1
|
Lerch BA, Servedio MR. Predation drives complex eco-evolutionary dynamics in sexually selected traits. PLoS Biol 2023; 21:e3002059. [PMID: 37011094 PMCID: PMC10101644 DOI: 10.1371/journal.pbio.3002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/13/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
Predation plays a role in preventing the evolution of ever more complicated sexual displays, because such displays often increase an individual's predation risk. Sexual selection theory, however, omits a key feature of predation in modeling costs to sexually selected traits: Predation is density dependent. As a result of this density dependence, predator-prey dynamics should feed back into the evolution of sexual displays, which, in turn, feeds back into predator-prey dynamics. Here, we develop both population and quantitative genetic models of sexual selection that explicitly link the evolution of sexual displays with predator-prey dynamics. Our primary result is that predation can drive eco-evolutionary cycles in sexually selected traits. We also show that mechanistically modeling the cost to sexual displays as predation leads to novel outcomes such as the maintenance of polymorphism in sexual displays and alters ecological dynamics by muting prey cycles. These results suggest predation as a potential mechanism to maintain variation in sexual displays and underscore that short-term studies of sexual display evolution may not accurately predict long-run dynamics. Further, they demonstrate that a common verbal model (that predation limits sexual displays) with widespread empirical support can result in unappreciated, complex dynamics due to the density-dependent nature of predation.
Collapse
Affiliation(s)
- Brian A Lerch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Maria R Servedio
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
2
|
Grunert K, Holden H, Jakobsen ER, Stenseth NC. Evolutionarily stable strategies in stable and periodically fluctuating populations: The Rosenzweig-MacArthur predator-prey model. Proc Natl Acad Sci U S A 2021; 118:e2017463118. [PMID: 33479183 PMCID: PMC7848735 DOI: 10.1073/pnas.2017463118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An evolutionarily stable strategy (ESS) is an evolutionary strategy that, if adapted by a population, cannot be invaded by any deviating (mutant) strategy. The concept of ESS has been extensively studied and widely applied in ecology and evolutionary biology [M. Smith, On Evolution (1972)] but typically on the assumption that the system is ecologically stable. With reference to a Rosenzweig-MacArthur predator-prey model [M. Rosenzweig, R. MacArthur, Am. Nat. 97, 209-223 (1963)], we derive the mathematical conditions for the existence of an ESS when the ecological dynamics have asymptotically stable limit points as well as limit cycles. By extending the framework of Reed and Stenseth [J. Reed, N. C. Stenseth, J. Theoret. Biol. 108, 491-508 (1984)], we find that ESSs occur at values of the evolutionary strategies that are local optima of certain functions of the model parameters. These functions are identified and shown to have a similar form for both stable and fluctuating populations. We illustrate these results with a concrete example.
Collapse
Affiliation(s)
- Katrin Grunert
- Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Helge Holden
- Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Espen R Jakobsen
- Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway;
- Centre for Biodiversity Dynamics, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
3
|
Cortez MH, Yamamichi M. How (co)evolution alters predator responses to increased mortality: extinction thresholds and hydra effects. Ecology 2019; 100:e02789. [PMID: 31298734 DOI: 10.1002/ecy.2789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/12/2019] [Accepted: 05/28/2019] [Indexed: 11/07/2022]
Abstract
Population responses to environmental change depend on both the ecological interactions between species and the evolutionary responses of all species. In this study, we explore how evolution in prey, predators, or both species affect the responses of predator populations to a sustained increase in mortality. We use an eco-evolutionary predator-prey model to explore how evolution alters the predator extinction threshold (defined as the minimum mortality rate that prevents population growth at low predator densities) and predator hydra effects (increased predator abundance in response to increased mortality). Our analysis identifies how evolutionary responses of prey and predators individually affect the predator extinction threshold and hydra effects, and how those effects are altered by interactions between the evolutionary responses. Based on our theoretical results, we predict that it is common in natural systems for evolutionary responses in one or both species to allow predators to persist at higher mortality rates than would be possible in the absence of evolution (i.e., evolution increases the predator mortality extinction threshold). We also predict that evolution-driven hydra effects occur in a minority of natural systems, but are not rare. We revisited published eco-evolutionary models and found that evolution causes hydra effects and increases the predator extinction threshold in many studies, but those effects have been overlooked. We discuss the implications of these results for species conservation, predicting population responses to environmental change, and the possibility of evolutionary rescue.
Collapse
Affiliation(s)
- Michael H Cortez
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306-4295, USA
| | - Masato Yamamichi
- Department of General Systems Studies, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
4
|
van Velzen E, Gaedke U. Reversed predator-prey cycles are driven by the amplitude of prey oscillations. Ecol Evol 2018; 8:6317-6329. [PMID: 29988457 PMCID: PMC6024131 DOI: 10.1002/ece3.4184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 01/09/2023] Open
Abstract
Ecoevolutionary feedbacks in predator-prey systems have been shown to qualitatively alter predator-prey dynamics. As a striking example, defense-offense coevolution can reverse predator-prey cycles, so predator peaks precede prey peaks rather than vice versa. However, this has only rarely been shown in either model studies or empirical systems. Here, we investigate whether this rarity is a fundamental feature of reversed cycles by exploring under which conditions they should be found. For this, we first identify potential conditions and parameter ranges most likely to result in reversed cycles by developing a new measure, the effective prey biomass, which combines prey biomass with prey and predator traits, and represents the prey biomass as perceived by the predator. We show that predator dynamics always follow the dynamics of the effective prey biomass with a classic ¼-phase lag. From this key insight, it follows that in reversed cycles (i.e., ¾-lag), the dynamics of the actual and the effective prey biomass must be in antiphase with each other, that is, the effective prey biomass must be highest when actual prey biomass is lowest, and vice versa. Based on this, we predict that reversed cycles should be found mainly when oscillations in actual prey biomass are small and thus have limited impact on the dynamics of the effective prey biomass, which are mainly driven by trait changes. We then confirm this prediction using numerical simulations of a coevolutionary predator-prey system, varying the amplitude of the oscillations in prey biomass: Reversed cycles are consistently associated with regions of parameter space leading to small-amplitude prey oscillations, offering a specific and highly testable prediction for conditions under which reversed cycles should occur in natural systems.
Collapse
Affiliation(s)
- Ellen van Velzen
- Department of Ecology and Ecosystem ModellingInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Ursula Gaedke
- Department of Ecology and Ecosystem ModellingInstitute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
5
|
Cortez MH. Genetic variation determines which feedbacks drive and alter predator-prey eco-evolutionary cycles. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michael H. Cortez
- Department of Mathematics and Statistics; Utah State University; Logan Utah 84322 USA
| |
Collapse
|
6
|
Hiltunen T, Kaitala V, Laakso J, Becks L. Evolutionary contribution to coexistence of competitors in microbial food webs. Proc Biol Sci 2018; 284:rspb.2017.0415. [PMID: 29021178 DOI: 10.1098/rspb.2017.0415] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/08/2017] [Indexed: 11/12/2022] Open
Abstract
The theory of species coexistence is a key concept in ecology that has received much attention. The role of rapid evolution for determining species coexistence is still poorly understood although evolutionary change on ecological time-scales has the potential to change almost any ecological process. The influence of evolution on coexistence can be especially pronounced in microbial communities where organisms often have large population sizes and short generation times. Previous work on coexistence has assumed that traits involved in resource use and species interactions are constant or change very slowly in terms of ecological time-scales. However, recent work suggests that these traits can evolve rapidly. Nevertheless, the importance of rapid evolution to coexistence has not been tested experimentally. Here, we show how rapid evolution alters the frequency of two bacterial competitors over time when grown together with specialist consumers (bacteriophages), a generalist consumer (protozoan) and all in combination. We find that consumers facilitate coexistence in a manner consistent with classic ecological theory. However, through disentangling the relative contributions of ecology (changes in consumer abundance) and evolution (changes in traits mediating species interactions) on the frequency of the two competitors over time, we find differences between the consumer types and combinations. Overall, our results indicate that the influence of evolution on species coexistence strongly depends on the traits and species interactions considered.
Collapse
Affiliation(s)
- Teppo Hiltunen
- Department of Food and Environmental Sciences/Microbiology and Biotechnology, University of Helsinki, P.O. Box 56, Helsinki 00014, Finland
| | - Veijo Kaitala
- Department of Biosciences/Ecology and Evolutionary biology, University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Jouni Laakso
- Department of Biosciences/Ecology and Evolutionary biology, University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Lutz Becks
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Community Dynamics Group, August Thienemann Str. 2, 24306 Plön, Germany
| |
Collapse
|
7
|
Patel S, Cortez MH, Schreiber SJ. Partitioning the Effects of Eco-Evolutionary Feedbacks on Community Stability. Am Nat 2018. [DOI: 10.1086/695834] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Disentangling eco-evolutionary dynamics of predator-prey coevolution: the case of antiphase cycles. Sci Rep 2017; 7:17125. [PMID: 29215005 PMCID: PMC5719453 DOI: 10.1038/s41598-017-17019-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022] Open
Abstract
The impact of rapid predator-prey coevolution on predator-prey dynamics remains poorly understood, as previous modelling studies have given rise to contradictory conclusions and predictions. Interpreting and reconciling these contradictions has been challenging due to the inherent complexity of model dynamics, defying mathematical analysis and mechanistic understanding. We develop a new approach here, based on the Geber method for deconstructing eco-evolutionary dynamics, for gaining such understanding. We apply this approach to a co-evolutionary predator-prey model to disentangle the processes leading to either antiphase or ¼-lag cycles. Our analysis reveals how the predator-prey phase relationship is driven by the temporal synchronization between prey biomass and defense dynamics. We further show when and how prey biomass and trait dynamics become synchronized, resulting in antiphase cycles, allowing us to explain and reconcile previous modelling and empirical predictions. The successful application of our proposed approach provides an important step towards a comprehensive theory on eco-evolutionary feedbacks in predator-prey systems.
Collapse
|
9
|
Cortez MH, Patel S. The Effects of Predator Evolution and Genetic Variation on Predator–Prey Population-Level Dynamics. Bull Math Biol 2017. [DOI: 10.1007/s11538-017-0297-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhao XF, Hao YQ, Zhang QG. Stability of A Coevolving Host-parasite System Peaks at Intermediate Productivity. PLoS One 2017; 12:e0168560. [PMID: 28076419 PMCID: PMC5226335 DOI: 10.1371/journal.pone.0168560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/02/2016] [Indexed: 11/18/2022] Open
Abstract
Habitat productivity may affect the stability of consumer-resource systems, through both ecological and evolutionary mechanisms. We hypothesize that coevolving consumer-resource systems show more stable dynamics at intermediate resource availability, while very low-level resource supply cannot support sufficiently large populations of resource and consumer species to avoid stochastic extinction, and extremely resource-rich environments may promote escalatory arms-race-like coevolution that can cause strong fluctuations in species abundance and even extinction of one or both trophic levels. We tested these ideas by carrying out an experimental evolution study with a model bacterium-phage system (Pseudomonas fluorescens SBW25 and its phage SBW25Φ2). Consistent with our hypothesis, this system was most stable at intermediate resource supply (fewer extinction events and smaller magnitude of population fluctuation). In our experiment, the rate of coevolution between bacterial resistance and phage infectivity was correlated with the magnitude of population fluctuation, which may explain the different in stability between levels of resource supply. Crucially, our results are consistent with a suggestion that, among the two major modes of antagonistic coevolution, arms race is more likely than fluctuation selection dynamics to cause extinction events in consumer-resource systems. This study suggests an important role of environment-dependent coevolutionary dynamics for the stability of consumer-resource species systems, therefore highlights the importance to consider contemporaneous evolutionary dynamics when studying the stability of ecosystems, particularly those under environmental changes.
Collapse
Affiliation(s)
- Xin-Feng Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| | - Yi-Qi Hao
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Cortez MH. How the Magnitude of Prey Genetic Variation Alters Predator-Prey Eco-Evolutionary Dynamics. Am Nat 2016; 188:329-41. [DOI: 10.1086/687393] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|