1
|
Ranjan A, Arora J, Chauhan A, Basniwal RK, Kumari A, Rajput VD, Prazdnova EV, Ghosh A, Mukerjee N, Mandzhieva SS, Sushkova S, Minkina T, Jindal T. Advances in characterization of probiotics and challenges in industrial application. Biotechnol Genet Eng Rev 2024; 40:3226-3269. [PMID: 36200338 DOI: 10.1080/02648725.2022.2122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, India
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, New South Wales, Australia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| |
Collapse
|
2
|
Lahmamsi H, Ananou S, Lahlali R, Tahiri A. Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects. Folia Microbiol (Praha) 2024; 69:465-489. [PMID: 38393576 DOI: 10.1007/s12223-024-01146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.
Collapse
Affiliation(s)
- Haitam Lahmamsi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Samir Ananou
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
| | - Rachid Lahlali
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| | - Abdessalem Tahiri
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| |
Collapse
|
3
|
Wu R, Ji P, Hua Y, Li H, Zhang W, Wei Y. Research progress in isolation and identification of rumen probiotics. Front Cell Infect Microbiol 2024; 14:1411482. [PMID: 38836057 PMCID: PMC11148321 DOI: 10.3389/fcimb.2024.1411482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
With the increasing research on the exploitation of rumen microbial resources, rumen probiotics have attracted much attention for their positive contributions in promoting nutrient digestion, inhibiting pathogenic bacteria, and improving production performance. In the past two decades, macrogenomics has provided a rich source of new-generation probiotic candidates, but most of these "dark substances" have not been successfully cultured due to the restrictive growth conditions. However, fueled by high-throughput culture and sorting technologies, it is expected that the potential probiotics in the rumen can be exploited on a large scale, and their potential applications in medicine and agriculture can be explored. In this paper, we review and summarize the classical techniques for isolation and identification of rumen probiotics, introduce the development of droplet-based high-throughput cell culture and single-cell sequencing for microbial culture and identification, and finally introduce promising cultureomics techniques. The aim is to provide technical references for the development of related technologies and microbiological research to promote the further development of the field of rumen microbiology research.
Collapse
Affiliation(s)
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | | | | | | | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Sechovcová H, Mahayri TM, Mrázek J, Jarošíková R, Husáková J, Wosková V, Fejfarová V. Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiol (Praha) 2024; 69:259-282. [PMID: 38095802 DOI: 10.1007/s12223-023-01119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/05/2023] [Indexed: 04/11/2024]
Abstract
Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.
Collapse
Affiliation(s)
- Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic.
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
González A, Fullaondo A, Odriozola A. Techniques, procedures, and applications in microbiome analysis. ADVANCES IN GENETICS 2024; 111:81-115. [PMID: 38908906 DOI: 10.1016/bs.adgen.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microbiota is a complex community of microorganisms living in a defined environment. Until the 20th century, knowledge of microbiota was partial, as the techniques available for their characterization were primarily based on bacteriological culture. In the last twenty years, the development of DNA sequencing technologies, multi-omics, and bioinformatics has expanded our understanding of microorganisms. We have moved from mainly considering them isolated disease-causing agents to recognizing the microbiota as an essential component of host biology. These techniques have shown that the microbiome plays essential roles in various host phenotypes, influencing development, physiology, reproduction, and evolution. This chapter provides researchers with a summary of the primary concepts, sample collection, experimental techniques, and bioinformatics analysis commonly used in microbiome research. The main features, applications in microbiome studies, and their advantages and limitations are included in each section.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
6
|
Aziz M, Palmer A, Iversen S, Salazar JE, Pham T, Roach K, Becker K, Kaspar U, Price LB, Baig S, Stegger M, Andersen PS, Liu CM. Design and validation of Dolosigranulum pigrum specific PCR primers using the bacterial core genome. Sci Rep 2023; 13:6110. [PMID: 37059715 PMCID: PMC10103046 DOI: 10.1038/s41598-023-32709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Dolosigranulum pigrum-a lactic acid bacterium that is increasingly recognized as an important member of the nasal microbiome. Currently, there are limited rapid and low-cost options for confirming D. pigrum isolates and detecting D. pigrum in clinical specimens. Here we describe the design and validation of a novel PCR assay targeting D. pigrum that is both sensitive and specific. We designed a PCR assay targeting murJ, a single-copy core species gene identified through the analysis of 21 D. pigrum whole genome sequences. The assay achieved 100% sensitivity and 100% specificity against D. pigrum and diverse bacterial isolates and an overall 91.1% sensitivity and 100% specificity using nasal swabs, detecting D. pigrum at a threshold of 1.0 × 104 D. pigrum 16S rRNA gene copies per swab. This assay adds a reliable and rapid D. pigrum detection tool to the microbiome researcher toolkit investigating the role of generalist and specialist bacteria in the nasal environment.
Collapse
Affiliation(s)
- Maliha Aziz
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Amber Palmer
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Søren Iversen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Juan E Salazar
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Tony Pham
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Kelsey Roach
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Ursula Kaspar
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Lance B Price
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Sharmin Baig
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Cindy M Liu
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, 800 22nd Street NW, Washington, DC, 20052, USA.
| |
Collapse
|
7
|
Wani AK, Akhtar N, Singh R, Chopra C, Kakade P, Borde M, Al-Khayri JM, Suprasanna P, Zimare SB. Prospects of advanced metagenomics and meta-omics in the investigation of phytomicrobiome to forecast beneficial and pathogenic response. Mol Biol Rep 2022; 49:12165-12179. [PMID: 36169892 DOI: 10.1007/s11033-022-07936-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022]
Abstract
Microorganisms dwell in diverse plant niches as non-axenic biotic components that are beneficial as well pathogenic for the host. They improve nutrients-uptake, stress tolerance, phytohormone synthesis, and strengthening the defense system through phyllosphere, rhizosphere, and endosphere. The negative consequences of the microbial communities are largely in the form of diseases characterized by certain symptoms such as gall, cankers, rots etc. Uncultivable and unspecified nature of different phytomicrobiomes communities is a challenge in the management of plant disease, a leading cause for the loss of the plant products. Metagenomics has opened a new gateway for the exploration of microorganisms that are hitherto unknown, enables investigation of the functional aspect of microbial gene products through metatranscriptomics and metabolomics. Metagenomics offers advantages of characterizing previously unknown microorganisms from extreme environments like hot springs, glaciers, deep seas, animal gut etc. besides bioprospecting gene products such as Taq polymerase, bor encoded indolotryptoline, hydrolases, and polyketides. This review provides a detailed account of the phytomicrobiome networks and highlights the importance and limitations of metagenomics and other meta-omics approaches for the understanding of plant microbial diversity with special focus on the disease control and its management.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, 144411, Phagwara, India
| | - Prachi Kakade
- Department of Botany, Amdar Shashikant Shinde Mahavidyalay, 415012, Medha, Satara, India
| | - Mahesh Borde
- Department of Botany, Savitribai Phule Pune University, 411007, Pune, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, 31982, Al- Ahsa, Saudi Arabia
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, 400094, Mumbai, India
| | - Saurabha B Zimare
- Department of Botany, Amdar Shashikant Shinde Mahavidyalay, 415012, Medha, Satara, India. .,Department of Botany, D. P. Bhosale College, Koregaon, , Satara, 415501, Maharashtra, India.
| |
Collapse
|
8
|
Aguirre de Cárcer D. Experimental and computational approaches to unravel microbial community assembly. Comput Struct Biotechnol J 2020; 18:4071-4081. [PMID: 33363703 PMCID: PMC7736701 DOI: 10.1016/j.csbj.2020.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Microbial communities have a preponderant role in the life support processes of our common home planet Earth. These extremely diverse communities drive global biogeochemical cycles, and develop intimate relationships with most multicellular organisms, with a significant impact on their fitness. Our understanding of their composition and function has enjoyed a significant thrust during the last decade thanks to the rise of high-throughput sequencing technologies. Intriguingly, the diversity patterns observed in nature point to the possible existence of fundamental community assembly rules. Unfortunately, these rules are still poorly understood, despite the fact that their knowledge could spur a scientific, technological, and economic revolution, impacting, for instance, agricultural, environmental, and health-related practices. In this minireview, I recapitulate the most important wet lab techniques and computational approaches currently employed in the study of microbial community assembly, and briefly discuss various experimental designs. Most of these approaches and considerations are also relevant to the study of microbial microevolution, as it has been shown that it can occur in ecological relevant timescales. Moreover, I provide a succinct review of various recent studies, chosen based on the diversity of ecological concepts addressed, experimental designs, and choice of wet lab and computational techniques. This piece aims to serve as a primer to those new to the field, as well as a source of new ideas to the more experienced researchers.
Collapse
|
9
|
Singh A, Nylander JAA, Schnürer A, Bongcam-Rudloff E, Müller B. High-Throughput Sequencing and Unsupervised Analysis of Formyltetrahydrofolate Synthetase (FTHFS) Gene Amplicons to Estimate Acetogenic Community Structure. Front Microbiol 2020; 11:2066. [PMID: 32983047 PMCID: PMC7481360 DOI: 10.3389/fmicb.2020.02066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The formyltetrahydrofolate synthetase (FTHFS) gene is a molecular marker of choice to study the diversity of acetogenic communities. However, current analyses are limited due to lack of a high-throughput sequencing approach for FTHFS gene amplicons and a dedicated bioinformatics pipeline for data analysis, including taxonomic annotation and visualization of the sequence data. In the present study, we combined the barcode approach for multiplexed sequencing with unsupervised data analysis to visualize acetogenic community structure. We used samples from a biogas digester to develop proof-of-principle for our combined approach. We successfully generated high-throughput sequence data for the partial FTHFS gene and performed unsupervised data analysis using the novel bioinformatics pipeline “AcetoScan” presented in this study, which resulted in taxonomically annotated OTUs, phylogenetic tree, abundance plots and diversity indices. The results demonstrated that high-throughput sequencing can be used to sequence the FTHFS amplicons from a pool of samples, while the analysis pipeline AcetoScan can be reliably used to process the raw sequence data and visualize acetogenic community structure. The method and analysis pipeline described in this paper can assist in the identification and quantification of known or potentially new acetogens. The AcetoScan pipeline is freely available at https://github.com/abhijeetsingh1704/AcetoScan.
Collapse
Affiliation(s)
- Abhijeet Singh
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan A A Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,National Bioinformatics Infrastructure Sweden, SciLifeLab, Uppsala, Sweden
| | - Anna Schnürer
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Liu M, Cao J, Wang C. Bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109996. [PMID: 31785943 DOI: 10.1016/j.ecoenv.2019.109996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
A large proportion (60-90%) of ingested tetracyclines are released to slurry, soils, surface waters and ground water, which has raised extensive concerns and may pose a risk to the soil ecosystem. A 56-day experiment was conducted to study the bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline (OTC)-contaminated soil. The results showed that high OTC concentration significantly decreased the activity of soil bacteria, ammonia-oxidizing bacteria (AOB) and archaea (AOA). Earthworms were found to accelerate the degradation efficiency and rate of OTC, and its main metabolites were 4-epi-oxytetracycline (EOTC) and 2-acetyl-2-decarboxamido-oxytetracycline (ADOTC). Earthworms had an important role in the bioremediation of soil microbial diversity by degrading OTC and its metabolite (EOTC), especially in the high OTC condition. Additionally, the results indicated that the effects of earthworms on the degradation of OTC could remediate the abundances of 16S rRNA and AOB amoA genes and the NO3- content in both low and high OTC-contaminated soils. The structural equation model suggested that earthworms could remediate the microbial diversity, the abundances of 16s rRNA and AOB amoA genes by accelerating the degradation of OTC, which contributed to the bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil.
Collapse
Affiliation(s)
- Mengli Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China
| | - Jia Cao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China
| | - Chong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, MOE, Beijing, 100193, China.
| |
Collapse
|
11
|
Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review. ENERGIES 2019. [DOI: 10.3390/en12030365] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Disturbances of the anaerobic digestion process reduce the economic and environmental performance of biogas systems. A better understanding of the highly complex process is of crucial importance in order to avoid disturbances. This review defines process disturbances as significant changes in the functionality within the microbial community leading to unacceptable and severe decreases in biogas production and requiring an active counteraction to be overcome. The main types of process disturbances in agricultural biogas production are classified as unfavorable process temperatures, fluctuations in the availability of macro- and micronutrients (feedstock variability), overload of the microbial degradation potential, process-related accumulation of inhibiting metabolites such as hydrogen (H2), ammonium/ammonia (NH4+/NH3) or hydrogen sulphide (H2S) and inhibition by other organic and inorganic toxicants. Causes, mechanisms and effects on the biogas microbiome are discussed. The need for a knowledge-based microbiome management to ensure a stable and efficient production of biogas with low susceptibility to disturbances is derived and an outlook on potential future process monitoring and control by means of microbial indicators is provided.
Collapse
|
12
|
De Vrieze J, Ijaz UZ, Saunders AM, Theuerl S. Terminal restriction fragment length polymorphism is an "old school" reliable technique for swift microbial community screening in anaerobic digestion. Sci Rep 2018; 8:16818. [PMID: 30429514 PMCID: PMC6235954 DOI: 10.1038/s41598-018-34921-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022] Open
Abstract
The microbial community in anaerobic digestion has been analysed through microbial fingerprinting techniques, such as terminal restriction fragment length polymorphism (TRFLP), for decades. In the last decade, high-throughput 16S rRNA gene amplicon sequencing has replaced these techniques, but the time-consuming and complex nature of high-throughput techniques is a potential bottleneck for full-scale anaerobic digestion application, when monitoring community dynamics. Here, the bacterial and archaeal TRFLP profiles were compared with 16S rRNA gene amplicon profiles (Illumina platform) of 25 full-scale anaerobic digestion plants. The α-diversity analysis revealed a higher richness based on Illumina data, compared with the TRFLP data. This coincided with a clear difference in community organisation, Pareto distribution, and co-occurrence network statistics, i.e., betweenness centrality and normalised degree. The β-diversity analysis showed a similar clustering profile for the Illumina, bacterial TRFLP and archaeal TRFLP data, based on different distance measures and independent of phylogenetic identification, with pH and temperature as the two key operational parameters determining microbial community composition. The combined knowledge of temporal dynamics and projected clustering in the β-diversity profile, based on the TRFLP data, distinctly showed that TRFLP is a reliable technique for swift microbial community dynamics screening in full-scale anaerobic digestion plants.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium.
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, Glasgow, UK
| | - Aaron M Saunders
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngardsholmsvej 49, 9000, Aalborg, Denmark
| | - Susanne Theuerl
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department Bioengineering, Max-Eyth-Allee 100, D-14469, Potsdam, Germany
| |
Collapse
|
13
|
Nagaraj V, Skillman L, Li D, Ho G. Review - Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:586-599. [PMID: 29975885 DOI: 10.1016/j.jenvman.2018.05.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 05/26/2023]
Abstract
Biofouling in seawater reverse osmosis (SWRO) membranes is a critical issue faced by the desalination industry worldwide. The major cause of biofouling is the irreversible attachment of recalcitrant biofilms formed by bacteria and their extracellular polymeric substances (EPS) on membrane surfaces. Transparent exopolymer particles (TEP) and protobiofilms are recently identified as important precursors of membrane fouling. Despite considerable amount of research on SWRO biofouling, the control of biofouling still remains a challenge. While adoption of better pretreatment methods may help in preventing membrane biofouling in new desalination setups, it is also crucial to effectively disperse old, recalcitrant biofilms and prolong membrane life in operational plants. Most current practices employ the use of broad spectrum biocides and chemicals that target bacterial cells to disperse mature biofilms, which are evidently inefficient. EPS, being known as the strongest structural framework of biofilms, it is essential to breakdown and disintegrate the EPS components for effective biofilm removal. To achieve this, it is necessary to understand the chemical composition and key elements that constitute the EPS of major biofouling bacterial groups in multi-species, mature biofilms. However, significant gaps in understanding the complexity of EPS are evident by the failure to achieve effective prevention and mitigation of fouling in most cases. Some of the reasons may be difficulty in sampling membranes from fully operational full-scale plants, poor understanding of microbial communities and their ecological shifts under dynamic operational conditions within the desalination process, selection of inappropriate model species for laboratory-scale biofouling studies, and the laborious process of extraction and purification of EPS. This article reviews the novel findings on key aspects of SWRO membrane fouling and control measures with particular emphasis on the key sugars in EPS. As a novel strategy to alleviate biofouling, future control methods may be aimed towards specifically disintegrating and breaking down these key sugars rather than using broad spectrum chemicals such as biocides that are currently used in the industry.
Collapse
Affiliation(s)
- Veena Nagaraj
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Lucy Skillman
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Dan Li
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Goen Ho
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
14
|
Theuerl S, Klang J, Heiermann M, De Vrieze J. Marker microbiome clusters are determined by operational parameters and specific key taxa combinations in anaerobic digestion. BIORESOURCE TECHNOLOGY 2018; 263:128-135. [PMID: 29738975 DOI: 10.1016/j.biortech.2018.04.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 05/10/2023]
Abstract
In this study, microbiomes of 36 full-scale anaerobic digesters originated from 22 different biogas plants were compared by terminal restriction fragment length polymorphism (TRFLP) analysis. Regarding the differences in microbial community composition, a weighting of the environmental parameters could be derived from higher to lower importance as follows: (i) temperature, (ii) TAN and NH3 concentrations and conductivity, and (iii) the chemical composition of the supplied feedstocks. Biotic interactions between specific bacterial and archaeal community arrangements were revealed, whereby members of the phyla Bacteroidetes and Cloacimonetes combined with the archaeal genus Methanothrix dominated the conversion of homogeneous feedstocks, such as waste water sludge or industrial waste. As most of the detected TRFs were only found in a certain number of anaerobic digestion plants, each plant develops its unique microbiome. The putative rare species, the specialists, are potentially hidden drivers of microbiome functioning as they provide necessary traits under, e.g., process-inconvenient conditions.
Collapse
Affiliation(s)
- Susanne Theuerl
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department Bioengineering, Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Johanna Klang
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department Bioengineering, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Monika Heiermann
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department Technology Assessment and Substance Cycles, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| |
Collapse
|
15
|
Lindström S, Rowe O, Timonen S, Sundström L, Johansson H. Trends in bacterial and fungal communities in ant nests observed with Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and Next Generation Sequencing (NGS) techniques-validity and compatibility in ecological studies. PeerJ 2018; 6:e5289. [PMID: 30042898 PMCID: PMC6055595 DOI: 10.7717/peerj.5289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/01/2018] [Indexed: 11/30/2022] Open
Abstract
Microbes are ubiquitous and often occur in functionally and taxonomically complex communities. Unveiling these community dynamics is one of the main challenges of microbial research. Combining a robust, cost effective and widely used method such as Terminal Restriction Fragment Length Polymorphism (T-RFLP) with a Next Generation Sequencing (NGS) method (Illumina MiSeq), offers a solid alternative for comprehensive assessment of microbial communities. Here, these two methods were combined in a study of complex bacterial and fungal communities in the nest mounds of the ant Formica exsecta, with the aim to assess the degree to which these methods can be used to complement each other. The results show that these methodologies capture similar spatiotemporal variations, as well as corresponding functional and taxonomical detail, of the microbial communities in a challenging medium consisting of soil, decomposing plant litter and an insect inhabitant. Both methods are suitable for the analysis of complex environmental microbial communities, but when combined, they complement each other well and can provide even more robust results. T-RFLP can be trusted to show similar general community patterns as Illumina MiSeq and remains a good option if resources for NGS methods are lacking.
Collapse
Affiliation(s)
- Stafva Lindström
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
- Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Owen Rowe
- Umeå Marine Sciences Centre, Umeå University, Hörnefors, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Sari Timonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
- Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Helena Johansson
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
16
|
Han I, Yoo K, Kang BR, No JH, Wee GN, Khan MI, Jeong TY, Lee TK. A comparison study of the potential risks induced in arable land and forest soils by carcass-derived pollutants. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:451-460. [PMID: 28299471 DOI: 10.1007/s10653-017-9932-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Improper decisions concerning animal carcass disposal sites pose grave threats to environmental biosecurity. However, only a few studies have focused on the effects of different land-use types on the composition of carcass-derived pollutants and microbial responses to the disturbances. This study was conducted using soil microcosms with minced pork built from arable land and forest soils for 5 weeks. To compare the risk induced from different land-use types by carcass burial, the soil properties, the microbial community, and multiple-antibiotic-resistant bacteria were evaluated for microcosm containing 0, 1.5 and 7.5 g of minced pork. The abiotic properties, including pH, organic carbon, nitrogen and phosphorus compounds, significantly increased, regardless of the land-use types and applied load masses. The microbial diversity indices of the forest soil were reduced, whereas those of the arable land remained relatively stable. The disturbances produced from carcass-derived pollutants altered the bacterial community structures differently for the different land-use types. The treatment increased multiple-antibiotic-resistant bacteria in the both soil samples, although the increase in the forest soil was significantly less compared to the arable land soils.
Collapse
Affiliation(s)
- Il Han
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Korea
| | - Keunje Yoo
- Division of Natural Resources and Conservation, Korea Environment Institute, Sejong, 30147, Korea
| | - Bo Ram Kang
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Korea
| | - Jee Hyun No
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Korea
| | - Gui Nam Wee
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Korea
| | - Muhammad Imran Khan
- Insitutute for Soil and Environmental Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Tae Young Jeong
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, 26493, Korea.
| |
Collapse
|
17
|
Efficient N-tailing of blunt DNA ends by Moloney murine leukemia virus reverse transcriptase. Sci Rep 2017; 7:41769. [PMID: 28150748 PMCID: PMC5288710 DOI: 10.1038/srep41769] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022] Open
Abstract
Moloney murine leukemia virus reverse transcriptase (MMLV-RT) is a widely used enzyme for cDNA synthesis. Here we show that MMLV-RT has a strong template-independent polymerase activity using blunt DNA ends as substrate that generates 3' overhangs of A, C, G, or T. Nucleotides were appended efficiently in the order A > G > T > C, and tail lengths varied from 4 to 5, 2 to 7, 2 to 4, and 2 to 3 for A, C, G, and T, respectively. The activity was so strong that nearly all our test DNA ends were appended with at least one A, C, G, or T. The N-tailing activity of MMLV-RT was enhanced in the presence of Mn2+, and the G-, C-, and T-tailing activities were further enhanced by dCMP, dGMP, and dAMP, respectively. This is the first report of an enzymatic activity that almost thoroughly appends two or more As, or one or more Cs, Gs, or Ts to the 3' end of double-stranded DNA, which would enable exhaustive analysis of DNA samples. The N-tailing activity of MMLV-RT is potentially useful in many biotechnological applications.
Collapse
|
18
|
Lucas R, Groeneveld J, Harms H, Johst K, Frank K, Kleinsteuber S. A critical evaluation of ecological indices for the comparative analysis of microbial communities based on molecular datasets. FEMS Microbiol Ecol 2016; 93:fiw209. [PMID: 27798064 DOI: 10.1093/femsec/fiw209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 01/15/2023] Open
Abstract
In times of global change and intensified resource exploitation, advanced knowledge of ecophysiological processes in natural and engineered systems driven by complex microbial communities is crucial for both safeguarding environmental processes and optimising rational control of biotechnological processes. To gain such knowledge, high-throughput molecular techniques are routinely employed to investigate microbial community composition and dynamics within a wide range of natural or engineered environments. However, for molecular dataset analyses no consensus about a generally applicable alpha diversity concept and no appropriate benchmarking of corresponding statistical indices exist yet. To overcome this, we listed criteria for the appropriateness of an index for such analyses and systematically scrutinised commonly employed ecological indices describing diversity, evenness and richness based on artificial and real molecular datasets. We identified appropriate indices warranting interstudy comparability and intuitive interpretability. The unified diversity concept based on 'effective numbers of types' provides the mathematical framework for describing community composition. Additionally, the Bray-Curtis dissimilarity as a beta-diversity index was found to reflect compositional changes. The employed statistical procedure is presented comprising commented R-scripts and example datasets for user-friendly trial application.
Collapse
Affiliation(s)
- Rico Lucas
- UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jürgen Groeneveld
- UFZ-Helmholtz Centre for Environmental Research, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany.,Institute of Forest Growth and Computer Science, Technische Universität Dresden, PO 1117, 01735 Tharandt, Germany
| | - Hauke Harms
- UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Karin Johst
- UFZ-Helmholtz Centre for Environmental Research, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany
| | - Karin Frank
- UFZ-Helmholtz Centre for Environmental Research, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Sabine Kleinsteuber
- UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
19
|
Glaser K, Kuppardt A, Boenigk J, Harms H, Fetzer I, Chatzinotas A. The influence of environmental factors on protistan microorganisms in grassland soils along a land-use gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 537:33-42. [PMID: 26282737 DOI: 10.1016/j.scitotenv.2015.07.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
In this study, we investigated the effect of land use intensity, soil parameters and vegetation on protistan communities in grassland soils. We performed qualitative (T-RFLP) and quantitative (qPCR) analyses using primers specifically targeting the 18S rRNA gene for all Eukarya and for two common flagellate groups, i.e. the Chrysophyceae and the Kinetoplastea. Both approaches were applied to extracted soil DNA and RNA, in order to distinguish between the potentially active protists (i.e. RNA pool) and the total protistan communities, including potentially inactive and encysted cells (i.e. DNA pool). Several environmental determinants such as site, soil parameters and vegetation had an impact on the T-RFLP community profiles and the abundance of the quantified 18S rRNA genes. Correlating factors often differed between quantitative (qPCR) and qualitative (T-RFLP) approaches. For instance the Chrysophyceae/Eukarya 18S rDNA ratio as determined by qPCR correlated with the C/N ratio, whereas the community composition based on T-RLFP analysis was not affected indicating that both methods taken together provide a more complete picture of the parameters driving protist diversity. Moreover, distinct T-RFs were obtained, which could serve as potential indicators for either active organisms or environmental conditions like water content. While site was the main determinant across all investigated exploratories, land use seemed to be of minor importance for structuring protist communities. The impact of other parameters differed between the target groups, e.g. Kinetoplastea reacted on changes to water content on all sites, whereas Chrysophyceae were only affected in the Schorfheide. Finally, in most cases different responses were observed on RNA- and DNA-level, respectively. Vegetation for instance influenced the two flagellate groups only at the DNA-level across all sites. Future studies should thus include different protistan groups and also distinguish between active and inactive cells, in order to reveal causal shifts in community composition and abundance in agriculturally used systems.
Collapse
Affiliation(s)
- Karin Glaser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Anke Kuppardt
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Jens Boenigk
- Department of Biodiversity, University Duisburg-Essen, 45117 Essen, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ingo Fetzer
- Stockholm Resilience Centre, Stockholm University, Sweden
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e, 04103 Leipzig, Germany.
| |
Collapse
|
20
|
Ma Y, Shi N, Li M, Chen F, Niu H. Applications of Next-generation Sequencing in Systemic Autoimmune Diseases. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:242-9. [PMID: 26432094 PMCID: PMC4610970 DOI: 10.1016/j.gpb.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune diseases are a group of heterogeneous disorders caused by both genetic and environmental factors. Although numerous causal genes have been identified by genome-wide association studies (GWAS), these susceptibility genes are correlated to a relatively low disease risk, indicating that environmental factors also play an important role in the pathogenesis of disease. The intestinal microbiome, as the main symbiotic ecosystem between the host and host-associated microorganisms, has been demonstrated to regulate the development of the body’s immune system and is likely related to genetic mutations in systemic autoimmune diseases. Next-generation sequencing (NGS) technology, with high-throughput capacity and accuracy, provides a powerful tool to discover genomic mutations, abnormal transcription and intestinal microbiome identification for autoimmune diseases. In this review, we briefly outlined the applications of NGS in systemic autoimmune diseases. This review may provide a reference for future studies in the pathogenesis of systemic autoimmune diseases.
Collapse
Affiliation(s)
- Yiyangzi Ma
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical Collage, Beijing 100021, China
| | - Na Shi
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical Collage, Beijing 100021, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Collage, Beijing 100730, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haitao Niu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical Collage, Beijing 100021, China.
| |
Collapse
|
21
|
Genome Wide Analysis for Searching Novel Markers to Rapidly Identify Clostridium Strains. Indian J Microbiol 2015; 55:250-7. [PMID: 26063934 DOI: 10.1007/s12088-015-0535-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022] Open
Abstract
Microbial classification is based largely on the 16S rRNA (rrs) gene sequence, which is conserved throughout the prokaryotic domain. The Ribosomal Database Project (RDP) has become a reference point for almost all practical purposes. The use of this gene is limited by the fact that it can be used to identify only to the extent to what has been known and is available in the RDP. In order to identify an organism whose rrs is not present in the RDP database, we need to generate novel markers to place the unknown on the evolutionary map. Here, sequenced genomes of 27 Clostridium strains belonging to 9 species have been used to identify two sets of genes: (1) common to most of the species, and (2) unique to a species. Combinations of genes (recN, dnaJ, secA, mutS, and/or grpE) and their unique restriction endonuclease digestion (AluI, BfaI and/or Tru9I) patterns have been established to rapidly identify Clostridium species. This strategy for identifying novel markers can be extended to all other organisms and diagnostic applications.
Collapse
|