the angiogenic effects of these tissues, comparatively little has been done to determine the possible mechanisms responsible for this effect. The purpose of this study was to conduct a thorough evaluation of a commercially available dehydrated amnion chorion membrane to better understand how these tissues may promote angiogenesis. The proteomic content of this tissue was evaluated using a high throughput proteomic microarray, and then the effects of these grafts were evaluated in vivo using subcutaneous gelfoam sponge implants containing conditioned media (CM) from the graft. Human microvascular endothelial cells were then used to determine how released factors effect migration, proliferation, gene expression, and protein production in vitro. Finally, to elucidate potential signaling‐pathways through which tissue‐derived factors act to induce pro‐angiogenetic phenotypes in endothelial cells in vitro, we performed a global analysis of both serine/threonine and tyrosine kinase activity. Kinomic and proteomic data were then combined to generate protein–protein interaction networks that enabled the identification of multiple growth factors and cytokines with both pro‐ and anti‐angiogenetic properties. In vivo, the addition of CM resulted in increased CD31 and αSMA staining and increases in pro‐angiogenic gene expression. In vitro, CM resulted in significant increases in endothelial proliferation, migration, and the expression of granulocyte‐macrophage colony‐stimulating factor, hepatocyte growth factor, and transforming growth factor beta‐3. Integrated kinomic analysis implicated ERK1/2 signaling as the primary pathway activated following culture of endothelial cells with dehydrated amnion/chorion membrane (dACM) CM. In conclusion, dACM grafts triggered pro‐angiogenic responses both in vitro and in vivo that are likely at least partially mediated by ERK1/2 signaling.
Collapse
Affiliation(s)
- John P McQuilling
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Miranda Burnette
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Kelly A Kimmerling
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - MaryRose Kammer
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| | - Katie C Mowry
- Research and Development, Organogenesis, 2641 Rock Ridge Lane Birmingham, Alabama, 35216
| |
Collapse
|
50
|
Hettiarachchi GK, Katneni UK, Hunt RC, Kames JM, Athey JC, Bar H, Sauna ZE, McGill JR, Ibla JC, Kimchi-Sarfaty C. Translational and transcriptional responses in human primary hepatocytes under hypoxia. Am J Physiol Gastrointest Liver Physiol 2019; 316:G720-G734. [PMID: 30920299 PMCID: PMC6620582 DOI: 10.1152/ajpgi.00331.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The liver is the primary source of a large number of plasma proteins and plays a critical role in multiple biological processes. Inadequate oxygen supply characterizing various clinical settings such as liver transplantation exposes the liver to hypoxic conditions. Studies assessing hypoxia-induced global translational changes in liver are lacking. Here, we employed a recently developed ribosome-profiling technique to assess global translational responses of human primary hepatocytes exposed to acute hypoxic stress (1% O2) for the short term. In parallel, transcriptome profiling was performed to assess mRNA expression changes. We found that translational responses appeared earlier and were predominant over transcriptional responses. A significant decrease in translational efficiency of several ribosome genes indicated translational inhibition of new ribosome protein synthesis in hypoxia. Pathway enrichment analysis highlighted altered translational regulation of MAPK signaling, drug metabolism, oxidative phosphorylation, and nonalcoholic fatty liver disease pathways. Gene Ontology enrichment analysis revealed terms related to translation, metabolism, angiogenesis, apoptosis, and response to stress. Transcriptional induction of genes encoding heat shock proteins was observed within 30 min of hypoxia. Induction of genes encoding stress response mediators, metabolism regulators, and proangiogenic proteins was observed at 240 min. Despite the liver being the primary source of coagulation proteins and the implicated role of hypoxia in thrombosis, limited differences were observed in genes encoding coagulation-associated proteins. Overall, our study demonstrates the predominance of translational regulation over transcription and highlights differentially regulated pathways or biological processes in short-term hypoxic stress responses of human primary hepatocytes. NEW & NOTEWORTHY The novelty of this study lies in applying parallel ribosome- and transcriptome-profiling analyses to human primary hepatocytes in hypoxia. To our knowledge, this is the first study to assess global translational responses using ribosome profiling in hypoxic hepatocytes. Our results demonstrate the predominance of translational responses over transcriptional responses in early hepatic hypoxic stress responses. Furthermore, our study reveals multiple pathways and specific genes showing altered regulation in hypoxic hepatocytes.
Collapse
Affiliation(s)
- Gaya K. Hettiarachchi
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Upendra K. Katneni
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Ryan C. Hunt
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Jacob M. Kames
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - John C. Athey
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Haim Bar
- 2Department of Statistics, University of Connecticut, Storrs, Connecticut
| | - Zuben E. Sauna
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Joseph R. McGill
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Juan C. Ibla
- 3Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chava Kimchi-Sarfaty
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|