1
|
El-Bastawisy HS, El-Sayyad GS, Abu Safe FA. Detection of hemolytic Shiga toxin-producing Escherichia coli in fresh vegetables and efficiency of phytogenically synthesized silver nanoparticles by Syzygium aromaticum extract and gamma radiation against isolated pathogens. BMC Microbiol 2023; 23:262. [PMID: 37723460 PMCID: PMC10508014 DOI: 10.1186/s12866-023-02994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Shiga toxin-producing E. coli (STEC) is a major cause of foodborne diseases accompanied by several clinical illnesses in humans. This research aimed to isolate, identify, and combat STEC using novel alternative treatments, researchers have lately investigated using plant extract to produce nanoparticles in an environmentally acceptable way. At various gamma-ray doses, gamma irradiation is used to optimize the conditions for the biogenically synthesized silver nanoparticles (Ag NPs) using an aqueous extract of clove as a reducing and stabilizing agent. METHODS On a specific medium, 120 vegetable samples were screened to isolate STEC and molecularly identified using real-time PCR. Moreover, the antibacterial and antibiofilm activities of biogenically synthesized Ag NPs against the isolated STEC were examined. RESULTS Twenty-five out of 120 samples of eight types of fresh vegetables tested positive for E. coli, as confirmed by 16S rRNA, of which three were positive for the presence of Stx-coding genes, and six were partially hemolytic. Seven antibiotic disks were used to determine antibiotic susceptibility; the results indicated that isolate STX2EC had the highest antibiotic resistance. The results demonstrated that Ag NPs were highly effective against the STEC isolates, particularly the isolate with the highest drug resistance, with inhibition zones recorded as 19 mm for STX2EC, 11 mm for STX1EC1, and 10 mm for STX1EC2 at a concentration of 108 µg/mL. MICs of the isolates STX1EC1, and STX1EC2 were 13.5 µg/mL whereas it was detected as 6.75 µg/mL for STX2EC. The percentages of biofilm inhibition for STX1EC2, STX1EC1, and STX2EC, were 78.7%, 76.9%, and 71.19%, respectively. CONCLUSION These findings suggest that the biogenic Ag NPs can be utilized as a new promising antibacterial agent to combat biofouling on surfaces.
Collapse
Affiliation(s)
- Hanan S El-Bastawisy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Feriala A Abu Safe
- Botany Department, Faculty of Women for Art, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Sharma I, Gupta P, Kango N. Synthesis and characterization of keratinase laden green synthesized silver nanoparticles for valorization of feather keratin. Sci Rep 2023; 13:11608. [PMID: 37463953 DOI: 10.1038/s41598-023-38721-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
This study focuses on the efficient and cost-effective synthesis of silver nanoparticles (AgNPs) using plant extracts, which have versatile and non-toxic applications. The research objectives include synthesizing AgNPs from readily available plant extracts, optimizing their production and multi scale characterization, along with exploring their use for enzyme immobilization and mitigation of poultry feather waste. Among the plant extracts tested, the flower extract of Hibiscus rosa-sinensis (HF) showed the most potential for AgNP synthesis. The synthesis of HF-mediated AgNPs was optimized using response surface methodology (RSM) for efficient and environment friendly production. Additionally, the keratinase enzyme obtained from Bacillus sp. NCIM 5802 was covalently linked to AgNPs, forming a keratinase nanocomplex (KNC) whose biochemical properties were evaluated. The KNC demonstrated optimal activity at pH 10.0 and 60 °C and it displayed remarkable stability in the presence of various inhibitors, metal ions, surfactants, and detergents. Spectroscopic techniques such as FTIR, UV-visible, and X-ray diffraction (XRD) analysis were employed to investigate the formation of biogenic HF-AgNPs and KNC, confirming the presence of capping and stabilizing agents. The morphological characteristics of the synthesized AgNPs and KNC were determined using transmission electron microscopy (TEM) and particle size analysis. The study highlighted the antimicrobial, dye scavenging, and antioxidant properties of biogenic AgNPs and KNC, demonstrating their potential for various applications. Overall, this research showcases the effectiveness of plant extract-driven green synthesis of AgNPs and the successful development of keratinase-laden nanocomplexes, opening possibilities for their use in immobilizing industrial and commercial enzymes.
Collapse
Affiliation(s)
- Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Pranshi Gupta
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India.
| |
Collapse
|
3
|
Nazzaro F, Polito F, Amato G, Caputo L, Francolino R, D’Acierno A, Fratianni F, Candido V, Coppola R, De Feo V. Chemical Composition of Essential Oils of Bulbs and Aerial Parts of Two Cultivars of Allium sativum and Their Antibiofilm Activity against Food and Nosocomial Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11060724. [PMID: 35740131 PMCID: PMC9219697 DOI: 10.3390/antibiotics11060724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
This work aimed to evaluate the chemical composition of the essential oils (EOs) of two cultivars of Allium sativum and their antibiofilm activity against the food pathogens Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus. The crystal violet assay ascertained the susceptibility of the bacterial biofilms, while the MTT assay let to evaluations of the metabolic changes occurring in the bacterial cells within biofilms. Their chemical composition indicated some sulfuric compounds (i.e., allicin, diallyl disulfide, and allyl propyl disulfide), and decene as some of the main components of the EOs. The aerial parts and bulbs’ EOs from the two cultivars showed chemical differences, which seemed to affect the antibiofilm activity. The EOs from aerial parts of ‘Bianco del Veneto’ inhibited the biofilm formation of L. monocytogenes and E. coli (60.55% and 40.33%, respectively). In comparison, the ‘Staravec’ EO inhibited the cellular metabolism of E. coli (62.44%) and S. aureus (51.52%) sessile cells. These results indicate their possible use as preserving agents in the food industry and suggest their potential exploitation in the development of new formulations to avoid or limit nosocomial infections.
Collapse
Affiliation(s)
- Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Correspondence:
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Giuseppe Amato
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Rosaria Francolino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Antonio D’Acierno
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Florinda Fratianni
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Vincenzo Candido
- Department of European and Mediterranean Culture, University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
| | - Raffaele Coppola
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Vincenzo De Feo
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| |
Collapse
|
4
|
Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Polito F, Amato G, Caputo L, De Feo V, Fratianni F, Candido V, Nazzaro F. Chemical Composition and Agronomic Traits of Allium sativum and Allium ampeloprasum Leaves and Bulbs and Their Action against Listeria monocytogenes and Other Food Pathogens. Foods 2022; 11:foods11070995. [PMID: 35407082 PMCID: PMC8997483 DOI: 10.3390/foods11070995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
In this work, we aimed to study the chemical composition of the essential oils from bulbs and leaves of two cultivars of Allium sativum L. and two of A. ampeloprasum L. var. holmense. Moreover, we investigated their activity against four common bacterial strains responsible for food contamination (Listeria monocytogenes, Escherichia coli, Acinetobacter baumannii, and Staphylococcus aureus) by formation of biofilms. The susceptibility of bacterial biofilms was evaluated by crystal violet assay, whereas the metabolic changes occurring in the bacterial cells were ascertained through the MTT test. The essential oils were characterized by the presence of most characteristic components, although with different composition between the species and the cultivars. The essential oils inhibited the capacity of the pathogenic bacteria to form biofilms (up to 79.85 against L. monocytogenes) and/or acted on their cell metabolism (with inhibition of 68.57% and 68.89% against L. monocytogenes and S. aureus, respectively). The capacity of the essential oils to act against these foodborne bacteria could suggests further ideas for industrial applications and confirms the versatility of these essential oils as food preservatives.
Collapse
Affiliation(s)
- Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
| | - Giuseppe Amato
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Florinda Fratianni
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Vincenzo Candido
- Department of European and Mediterranean Culture, University of Basilicata, Via San Biagio, 75100 Matera, Italy;
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
- Correspondence: ; Tel.: +39-0825-299-102
| |
Collapse
|
6
|
Xu S, Liao Y, Wang Q, Liu L, Yang W. Current studies and potential future research directions on biological effects and related mechanisms of allicin. Crit Rev Food Sci Nutr 2022; 63:7722-7748. [PMID: 35293826 DOI: 10.1080/10408398.2022.2049691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Raina D, Kumar C, Kumar V, Khan IA, Saran S. Potential Inhibitors Targeting Escherichia coli UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA): An Overview. Indian J Microbiol 2022; 62:11-22. [PMID: 35068599 PMCID: PMC8758813 DOI: 10.1007/s12088-021-00988-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges that is escalating and affecting humanity across the globe. To overcome this increasing burden of resistance, discovering novel hits by targeting the enzymes involved in peptidoglycan (murein) biosynthesis has always been considered better in antimicrobial drug discovery. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) enzyme has been identified as essential for Escherichia coli survival and catalyzes the early-stage step in bacterial cell wall synthesis. The present article gives a brief overview of the role of enzymes in peptidoglycan synthesis and MurA enzyme (previously known as MurZ in E. coli), in particular, including its structural and active site features. This review also provides an insight into the current knowledge of the reported MurA inhibitors, their mechanism of action and drawbacks of these hits that hinder their clinical trials, which would be helpful for synthesis and discovering potent molecules. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00988-6.
Collapse
Affiliation(s)
- Diksha Raina
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Chetan Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India ,Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Inshad Ali Khan
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817 India
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
8
|
Snoussi M, Noumi E, Hajlaoui H, Bouslama L, Hamdi A, Saeed M, Alreshidi M, Adnan M, Al-Rashidi A, Aouadi K, Ghannay S, Ceylan O, De Feo V, Kadri A. Phytochemical Profiling of Allium subhirsutum L. Aqueous Extract with Antioxidant, Antimicrobial, Antibiofilm, and Anti-Quorum Sensing Properties: In Vitro and In Silico Studies. PLANTS 2022; 11:plants11040495. [PMID: 35214828 PMCID: PMC8878528 DOI: 10.3390/plants11040495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
Abstract
The present study was the first to evaluate the phytochemical composition, antioxidant, antimicrobial, antibiofilm, and anti-quorum sensing potential of Allium subhirsutum L. (hairy garlic) aqueous extract through in vitro and in silico studies. The phytochemical profile revealed the presence of saponins, terpenes, flavonols/flavonones, flavonoids, and fatty acids, particularly with flavonoids (231 ± 0.022 mg QE/g extract), tannins (159 ± 0.006 mg TAE/g extract), and phenols (4 ± 0.004 mg GAE/g extract). Gas chromatography–mass spectrometry (GC–MS) analysis identified 15 bioactive compounds, such as 5-hydroxymethylfurfural (37.04%), methyl methanethiolsulfonate (21.33%), furfural (7.64%), beta-D-glucopyranose, 1,6-anhydro- (6.17%), 1,6-anhydro-beta-D-glucofuranose (3.6%), trisulfide, di-2-propenyl (2.70%), and diallyl disulfide (1.93%). The extract was found to be non-toxic with 50% cytotoxic concentration higher than 30,000 µg/mL. The investigation of the antioxidant activity via DPPH (2, 2-diphenyl-1-picrylhydrazyl) and FRAP (IC50 = 1 μg/mL), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); IC50 = 0.698 ± 0.107 μg/mL), and β-carotene (IC50 = 0.811 ± 0.036 mg/mL) was assessed. Nevertheless, good antimicrobial potential against a diverse panel of microorganisms with bacteriostatic and fungistatic effect was observed. Quorum sensing inhibition effects were also assessed, and the data showed the ability of the extract to inhibit the production of violacein by the mutant C. violaceum strain in concentration-dependent manner. Similarly, the biofilm formation by all tested strains was inhibited at low concentrations. In silico pharmacokinetic and toxicological prediction indicated that, out of the sixteen identified compounds, fourteen showed promising drug ability and could be used as lead compounds for further development and drug design. Hence, these findings support the popular use of hairy garlic as a source of bioactive compounds with potential application for human health.
Collapse
Affiliation(s)
- Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioressources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
- Correspondence: (M.S.); (V.D.F.); Tel.: +966-530-463-706 (M.S.); Fax: +39-089-969-602 (V.D.F.)
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
- Laboratory of Bioressources: Integrative Biology and Recovery, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Hafed Hajlaoui
- Research Unit Valorization and Optimization of Resource Exploitation (UR16ES04), Faculty of Science and Technology of Sidi Bouzid, Campus University Agricultural City, University of Kairouan, Sidi Bouzid 9100, Tunisia;
| | - Lamjed Bouslama
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunisia;
| | - Assia Hamdi
- Laboratoire de Développement Chimique Galénique et Pharmacologique des Médicaments, Faculté’ de Pharmacie, Université de Monastir, Monastir 5000, Tunisia;
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Ayshah Al-Rashidi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.); (M.A.); (M.A.); (A.A.-R.)
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
- Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
| | - Ozgur Ceylan
- Ula Ali Kocman Vocational School, Mugla SitkiKocman University, Mugla 48147, Turkey;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
- Correspondence: (M.S.); (V.D.F.); Tel.: +966-530-463-706 (M.S.); Fax: +39-089-969-602 (V.D.F.)
| | - Adel Kadri
- Department of Chemistry, College of Science and Arts in Baljurashi, Albaha University, Albaha 65731, Saudi Arabia;
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|
9
|
Chang Z, An L, He Z, Zhang Y, Li S, Lei M, Xu P, Lai Y, Jiang Z, Huang Y, Duan X, Wu W. Allicin supressed Escherichia coli-induced urinary tract infections by a Novel MALT1/NF-κB pathway. Food Funct 2022; 13:3495-3511. [PMID: 35246671 DOI: 10.1039/d1fo03853b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Escherichia coli (E. coli) strains cause the majority of urinary tract infections (UTIs) and are resistant to various antibiotics. Therefore, it is imperative to explore novel host-target therapies. As a...
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Lingyue An
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Zhican He
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yuyan Zhang
- Guangzhou Institute of Dermatology, Guangzhou, 510095, China
| | - Shujue Li
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Min Lei
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Peng Xu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yongchang Lai
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Zheng Jiang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yapeng Huang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Xiaolu Duan
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Wenqi Wu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| |
Collapse
|
10
|
Bhatwalkar SB, Mondal R, Krishna SBN, Adam JK, Govender P, Anupam R. Antibacterial Properties of Organosulfur Compounds of Garlic ( Allium sativum). Front Microbiol 2021; 12:613077. [PMID: 34394014 PMCID: PMC8362743 DOI: 10.3389/fmicb.2021.613077] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Garlic (Allium sativum), a popular food spice and flavoring agent, has also been used traditionally to treat various ailments especially bacterial infections for centuries in various cultures around the world. The principal phytochemicals that exhibit antibacterial activity are oil-soluble organosulfur compounds that include allicin, ajoenes, and allyl sulfides. The organosulfur compounds of garlic exhibit a range of antibacterial properties such as bactericidal, antibiofilm, antitoxin, and anti-quorum sensing activity against a wide range of bacteria including multi-drug resistant (MDR) strains. The reactive organosulfur compounds form disulfide bonds with free sulfhydryl groups of enzymes and compromise the integrity of the bacterial membrane. The World Health Organization (WHO) has recognized the development of antibiotic resistance as a global health concern and emphasizes antibiotic stewardship along with the urgent need to develop novel antibiotics. Multiple antibacterial effects of organosulfur compounds provide an excellent framework to develop them into novel antibiotics. The review provides a focused and comprehensive portrait of the status of garlic and its compounds as antibacterial agents. In addition, the emerging role of new technologies to harness the potential of garlic as a novel antibacterial agent is discussed.
Collapse
Affiliation(s)
- Sushma Bagde Bhatwalkar
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Rajesh Mondal
- Indian Council of Medical Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Jamila Khatoon Adam
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Patrick Govender
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rajaneesh Anupam
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
11
|
Aykur M, Karakavuk E, Karakavuk M, Akıl M, Can H, Döşkaya M, Gürüz Y, Dağcı H. Inhibitory effect of Tunceli garlic (Allium tuncelianum) on blastocystis subtype 3 grown in vitro. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mehmet Aykur
- Department of Parasitology, Ege University Faculty of Medicine, İzmir, Turkey
- Department of Parasitology, Gaziosmanpaşa University Faculty of Medicine, Tokat, Turkey
| | - Emrah Karakavuk
- Department of Nutrition and Dietetics, Munzur University Faculty of Health Sciences, Tunceli, Turkey
| | - Muhammet Karakavuk
- Department of Parasitology, Ege University Faculty of Medicine, İzmir, Turkey
| | - Mesut Akıl
- Department of Parasitology, Medeniyet University Faculty of Medicine, İstanbul, Turkey
| | - Hüseyin Can
- Department of Biology, Molecular Biology Section, Ege University Faculty of Science, İzmir, Turkey
| | - Mert Döşkaya
- Department of Parasitology, Ege University Faculty of Medicine, İzmir, Turkey
| | - Yüksel Gürüz
- Department of Parasitology, Ege University Faculty of Medicine, İzmir, Turkey
| | - Hande Dağcı
- Department of Parasitology, Ege University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
12
|
Characterization of biogenically synthesized silver nanoparticles for therapeutic applications and enzyme nanocomplex generation. 3 Biotech 2020; 10:462. [PMID: 33088659 DOI: 10.1007/s13205-020-02450-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
The present study describes green synthesis of silver nanoparticles (AgNPs) and inulin hydrolyzing enzyme nanocomplexes (ENC) using Azadirachta indica (Ai) and Punica granatum (Pg) leaf extracts. Surface topology and physico-chemical characteristics of AgNPs were studied using surface plasmon resonance (SPR), FTIR, SEM, AFM and EDX analyses. Particle size analysis using dynamic light scattering and AFM studies revealed that Ai-AgNPs (76.4 nm) were spherical in shape having central bigger nano-regime with smaller surroundings while Pg-AgNPs (72.1 nm) and ENCs (Inulinase-Pg-AgNPs ~ 145 nm) were spherical particles having smooth surfaces. Pg-AgNPs exhibited significant photocatalysis of a thiazine dye, methylene blue. Both Ai- and Pg-AgNPs showed selective antibacterial action by inhibiting pathogenic Bacillus cereus, while the probiotic Lactobacillus strains remained unaffected. Ai-AgNPs showed potential anti-biofilm effect (30% viability) on B. cereus biofilms. Pg-AgNPs showed anti-cancer effect against human colon cancer cell lines (Caco-2) resulting in 40% cell death in 48 h. Enzymes (inulinase, L-asparaginase and glucose oxidase) were successfully immobilized onto nanoparticles together with the biogenic synthesis of AgNPs and recyclability of the Inulinase-Pg-AgNPs complex was demonstrated. The study elaborates characteristics of green synthesized nanoparticles and their potential applications as anti-cancer, antibacterial and antioxidant nano drugs that could be used in food and nutraceutical industries. Enzyme immobilization on AgNPs without any toxic cross-linker opens up newer possibilites in enzyme-nanocomplex research.
Collapse
|
13
|
Caggiano G, Diella G, Trerotoli P, Lopuzzo M, Triggiano F, Ricci M, Marcotrigiano V, Montagna MT, De Giglio O. A Pilot Survey on Hygienic-Sanitary Characteristics of Ready-To-Eat Sauces and Pesto. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5005. [PMID: 32664624 PMCID: PMC7400197 DOI: 10.3390/ijerph17145005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022]
Abstract
In recent years, the chaotic habits of modern life have favored the consumption of quickly prepared meals, using ready-to-eat (RTE) foods and condiments. The aim of this study was to establish the microbiological safety of RTE sauces and pesto from markets analyzed at different stages of shelf life. In the bacterial investigation, all samples were shown to be acceptable, although differences were observed concerning shelf life times. On the other hand, the fungal investigation showed frequent positive results, with concentrations higher than threshold values. Detected microbial diffusion was the lowest when products were far from the expiry date and had just been opened, while high microbial proliferation was observed when analyzing the same package after 48 h, higher than for a product close to the end of its shelf life. This study highlights the discreet microbiological quality of processed and RTE foods, underlining the importance of hygienic-sanitary surveillance of these foods to their shelf life. Consequently, it is necessary to: (1) implement a food control plan for all food categories to carry out risk analysis associated with their consumption; and (2) better adapt the regulations relating to microbiological analysis, and understand the biological significance of each microbial parameter throughout the shelf life of foods.
Collapse
Affiliation(s)
- Giuseppina Caggiano
- Department of Biomedical Science and Human Oncology Hygiene Section–University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.L.); (F.T.); (O.D.G.)
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology Hygiene Section–University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.L.); (F.T.); (O.D.G.)
| | - Paolo Trerotoli
- Department of Biomedical Science and Human Oncology Hygiene Section–University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.L.); (F.T.); (O.D.G.)
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology Hygiene Section–University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.L.); (F.T.); (O.D.G.)
| | - Francesco Triggiano
- Department of Biomedical Science and Human Oncology Hygiene Section–University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.L.); (F.T.); (O.D.G.)
| | - Massimo Ricci
- ARPA Puglia, Regional Agency of the Environmental Prevention and Protection, Department of Brindisi Operative Unit of Food and Drink, via Galanti, 16, 72100 Brindisi, Italy;
| | - Vincenzo Marcotrigiano
- Department of Prevention, Food Hygiene and Nutrition Service, Local Health Unit BT, Barletta-Andria-Trani, 76125 Trani, Italy;
| | - Maria Teresa Montagna
- Department of Biomedical Science and Human Oncology Hygiene Section–University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.L.); (F.T.); (O.D.G.)
| | - Osvalda De Giglio
- Department of Biomedical Science and Human Oncology Hygiene Section–University of Bari Aldo Moro, Medical School, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.L.); (F.T.); (O.D.G.)
| |
Collapse
|
14
|
Galdiero E, Di Onofrio V, Maione A, Gambino E, Gesuele R, Menale B, Ciaravolo M, Carraturo F, Guida M. Allium ursinum and Allium oschaninii against Klebsiella pneumoniae and Candida albicans Mono- and Polymicrobic Biofilms in In Vitro Static and Dynamic Models. Microorganisms 2020; 8:microorganisms8030336. [PMID: 32120894 PMCID: PMC7143215 DOI: 10.3390/microorganisms8030336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
The present study assesses the in vitro antibiofilm potential activity of extracts of wild Allium ursinum and Allium oschaninii. The active ingredients of the extracts were obtained with a technique named Naviglio (rapid solid-liquid dynamic extraction, RSLDE) which is based on an innovative and green solid-liquid extraction methodology. The extracts were tested against models of mono- and polymicrobial biofilm structures of clinically antibiotic-resistant pathogens, Klebsiella pneumoniae ATCC 10031 and Candida albicans ATCC 90028. Biofilms were studied using a static and a dynamic model (microtiter plates and a CDC reactor) on three different surfaces reproducing what happens on implantable medical devices. Antimicrobic activities were determined through minimum inhibitory concentration (MIC), while antibiofilm activity was assessed by minimum biofilm eradication concentration (MBEC) using a crystal violet (CV) biofilm assay and colony forming unit (CFU) counts. Results showed that both Allium extracts eradicated biofilms of the tested microorganisms well; biofilms on Teflon were more susceptible to extracts than those on polypropylene and polycarbonate, suggesting that when grown on a complex substrate, biofilms may be more tolerant to antibiotics. Our data provide significant advances on antibiotic susceptibility testing of biofilms grown on biologically relevant materials for future in vitro and in vivo applications.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
- Correspondence: (E.G.); (V.D.O.)
| | - Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples Parthenope, Business District, Block C4, 80143 Naples, Italy
- Correspondence: (E.G.); (V.D.O.)
| | - Angela Maione
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| | - Edvige Gambino
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| | - Renato Gesuele
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| | - Bruno Menale
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| | - Martina Ciaravolo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia; 80100 Naples, Italy;
| | - Federica Carraturo
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| | - Marco Guida
- Department of Biology, University of Naples Federico II, via Cinthia, 80100 Naples, Italy; (A.M.); (R.G.); (B.M.); (F.C.); (M.G.)
| |
Collapse
|