1
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
2
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
3
|
Tong X, Chen Y, Zhu X, Ye Y, Xue Y, Wang R, Gao Y, Zhang W, Gao W, Xiao L, Chen H, Zhang P, Ji H. Nanog maintains stemness of Lkb1-deficient lung adenocarcinoma and prevents gastric differentiation. EMBO Mol Med 2021; 13:e12627. [PMID: 33439550 PMCID: PMC7933951 DOI: 10.15252/emmm.202012627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Growing evidence supports that LKB1-deficient KRAS-driven lung tumors represent a unique therapeutic challenge, displaying strong cancer plasticity that promotes lineage conversion and drug resistance. Here we find that murine lung tumors from the KrasLSL-G12D/+ ; Lkb1flox/flox (KL) model show strong plasticity, which associates with up-regulation of stem cell pluripotency genes such as Nanog. Deletion of Nanog in KL model initiates a gastric differentiation program and promotes mucinous lung tumor growth. We find that NANOG is not expressed at a meaningful level in human lung adenocarcinoma (ADC), as well as in human lung invasive mucinous adenocarcinoma (IMA). Gastric differentiation involves activation of Notch signaling, and perturbation of Notch pathway by the γ-secretase inhibitor LY-411575 remarkably impairs mucinous tumor formation. In contrast to non-mucinous tumors, mucinous tumors are resistant to phenformin treatment. Such therapeutic resistance could be overcome through combined treatments with LY-411575 and phenformin. Overall, we uncover a previously unappreciated plasticity of LKB1-deficient tumors and identify the Nanog-Notch axis in regulating gastric differentiation, which holds important therapeutic implication for the treatment of mucinous lung cancer.
Collapse
Affiliation(s)
- Xinyuan Tong
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Yueqing Chen
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinsheng Zhu
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Yi Ye
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| | - Yun Xue
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rui Wang
- Department of Thoracic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yijun Gao
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Wenjing Zhang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Weiqiang Gao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Lei Xiao
- College of Animal Science and Zhejiang University School of MedicineZhejiang UniversityHangzhouChina
| | - Haiquan Chen
- Department of Thoracic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Peng Zhang
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Hongbin Ji
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
- School of Life Science and TechnologyShanghai Tech UniversityShanghaiChina
| |
Collapse
|
4
|
Hu Y, Ciminieri C, Hu Q, Lehmann M, Königshoff M, Gosens R. WNT Signalling in Lung Physiology and Pathology. Handb Exp Pharmacol 2021; 269:305-336. [PMID: 34463851 DOI: 10.1007/164_2021_521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The main physiological function of the lung is gas exchange, mediated at the interface between the alveoli and the pulmonary microcapillary network and facilitated by conducting airway structures that regulate the transport of these gases from and to the alveoli. Exposure to microbial and environmental factors such as allergens, viruses, air pollution, and smoke contributes to the development of chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. Respiratory diseases as a cluster are the commonest cause of chronic disease and of hospitalization in children and are among the three most common causes of morbidity and mortality in the adult population worldwide. Many of these chronic respiratory diseases are associated with inflammation and structural remodelling of the airways and/or alveolar tissues. They can often only be treated symptomatically with no disease-modifying therapies that normalize the pathological tissue destruction driven by inflammation and remodelling. In search for novel therapeutic strategies for these diseases, several lines of evidence revealed the WNT pathway as an emerging target for regenerative strategies in the lung. WNT proteins, their receptors, and signalling effectors have central regulatory roles under (patho)physiological conditions underpinning lung function and (chronic) lung diseases and we summarize these roles and discuss how pharmacological targeting of the WNT pathway may be utilized for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Chiara Ciminieri
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Qianjiang Hu
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany
| | - Melanie Königshoff
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Munich, Germany. .,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Functional Exploration of the Pulmonary NEB ME. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 233:31-67. [PMID: 33950469 DOI: 10.1007/978-3-030-65817-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Krishnamurthy K, Lindsey AM, Estrada CA, Martinez CC, Cusnir M, Schwartz M, Sriganeshan V, Poppiti R. Title- Genomic landscape of squamous cell carcinoma- Different genetic pathways culminating in a common phenotype. Cancer Treat Res Commun 2020; 25:100238. [PMID: 33260028 DOI: 10.1016/j.ctarc.2020.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Squamous cell carcinomas (SqCCs) are the most common solid tumors in humans and are found across multiple organ systems. Although, integrated analysis of genetic alterations divulge similarities between SqCCs from various body sites, certain genes appear to be more frequently mutated in a given SqCC. These subtle differences may hold the key to determining the differentiation characteristics and predicting aggressiveness of tumors. MATERIALS AND METHOD Fifty-four cases of SqCCs, in which the primary location of the tumor could be ascertained by clinical and radiological findings, were included in this study. Next generation sequencing data was analyzed for recurrent genetic abnormalities. RESULTS Genetic alterations were found in 219 genes in the 54 cases studied. TP53 mutations were found to be more frequent in pulmonary SqCCs (86.5%) as compared to non-pulmonary SqCCs (58.8%) (p<0.05). NOTCH gene family mutations and CREBBP mutations were limited to non-pulmonary SqCC (p<0.005) and were mutated in 41.2% and 17.6% cases. CONCLUSION A detailed comparative analysis of the genetic alterations identified by sequencing identified higher frequency of TP53 mutations in lung SqCCs as compared to non-pulmonary SqCCs. NOTCH and CREBPP mutations were found to be absent in lung and head and neck SqCCs and more frequent in SqCCs from other locations.
Collapse
Affiliation(s)
- Kritika Krishnamurthy
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL 33140, United States.
| | - Allison M Lindsey
- Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Christie-Anne Estrada
- Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Camila C Martinez
- Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Mike Cusnir
- Department of Medical Oncology, Mount Sinai Medical Center, Miami Beach, FL 33140, United States
| | - Michael Schwartz
- Department of Medical Oncology, Mount Sinai Medical Center, Miami Beach, FL 33140, United States
| | - Vathany Sriganeshan
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL 33140, United States; Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| | - Robert Poppiti
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL 33140, United States; Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, United States
| |
Collapse
|
7
|
Ma Q, Niu R, Huang W, Da L, Tang Y, Jiang D, Xi Y, Zhang C. Long Noncoding RNA PTPRG Antisense RNA 1 Reduces Radiosensitivity of Nonsmall Cell Lung Cancer Cells Via Regulating MiR-200c-3p/TCF4. Technol Cancer Res Treat 2020; 19:1533033820942615. [PMID: 33174523 PMCID: PMC7672737 DOI: 10.1177/1533033820942615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: PTPRG antisense RNA 1 has been well-documented to exert an oncogenic role in diverse neoplasms. However, the precise role of PTPRG antisense RNA 1 in regulating radiosensitivity of nonsmall cell lung cancer cells remains largely elusive. Methods: Expression levels of PTPRG antisense RNA 1 and miR-200c-3p in nonsmall cell lung cancer tissues and cells were detected by quantitative real-time polymerase chain reaction, while transcription factor 4 expression was examined by immunohistochemistry and Western blot. After nonsmall cell lung cancer cells were exposed to X-ray with different doses in vitro, Cell Counting Kit-8 assay and colony formation assay were conducted to determine the influence of PTPRG antisense RNA 1 on cell viability. Interaction between miR-200c-3p and PTPRG antisense RNA 1 as well as transcription factor 4 was investigated by dual luciferase reporter assay. Result: In nonsmall cell lung cancer tissues, the expressions of PTPRG antisense RNA 1 and transcription factor 4 were significantly upregulated, whereas the expression of miR-200c-3p was downregulated. It was also proved that PTPRG antisense RNA 1 and 3′-untranslated region of transcription factor 4 can bind to miR-200c-3p. Under X-ray irradiation, overexpressed PTPRG antisense RNA 1 could promote the viability and enhance the radioresistance of nonsmall cell lung cancer cells, and this effect was partially weakened by miR-200c-3p mimics. Transcription factor 4 was identified as a target gene of miR-200c-3p, which could be positively regulated by PTPRG antisense RNA 1. Conclusion: PTPRG antisense RNA 1 reduces the radiosensitivity of nonsmall cell lung cancer cells via modulating miR-200c-3p/TCF4 axis.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, People's Hospital, Xintai, China
| | - Rungui Niu
- Department of Geratology, Shanxi Cancer Hospital, Taiyuan, China
| | - Wei Huang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liangshan Da
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanlei Tang
- Department of Chest Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daowen Jiang
- Department of Chest Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, China
| | - Congjun Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Wu CE, Zhuang YW, Zhou JY, Liu SL, Wang RP, Shu P. Cinnamaldehyde enhances apoptotic effect of oxaliplatin and reverses epithelial-mesenchymal transition and stemnness in hypoxic colorectal cancer cells. Exp Cell Res 2019; 383:111500. [PMID: 31306656 DOI: 10.1016/j.yexcr.2019.111500] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/27/2022]
Abstract
Oxaliplatin has been widely applied in clinical tumor chemotherapy, the treatment failure of which mainly blames on low susceptibility resulted from intrinsic or acquired drug resistance in tumor cells. Microenvironmental hypoxia is one of the important pathological features of solid tumors, which is closely related to the radiochemotherapy tolerance and poor prognosis. Cinnamaldehyde is extracted from Cinnamomum cassia with inhibiting effect against kinds of tumors. In this study, we demonstrated that hypoxia reduced the sensitivity to oxaliplatin in colorectal cancer (CRC) cells via inducing EMT and stemness. Nonetheless, cinnamaldehyde increased the curative effect of oxaliplatin by promoting apoptosis both in vitro and in vivo. Mechanistically, cinnamaldehyde and oxaliplatin synergistically reversed hypoxia-induced EMT and stemness of CRC cells and suppressed hypoxia-activated Wnt/β-catenin pathway synergistically. These consequences uncovered the potential therapeutic value of cinnamaldehyde and provided novel ideas on improving the sensitivity of oxaliplatin in CRC therapy.
Collapse
Affiliation(s)
- Cun-En Wu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yu-Wen Zhuang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China; Jinling Hospital Department of Integrated Traditional and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210002, Jiangsu, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jin-Yong Zhou
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Shen-Lin Liu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Rui-Ping Wang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Peng Shu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Naveen SV, Kalaivani K. Cancer stem cells and evolving novel therapies: a paradigm shift. Stem Cell Investig 2018; 5:4. [PMID: 29430460 DOI: 10.21037/sci.2018.01.03] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Accumulating evidence of stem-like cells/cancer stem cells (CSCs) has been gaining attention of cancer researchers over the last decade. Though many tumors harbor CSCs in their dedicated niches, identifying and exterminating those cells has proved to be difficult, due to their heterogenous nature, as the CSC phenotype vary substantially and may undergo reversible phenotypic changes. As a tumor propagation initiator, CSCs are considered as an exciting novel therapy for a better therapeutic outcome. This review discusses the major advances in the development of CSC-based therapies of most common cancers which includes lung, cervix and liver cancers.
Collapse
|
10
|
Chen CY, Chen YY, Hsieh MS, Ho CC, Chen KY, Shih JY, Yu CJ. Expression of Notch Gene and Its Impact on Survival of Patients with Resectable Non-small Cell Lung Cancer. J Cancer 2017; 8:1292-1300. [PMID: 28607605 PMCID: PMC5463445 DOI: 10.7150/jca.17741] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND: Notch signaling has been demonstrated to frequently participate in the process of lung carcinogenesis. This study aimed to search Notch expression in non-small cell lung cancer (NSCLC) and its impact on survival. METHODS: From 2001 to 2011, patients with diagnosis of NSCLC who received surgical resection were included. The expression of Notch gene was assessed by real-time polymerase chain reaction (RT-PCR). Clinical characteristics, histological types, disease stages, and outcomes were analyzed. RESULTS: Ninety-seven patients with NSCLC being explored the expression of Notch gene (Notch1 - 4). Seventy-five patients (77.3%) were adenocarcinoma. Patients with adenocarcinoma had higher expression of Notch2 than other histology types (p < 0.001). Otherwise, patients with squamous cell carcinoma had relative higher expression of Notch1 and Notch3 expression (p = 0.014 and p = 0.032, respectively). Notch2 expression increased associated with patients with more advanced lung cancer stage. Patients who had cancer recurrence also had higher Notch2 expression (p = 0.008). The patient group with lung adenocarcinoma of both high Notch1 and Notch3 expression had a shorter median disease-free survival (DFS) (both high v.s both low: DFS, median, 7.2 v.s 25.3 months, p = 0.03). However, the expression of Notch gene had no impact on overall survival. CONCLUSIONS: Patients with lung adenocarcinoma had higher Notch2 expression. Patients with higher Notch2 expression also had higher rate of cancer recurrence. Both higher Notch1 and Notch3 expression was associated with poor prognosis in lung adenocarcinoma.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Ying-Yin Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology and Graduate Institute of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Chi Ho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Yuan Shih
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chong-Jen Yu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Bae WJ, Lee SH, Rho YS, Koo BS, Lim YC. Transforming growth factor β1 enhances stemness of head and neck squamous cell carcinoma cells through activation of Wnt signaling. Oncol Lett 2016; 12:5315-5320. [PMID: 28105240 DOI: 10.3892/ol.2016.5336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 09/22/2016] [Indexed: 01/02/2023] Open
Abstract
Transforming growth factor β (TGFβ) ligands, including TGFβ1, are multifunctional cytokines known as key regulators of cell growth, differentiation and inflammation. Dysregulated TGFβ signaling is common in numerous solid tumors, including head and neck squamous cell carcinoma (HNSCC). Previously, TGFβ ligands were also reported to be associated with an enhancement of stemness in glioma stem-like cells. However, their role in HNSCC cancer stem cells (CSCs) has not been explored. The present study demonstrated that TGFβ1 enriches the properties of HNSCC CSCs. TGFβ1 promoted sphere formation and increased stemness-associated gene expression (Oct4 and Sox2) of primary HNSCC CSCs. Additionally, the population of aldehyde dehydrogenase (ALDH)-positive cells was increased subsequent to exogenous treatment of cells with TGFβ1. In addition, following stimulation with TGFβ1, the cells exhibited more resistance to cisplatin and elevated expression of Twist, Snail and Slug. Mechanistically, TGFβ1 acts as an upstream stimulator of Wnt/β-catenin signaling. Collectively, the present findings provide insights toward the development of TGFβ1 signaling inhibition strategies for treating HNSCC CSCs.
Collapse
Affiliation(s)
- Woo-Jin Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 142-702, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul 03181, Republic of Korea
| | - Young-Soo Rho
- Department of Otorhinolaryngology-Head and Neck Surgery, Ilsong Memorial Institute of Head and Neck Cancer, Hallym University, College of Medicine, Seoul 05355, Republic of Korea
| | - Bon-Seok Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon 35015, Republic of Korea
| | - Young-Chang Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 142-702, Republic of Korea
| |
Collapse
|
12
|
Novel mechanisms and approaches to overcome multidrug resistance in the treatment of ovarian cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:266-275. [PMID: 27717733 DOI: 10.1016/j.bbcan.2016.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022]
Abstract
Ovarian cancer remains the leading cause of gynecological cancer-related mortality despite the advances in surgical techniques and chemotherapy drugs over the past three decades. Multidrug resistance (MDR) to chemotherapy is the major cause of treatment failure. Previous research has focused mainly on strategies to reverse MDR by targeting the MDR1 gene encoded P-glycoprotein (Pgp) with small molecular compound inhibitors. However, prior Pgp inhibitors have shown very limited clinical success because these agents have relatively low potency and high toxicity. Therefore, identification of more specific and potent new inhibitors would be useful. In addition, emerging evidence suggests that cancer stem cells (CSCs), deregulated non-coding RNA (ncRNA), autophagy, and tumor heterogeneity also contribute significantly to drug sensitivity/resistance in ovarian cancer. This review summarizes these novel mechanisms of MDR and evaluates several new concepts to overcome MDR in the treatment of ovarian cancer. These new strategies include overcoming MDR with more potent and specific Pgp inhibitors, targeting CSCs and ncRNA, modulating autophagy signaling pathway, and targeting tumor heterogeneity.
Collapse
|
13
|
Dotto GP, Rustgi AK. Squamous Cell Cancers: A Unified Perspective on Biology and Genetics. Cancer Cell 2016; 29:622-637. [PMID: 27165741 PMCID: PMC4870309 DOI: 10.1016/j.ccell.2016.04.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 01/11/2023]
Abstract
Squamous cell carcinomas (SCCs) represent the most frequent human solid tumors and are a major cause of cancer mortality. These highly heterogeneous tumors arise from closely interconnected epithelial cell populations with intrinsic self-renewal potential inversely related to the stratified differentiation program. SCCs can also originate from simple or pseudo-stratified epithelia through activation of quiescent cells and/or a switch in cell-fate determination. Here, we focus on specific determinants implicated in the development of SCCs by recent large-scale genomic, genetic, and epigenetic studies, and complementary functional analysis. The evidence indicates that SCCs from various body sites, while clinically treated as separate entities, have common determinants, pointing to a unified perspective of the disease and potential new avenues for prevention and treatment.
Collapse
Affiliation(s)
- G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Liu ZY, Wu T, Li Q, Wang MC, Jing L, Ruan ZP, Yao Y, Nan KJ, Guo H. Notch Signaling Components: Diverging Prognostic Indicators in Lung Adenocarcinoma. Medicine (Baltimore) 2016; 95:e3715. [PMID: 27196489 PMCID: PMC4902431 DOI: 10.1097/md.0000000000003715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies.
Collapse
Affiliation(s)
- Zhi-Yan Liu
- From the Department of Medical Oncology, the First Affiliated Hospital of Xi'an JiaoTong University (Z-YL, TW, QL, M-CW, LJ, Z-PR, YY, K-JN, HG); and Department of Respiratory Medicine, Xi'an central Hospital (Z-YL), Xi'an, Shaanxi, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang Q, Gao M, Luo G, Han X, Bao W, Cheng Y, Tian W, Yan M, Yang G, An J. Enhancement of Radiation Sensitivity in Lung Cancer Cells by a Novel Small Molecule Inhibitor That Targets the β-Catenin/Tcf4 Interaction. PLoS One 2016; 11:e0152407. [PMID: 27014877 PMCID: PMC4807779 DOI: 10.1371/journal.pone.0152407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/14/2016] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy is an important treatment choice for unresectable advanced human lung cancers, and a critical adjuvant treatment for surgery. However, radiation as a lung cancer treatment remains far from satisfactory due to problems associated with radiation resistance in cancer cells and severe cytotoxicity to non-cancer cells, which arise at doses typically administered to patients. We have recently identified a promising novel inhibitor of β-catenin/Tcf4 interaction, named BC-23 (C21H14ClN3O4S), which acts as a potent cell death enhancer when used in combination with radiation. Sequential exposure of human p53-null non-small cell lung cancer (NSCLC) H1299 cells to low doses of x-ray radiation, followed 1 hour later by administration of minimally cytotoxic concentrations of BC-23, resulted in a highly synergistic induction of clonogenic cell death (combination index <1.0). Co-treatment with BC-23 at low concentrations effectively inhibits Wnt/β-catenin signaling and down-regulates c-Myc and cyclin D1 expression. S phase arrest and ROS generation are also involved in the enhancement of radiation effectiveness mediated by BC-23. BC-23 therefore represents a promising new class of radiation enhancer.
Collapse
Affiliation(s)
- Qinghao Zhang
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Mei Gao
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Guifen Luo
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Xiaofeng Han
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Wenjing Bao
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,Department of Medicine, Liaoning University of Chinese Traditional Medicine, No. 33 Beiling Street, Huanggu District, Shenyang, China
| | - Yanyan Cheng
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,Department of Medicine, Liaoning University of Chinese Traditional Medicine, No. 33 Beiling Street, Huanggu District, Shenyang, China
| | - Wang Tian
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Maocai Yan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Guanlin Yang
- Department of Medicine, Liaoning University of Chinese Traditional Medicine, No. 33 Beiling Street, Huanggu District, Shenyang, China
| | - Jing An
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, New York, United States of America.,Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
16
|
Codony-Servat J, Verlicchi A, Rosell R. Cancer stem cells in small cell lung cancer. Transl Lung Cancer Res 2016; 5:16-25. [PMID: 26958490 PMCID: PMC4758966 DOI: 10.3978/j.issn.2218-6751.2016.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is one of the most aggressive lung tumors, with poor survival rates. Although patients may initially respond to treatment, this is followed by rapid development of drug resistance and disease progression. SCLC patients often present with metastasis at time of diagnosis, ruling out surgery as a treatment option. Currently, treatment options for this disease remain limited and platinum-based chemotherapy is the treatment of choice. A better understanding of the biology of SCLC could allow us to identify new therapeutic targets. Cancer stem cell (CSC) theory is currently crucial in cancer research and could provide a viable explanation for the heterogeneity, drug resistance, recurrence and metastasis of several types of tumors. Some characteristics of SCLC, such as aggressiveness, suggest that this kind of tumor could be enriched in CSCs, and drug resistance in SCLC could be attributable to the existence of a CSC subpopulation in SCLC. Herein we summarize current understanding of CSC in SCLC, including the evidence for CSC markers and signaling pathways involved in stemness. We also discuss potential ongoing strategies and areas of active research in SCLC, such as immunotherapy, that focus on inhibition of signaling pathways and targeting molecules driving stemness. Understanding of signaling pathways and the discovery of new therapeutic markers specific to CSCs will lead to new advances in therapy and improvements in prognosis of SCLC patients. Therefore, evaluation of these CSC-specific molecules and pathways may become a routine part of SCLC diagnosis and therapy.
Collapse
|
17
|
Wang H, Yang M, Lin L, Ren H, Lin C, Lin S, Shen G, Ji B, Meng C. HepG2 cells acquire stem cell-like characteristics after immune cell stimulation. Cell Oncol (Dordr) 2015; 39:35-45. [DOI: 10.1007/s13402-015-0249-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 01/06/2023] Open
|
18
|
Wang L, Tian H, Yuan J, Wu H, Wu J, Zhu X. CONSORT: Sam68 Is Directly Regulated by MiR-204 and Promotes the Self-Renewal Potential of Breast Cancer Cells by Activating the Wnt/Beta-Catenin Signaling Pathway. Medicine (Baltimore) 2015; 94:e2228. [PMID: 26656364 PMCID: PMC5008509 DOI: 10.1097/md.0000000000002228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Breast cancer stem cells (BCSCs) are considered to be responsible for recurrence in breast cancer. The 68 kDa Src-associated protein in mitosis (Sam68) has been linked to the development and progression of breast cancer; however, the posttranscriptional regulation and role of Sam68 in BCSC self-renewal remain unclear.Sam68 was ectopically overexpressed or knocked down using a siRNA; the self-renewal potential of breast cancer cell lines was assessed using flow cytometry, in vitro mammosphere culture and a xenograft model in NOD/SCID mice. Activation of beta-catenin was assessed by immunohistochemical staining, Western blotting, and luciferase reporter gene assays. The ArrayExpress dataset GSE45666 was used to identify conserved microRNAs downregulated in breast cancer; real-time PCR, Western blotting, luciferase reporter assay, and xenografted tumor model were used to confirm miR-204 regulated Sam68.We found that endogenous Sam68 expression correlated positively with the self-renewal potential of breast cancer cell lines. Overexpression of Sam68 promoted, whereas knockdown reduced, breast cancer cell self-renewal potential in vitro and tumorigenicity in vivo. The Wnt/beta-catenin pathway was identified as a functional mediator of Sam68-induced self-renewal in SKBR-3 and MCF-7 cells. Furthermore, miR-204 was found to be frequently downregulated in human breast cancer and confirmed to directly target Sam68; miR-204 inhibited the self-renewal of breast cancer cell lines by targeting and suppressing Sam68.Our study reveals that Sam68 is regulated by miR-204 and may play an important role in the self-renewal of BCSCs via activating the Wnt/beta-catenin pathway. Sam68 may represent a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Lan Wang
- From the Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, China (LW, HW); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (HT, XZ); and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China (HT, JY, JW, XZ)
| | | | | | | | | | | |
Collapse
|
19
|
Ding LC, Huang XY, Zheng FF, Xie J, She L, Feng Y, Su BH, Zheng DL, Lu YG. FZD2 inhibits the cell growth and migration of salivary adenoid cystic carcinomas. Oncol Rep 2015; 35:1006-12. [PMID: 25695658 DOI: 10.3892/or.2015.3811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 11/06/2022] Open
Abstract
Several studies have reported that FZD2 regulates tumor biology in a complex manner. The aim of the present study was to identify the role of FZD2 in the cell growth and metastasis of salivary adenoid cystic carcinomas (SACCs). The expression of FZD2 in ACC-83 and ACC-LM cells were measured with real-time PCR. Immunohistochemical staining was used to detect the expression of FZD2 in clinical SACC samples with or without metastasis. Cell proliferation and Transwell assays were performed to explore the effects of FZD2 on cell growth and migration following the silencing of FZD2 with small interference RNAs and the overexpression of FZD2 with plasmid. Our data showed that FZD2 was downregulated in ACC-LM cells, which are an adenoid cystic carcinoma cell line with high metastatic potential, compared to ACC-83 cells, which have low metastatic potential. Additionally, the expression of FZD2 was lower in SACC tissues with metastasis compared to SACC tissues without metastasis (P<0.05). Cell proliferation and migration of ACC-83 cells were increased after the knockdown of FZD2 and decreased following overexpression of FZD2. Knockdown of FZD2 downregulated the expression of PAI-1. Our results suggest that FZD2 may be a tumor suppressor gene in SACCs that inhibits cell growth and migration.
Collapse
Affiliation(s)
- Lin-Can Ding
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Xiao-Yu Huang
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Fei-Fei Zheng
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Jian Xie
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Lin She
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Yan Feng
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Bo-Hua Su
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| | - Da-Li Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, P.R. China
| | - You-Guang Lu
- Department of Preventive Dentistry, Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002, P.R. China
| |
Collapse
|
20
|
Pathway crosstalk analysis of non-small cell lung cancer based on microarray gene expression profiling. TUMORI JOURNAL 2015; 101:111-6. [PMID: 25702679 DOI: 10.5301/tj.5000225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 02/03/2023]
Abstract
AIMS AND BACKGROUND Lung cancer is characterized by uncontrolled cell growth in the lung tissue. A major challenge in cancer research is the biological interpretation of the complexity of cancer somatic mutation profiles. This study examines the role of pathway crosstalk in the metastatic process of lung cancer cells based on DNA microarray analysis. METHODS We downloaded the gene expression profile GSE10096 from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified and the gene functions of selected DEGs were further analyzed. After KEGG pathway analysis, dysfunctional pathways and dysfunctional crosstalk between pathways in two types of lung cancer cells (low metastasis, M1, and high metastasis, M5) were examined. RESULTS A total of 13433 genes were filtered as DEGs, and after pathway analysis, 108 signaling pathways related to cancer signaling pathways were screened, including a host pathway hsa05223 and 79 neighbor pathways. Dysfunctional crosstalk analysis of pathways revealed that pathway crosstalk dysfunction of M1 and M5 cells mainly occurred between hsa05223 (non-small cell lung cancer) and hsa04310 (Wnt signaling pathway), and between non-small cell lung cancer and hsa04520 (adherens junction), respectively. Significant pathway crosstalk dysfunction also existed between adherens junction and other classical signaling pathways such as hsa04110 (cell cycle), hsa04310 (Wnt signaling pathway), hsa04350 (TGF-beta signaling pathway), and hsa04630 (Jak-STAT signaling pathway). CONCLUSIONS Our discovery will help to elucidate the molecular mechanisms of the high carcinogenic and metastatic potential of lung cancer cells. In addition, it will pave the way to developing effective therapies for lung cancer.
Collapse
|
21
|
RBPJ inhibition impairs the growth of lung cancer. Tumour Biol 2015; 36:3751-6. [PMID: 25589461 DOI: 10.1007/s13277-014-3015-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022] Open
Abstract
The exact effects of the modulation of Notch signaling pathway on cell growth have been shown to depend on tumor cell type. Recombination signal-binding protein Jκ (RBPJ) is a key transcription factor downstream of receptor activation in Notch signaling pathway. Here, we evaluated the effects of RBPJ inhibition on the growth of lung cancer cells. We found that a short hairpin interfering RNA (shRNA) for RBPJ efficiently inhibited RBPJ expression in lung cancer cells, resulting in a significant decrease in the cell growth. Further analyses showed that RBPJ inhibition altered the levels of its downstream targets, including p21, p27, CDK2, Hes1, Bcl-2, and SKP2, to prevent the cells from growing. Our data thus suggest that shRNA intervention of RBPJ expression could be a promising therapeutic approach for treating human lung cancer.
Collapse
|
22
|
Cancer stem cells, lymphangiogenesis, and lymphatic metastasis. Cancer Lett 2014; 357:438-47. [PMID: 25497008 DOI: 10.1016/j.canlet.2014.12.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022]
Abstract
Although current opinion indicates that tumor-induced lymphangiogenesis plays a key role in promoting the initial spread of malignant tumors, the mechanism that underlies lymphatic spread is not clear. The recent discovery of cancer stem cells (CSCs) in human tumors has challenged our current understanding of tumor recurrence, drug resistance, and metastasis, and opens up new research directions on how cancer cells are capable of switching from dormancy to malignancy. CSCs can be directly and indirectly involved in tumor-induced lymphangiogenesis and ultimately promote lymphatic metastasis. However, the details and the possible relationship between CSCs, lymphangiogenesis, and lymphatic metastasis remain ambiguous, and the origin of tumor lymphatic endothelial cells is controversial. Elucidation of these factors may provide useful information for future research and cancer treatment. In this article, we summarize current knowledge of CSCs, tumor-induced lymphangiogenesis, and lymphatic metastasis and attempt to find an association between key molecular and cellular mechanisms. We provide an overview of CSCs and lymphatic vasculature as potential therapeutic targets. CSC- and lymphatic vasculature-targeted therapy may bring new hope for cancer treatment.
Collapse
|
23
|
Shiomi T, Sklepkiewicz P, Bodine PVN, D'Armiento JM. Maintenance of the bronchial alveolar stem cells in an undifferentiated state by secreted frizzled-related protein 1. FASEB J 2014; 28:5242-9. [PMID: 25212222 DOI: 10.1096/fj.13-242735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bronchoalveolar stem cells (BASCs) are mobilized during injury and identified as lung progenitor cells, but the molecular regulation of this population of cells has not been elucidated. Secreted frizzled-related protein 1 (SFRP1) is a critical molecule involved in alveolar duct formation in the lung and here we demonstrate its importance in controlling cell differentiation during lung injury. Mice lacking SFRP1 exhibited a rapid repair response leading to aberrant proliferation of differentiated cells. Furthermore, SFRP1 treatment of BASCs maintained these cells in a quiescent state. In vivo overexpression of SFRP1 after injury suppressed differentiation and resulted in the accumulation of BASCs correlating with in vitro studies. These findings suggest that SFRP1 expression in the adult maintains progenitor cells within their undifferentiated state and suggests that manipulation of this pathway is a potential target to augment the lung repair process during disease.
Collapse
Affiliation(s)
- Takayuki Shiomi
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| | - Piotr Sklepkiewicz
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| | | | - Jeanine M D'Armiento
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA; and
| |
Collapse
|
24
|
Luo J, Zhou X, Yakisich JS. Stemness and plasticity of lung cancer cells: paving the road for better therapy. Onco Targets Ther 2014; 7:1129-34. [PMID: 25018639 PMCID: PMC4075950 DOI: 10.2147/ott.s62345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a devastating disease that is responsible for around 160,000 deaths each year in United States. The discovery that lung cancer, like most other solid tumors, contains a subpopulation of cancer stem cells or cancer stem-like cells (CSCs/CS-LCs) that if eliminated could lead to a cure has brought new hope. However, the exact nature of the putative lung CSCs/CS-LCs is not known and therefore therapies to eliminate this subpopulation have been elusive. A limited knowledge and understanding of cancer stem cell properties and tumor biology may be responsible for the limited clinical success. In this review we discuss the stemness and plasticity properties of lung cancer cells that are critical aspects in terms of developing effective therapies. We suggest that the available experimental evidence obtained from lung cancer cell lines and patients’ derived primary cultures does not support a tumor model consistent with the classical CSC model. Instead, all lung cancer cells may be extremely versatile and new models of cancer stem cells may be better working models.
Collapse
Affiliation(s)
- Judong Luo
- Changzhou Tumor Hospital, Soochow University, Changzhou, People's Republic of China ; School of Radiation Medicine and Protection, Jiangsu Province Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Xifa Zhou
- Changzhou Tumor Hospital, Soochow University, Changzhou, People's Republic of China
| | | |
Collapse
|
25
|
Tomao F, Papa A, Strudel M, Rossi L, Lo Russo G, Benedetti Panici P, Ciabatta FR, Tomao S. Investigating molecular profiles of ovarian cancer: an update on cancer stem cells. J Cancer 2014; 5:301-10. [PMID: 24723972 PMCID: PMC3982176 DOI: 10.7150/jca.8610] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/09/2014] [Indexed: 12/14/2022] Open
Abstract
Currently we are more and more improving our knowledge about the characteristics and the role of cancer stem cells in human cancer. Particularly we have realized that self-renewing ovarian cancer stem cells (CSCs) or ovarian cancer-initiating cells, and mesenchymal stem cells (SCs) too, are probably implicated in the etiopathogenesis of epithelial ovarian cancer (EOC). There is clear evidence that these cells are also involved in its intra- and extra-peritoneal diffusion and in the occurrence of chemo-resistance. In assessing the molecular characteristics of ovarian CSCs, we have to take note that these cellular populations are rare and the absence of specific cell surface markers represents a challenge to isolate and identify pure SC populations. In our review, we focused our attention on the molecular characteristics of epithelial ovarian CSCs and on the methods to detect them starting from their biological features. The study of ovarian CSCs is taking on an increasingly important strategic role, mostly for the potential therapeutic application in the next future.
Collapse
Affiliation(s)
- Federica Tomao
- 1. Department of Gynecology and Obstetrics, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Anselmo Papa
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Martina Strudel
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Luigi Rossi
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Giuseppe Lo Russo
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | | | | | - Silverio Tomao
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| |
Collapse
|
26
|
Kellner J, Liu B, Kang Y, Li Z. Fact or fiction--identifying the elusive multiple myeloma stem cell. J Hematol Oncol 2013; 6:91. [PMID: 24314019 PMCID: PMC4029203 DOI: 10.1186/1756-8722-6-91] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 12/21/2022] Open
Abstract
Multiple Myeloma (MM) is a debilitating disease of proliferating and malignant plasma cells that is currently incurable. The ability of monoclonal recurrence of disease suggests it might arise from a stem cell-like population capable of self-renewal. The difficulty to isolate the cancer stem-like cell in MM has introduced confusion toward this hypothesis. However, recent evidence has suggested that MM originates from the B cell lineage with memory-B cell like features, allowing for self-renewal of the progenitor-like status and differentiation to a monoclonal plasma cell population. Furthermore, this tumor-initiating cell uses signaling pathways and microenvironment similar to the hematopoietic stem cell, though hijacking these mechanisms to create and favor a more tumorigenic environment. The bone marrow niche allows for pertinent evasion, either through avoiding immunosurveillance or through direct interaction with the stroma, inducing quiescence and thus drug resistance. Understanding the interaction of the MM stem cell to the microenvironment and the mechanisms utilized by various stem cell-like populations to allow persistence and therapy-resistance can enable for better targeting of this cell population and potential eradication of the disease.
Collapse
Affiliation(s)
| | | | | | - Zihai Li
- Hollings Cancer Center, 29425 Charleston, SC, USA.
| |
Collapse
|
27
|
You M, Varona-Santos J, Singh S, Robbins DJ, Savaraj N, Nguyen DM. Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro. J Thorac Cardiovasc Surg 2013; 147:508-16. [PMID: 24094913 DOI: 10.1016/j.jtcvs.2013.08.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The present study sought to determine whether the Hedgehog (Hh) pathway is active and regulates the cell growth of cultured malignant pleural mesothelioma (MPM) cells and to evaluate the efficacy of pathway blockade using smoothened (SMO) antagonists (SMO inhibitor GDC-0449 or the antifungal drug itraconazole [ITRA]) or Gli inhibitors (GANT61 or the antileukemia drug arsenic trioxide [ATO]) in suppressing MPM viability. METHODS Selective knockdown of SMO to inhibit Hh signaling was achieved by small interfering RNA in 3 representative MPM cells. The growth inhibitory effect of GDC-0449, ITRA, GANT61, and ATO was evaluated in 8 MPM lines, with cell viability quantified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was determined by annexinV/propidium iodide staining and flow cytometry. RESULTS SMO small interfering RNA mediated a two- to more than fivefold reduction of SMO and Gli1 gene expression as determined by real-time quantitative reverse-transcriptase polymerase chain reaction, indicating significant Hh pathway blockade. This was associated with significantly reduced cell viability (34% ± 7% to 61% ± 14% of nontarget small interfering RNA controls; P = .0024 to P = .043). Treating MPM cells with Hh inhibitors resulted in a 1.5- to 4-fold reduction of Gli1 expression. These 4 Hh antagonists strongly suppressed MPM cell viability. More importantly, ITRA, ATO, GANT61 induced significant apoptosis in the representative MPM cells. CONCLUSIONS Hh signaling is active in MPM and regulates cell viability. ATO and ITRA were as effective as the prototypic SMO inhibitor GDC-0449 and the Gli inhibitor GANT61 in suppressing Hh signaling in MPM cells. Pharmaceutical agents Food and Drug Administration-approved for other indications but recently found to have anti-Hh activity, such as ATO or ITRA, could be repurposed to treat MPM.
Collapse
Affiliation(s)
- Min You
- Thoracic Surgery Section, Division of Cardiothoracic Surgery, Department of Surgery, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Javier Varona-Santos
- Thoracic Surgery Section, Division of Cardiothoracic Surgery, Department of Surgery, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Samer Singh
- Molecular Oncology Program, Department of Surgery, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - David J Robbins
- Molecular Oncology Program, Department of Surgery, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Niramol Savaraj
- Division of Oncology, Department of Medicine, Miami Veterans Affairs Medical Center, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla
| | - Dao M Nguyen
- Thoracic Surgery Section, Division of Cardiothoracic Surgery, Department of Surgery, Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, Fla.
| |
Collapse
|
28
|
Liu J, Xiao Z, Wong SKM, Tin VPC, Ho KY, Wang J, Sham MH, Wong MP. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells. Oncotarget 2013; 4:1698-1711. [PMID: 24091605 PMCID: PMC3858556 DOI: 10.18632/oncotarget.1246] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023] Open
Abstract
Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR China
| | - Zhijie Xiao
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR China
| | - Sunny Kit-Man Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR China
| | - Vicky Pui-Chi Tin
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR China
| | - Ka-Yan Ho
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR China
| | - Junwen Wang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR China
| | - Mai-Har Sham
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR China
| | - Maria Pik Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR China
| |
Collapse
|
29
|
Koren A, Motaln H, Cufer T. Lung cancer stem cells: a biological and clinical perspective. Cell Oncol (Dordr) 2013; 36:265-75. [DOI: 10.1007/s13402-013-0141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
|
30
|
Kim JE, Kim H, Choe JY, Sun P, Jheon S, Chung JH. High expression of Sonic hedgehog signaling proteins is related to the favorable outcome, EGFR mutation, and lepidic predominant subtype in primary lung adenocarcinoma. Ann Surg Oncol 2013; 20 Suppl 3:S570-6. [PMID: 23709101 DOI: 10.1245/s10434-013-3022-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Dysregulation of the Sonic hedgehog (SHH) signaling pathway has been identified in many human malignancies. However, it remains unclear whether this pathway is activated in human lung adenocarcinoma. METHODS We investigated the expression of the SHH ligand and its downstream molecules, such as glioma-associated oncogene homologue (GLI)-1, GLI-2, GLI-3, and ATP-binding cassette G2 (ABCG2), in 166 cases of surgically resected lung adenocarcinoma by immunohistochemistry. Correlations between the expression of SHH-related proteins and clinicopathologic parameters, histologic subtypes, and prognostic significance were statistically analyzed. RESULTS SHH was highly expressed in the 36.1 % (60/166), GLI-1, GLI-2, and ABCG2 were found in 90/164 (54.9 %), 26/166 (15.7 %), and 139/165 (84.2 %), respectively, and GLI-3 was positive in all cases. SHH was more frequently highly expressed in nonsmokers, patients with no recurrences, lepidic predominant subtype, and with EGFR mutation (p < 0.05, respectively). The high expression of SHH and GLI-1 was related to better overall survival and progression-free survival (p < 0.05). CONCLUSIONS The SHH signaling pathway is frequently up-regulated in a subset of lung adenocarcinoma and is significantly associated with EGFR mutation and lepidic subtype. Although SHH signaling protein expression is not an independent prognostic marker, the expression of these proteins can predict a better prognostic outcome.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707, Republic of Korea
| | | | | | | | | | | |
Collapse
|
31
|
Zhao J, Ma MZ, Ren H, Liu Z, Edelman MJ, Pan H, Mao L. Anti-HDGF targets cancer and cancer stromal stem cells resistant to chemotherapy. Clin Cancer Res 2013; 19:3567-76. [PMID: 23695169 DOI: 10.1158/1078-0432.ccr-12-3478] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Approximately one third of the patients with advanced non-small cell lung carcinoma (NSCLC) will initially respond to platinum-based chemotherapy, but virtually all tumors will progress (acquired resistance). The remainder will progress during initial treatment (primary resistance). In this study, we test whether the treatment can be improved by inhibiting hepatoma-derived growth factor (HDGF). EXPERIMENTAL DESIGN Thirteen primary NSCLC heterotransplant models were used to test four treatment regimens, including platinum-based chemotherapy with and without bevacizumab (VEGF-neutralizing antibody) or HDGF-H3 (HDGF-neutralizing antibody) and chemotherapy with bevacizumab and HDGF-H3. Expression of stem cell-related genes was measured using quantitative reverse transcription PCR (qRT-PCR) and immunohistochemistry. RESULTS Among 13 primary NSCLC heterotransplant models, three (23%) responded to chemotherapy but all relapsed within 20 days. The residual tumors after response to the chemotherapy exhibited an increased expression in 51 (61%) of 84 genes related with stem cell proliferation and maintenance, particularly those in Notch and Wnt pathways, suggesting enrichment for stem cell populations in the residual tumors. Interestingly, tumors from two of three models treated with HDGF-H3, bevacizumab, and chemotherapy combination did not relapse during 6 months of posttreatment observation. Importantly, this treatment combination substantially downregulated expression levels in 57 (68%) of 84 stem cell-related genes, including 34 (67%) of 51 genes upregulated after the chemotherapy. CONCLUSION These data support the hypothesis that cancer stem cells (CSC) are a mechanism for chemotherapy resistance and suggest HDGF may be a target for repressing CSCs to prevent relapse of NSCLC sensitive to chemotherapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Ahmed N, Abubaker K, Findlay J, Quinn M. Cancerous ovarian stem cells: obscure targets for therapy but relevant to chemoresistance. J Cell Biochem 2013; 114:21-34. [PMID: 22887554 DOI: 10.1002/jcb.24317] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
Abstract
Chemotherapy with platinum and taxanes is the first line of treatment for all epithelial ovarian cancer (EOC) patients after debulking surgery. Even though the treatment is initially effective in 80% of patients, recurrent cancer is inevitable in the vast majority of cases. Emerging evidence suggests that some tumor cells can survive chemotherapy by activating the self-renewal pathways resulting in tumor progression and clinical recurrence. These defined population of cells commonly termed as "cancer stem cells" (CSC) may generate the bulk of the tumor by using differentiating pathways. These cells have been shown to be resistant to chemotherapy and, to have enhanced tumor initiating abilities, suggesting CSCs as potential targets for treatment. Recent studies have introduced a new paradigm in ovarian carcinogenesis which proposes in situ carcinoma at the fimbrial end of the fallopian tube to generate high-grade serous ovarian carcinomas, in contrast to ovarian cortical inclusion cysts (CIC) which produce borderline and low grade serous, mucinous, endometrioid, and clear cell carcinomas. This review summarizes recent advances in our understanding of the cellular origin of EOC and the molecular mechanisms defining the basis of CSC in EOC progression and chemoresistance. Using a model ovarian cancer cell line, we highlight the role of CSC in response to chemotherapy, and relate how CSCs may impact on chemoresistance and ultimately recurrence. We also propose the molecular targeting of CSCs and suggest ways that may improve the efficacy of current chemotherapeutic regimens needed for the management of this disease.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma in Situ/metabolism
- Carcinoma in Situ/pathology
- Carcinoma in Situ/therapy
- Carcinoma, Ovarian Epithelial
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/therapy
- Fallopian Tubes/drug effects
- Fallopian Tubes/metabolism
- Fallopian Tubes/pathology
- Female
- Humans
- Molecular Targeted Therapy
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Ovary/drug effects
- Ovary/metabolism
- Ovary/pathology
Collapse
Affiliation(s)
- Nuzhat Ahmed
- Women's Cancer Research Centre, Royal Women's Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
33
|
Cheng F, Pekkonen P, Ojala PM. Instigation of Notch signaling in the pathogenesis of Kaposi's sarcoma-associated herpesvirus and other human tumor viruses. Future Microbiol 2013; 7:1191-205. [PMID: 23030424 DOI: 10.2217/fmb.12.95] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Notch pathway is a highly conserved signaling circuit with a critical role in cell-fate determination and tumor initiation. Notch is reported to regulate various key events in tumor progression, such as angiogenesis, maintenance of cancer stem cells, resistance to therapeutic agents and metastasis. This review describes the intimate interplay of human tumor viruses with the Notch signaling pathway. Special attention is paid to Kaposi's sarcoma-associated herpesvirus, the etiological agent of Kaposi's sarcoma and rare lymphoproliferative disorders. The past decade of active research has led to significant advances in understanding how Kaposi's sarcoma-associated herpesvirus exploits the Notch pathway to regulate its replication phase and to modulate the host cellular microenvironment to make it more favorable for viral persistence and spreading.
Collapse
Affiliation(s)
- Fang Cheng
- Institute of Biotechnology & Research Programs Unit, Genome-Scale Biology, University of Helsinki, PO Box 56 (Viikinkaari 9), 00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
34
|
Popper HH. Interstitial lung diseases-can pathologists arrive at an etiology-based diagnosis? A critical update. Virchows Arch 2013; 462:1-26. [PMID: 23224047 PMCID: PMC7102182 DOI: 10.1007/s00428-012-1305-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 01/07/2023]
Abstract
Interstitial lung diseases (ILD) encompass a group of diseases with a wide range of etiologies and a variety of tissue reactions within the lung. In many instances, a careful evaluation of the tissue reactions will result in a specific diagnosis or at least in a narrow range of differentials, which will assist the clinician to arrive at a definite diagnosis, when combining our interpretation with the clinical presentation of the patient and high-resolution computed tomography. In this review, we will exclude granulomatous pneumonias as well as vascular diseases (primary arterial pulmonary hypertension and vasculitis); however, pulmonary hypertension as a complication of interstitial processes will be mentioned. Few entities of pneumoconiosis presenting as an interstitial process will be included, whereas those with granulomatous reactions will be excluded. Drug reactions will be touched on within interstitial pneumonias, but will not be a major focus. In contrast to the present-day preferred descriptive pattern recognition, it is the author's strong belief that pathologists should always try to dig out the etiology from a tissue specimen and not being satisfied with just a pattern description. It is the difference of sorting tissue reactions into boxes by their main pattern, without recognizing minor or minute reactions, which sometimes will guide one to the correct etiology-oriented interpretation. In the author's personal perspective, tissue reactions can even be sorted by their timeliness, and therefore, ordered by the time of appearance, providing an insight into the pathogenesis and course of a disease. Also, underlying immune mechanisms will be discussed briefly as far as they are essential to understand the disease.
Collapse
Affiliation(s)
- Helmut H Popper
- Research Unit for Molecular Lung and Pleura Pathology, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, Graz, 8036, Austria.
| |
Collapse
|
35
|
Lundin A, Driscoll B. Lung cancer stem cells: progress and prospects. Cancer Lett 2012; 338:89-93. [PMID: 22906416 DOI: 10.1016/j.canlet.2012.08.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 12/30/2022]
Abstract
Epithelial stem cells are critical for tissue generation during development and for repair following injury. In both gestational and postnatal stages, the highly branched and compartmentalized organization of the lung is maintained by multiple, resident stem/progenitor cell populations that are responsible for the homeostatic maintenance and injury repair of pulmonary epithelium. Though lung epithelial injury in the absence of oncogenic mutation is more commonly expressed as chronic lung disease, lung cancer is the most common form of death worldwide and poses a highly significant risk to human health. Cancer is defined by the cell of origin, responsible for initiating the disease. The Cancer Stem Cell Hypothesis proposes that cancer stem cells, identified by stem-like properties of self-renewal and generation of differentiated progeny, are responsible for propagating growth and spread of the disease. In lung cancer, it is hypothesized that cancer stem cells derive from several possible cell sources. The stem cell-like resistance to injury and proliferative potentials of bronchioalveolar stem cells (BASCs) and alveolar epithelial type II cells (AEC2), as well as cells that express the cancer stem cell marker glycoprotein prominin-1 (CD133) or markers for side populations make them potential reservoirs of lung cancer stem cells. The abnormal activation of pathways that normally regulate embryonic lung development, as well as adult tissue maintenance and injury repair, including the Wnt, Hedgehog (Hh) and Notch pathways, has also been identified in lung tumor cells. It is postulated that therapies for lung cancer that specifically target stem cell signaling pathways utilized by lung cancer stem cells could be beneficial in combating this disease.
Collapse
Affiliation(s)
- Amber Lundin
- Developmental Biology & Regenerative Medicine Program, Department of Surgery, Children's Hospital Los Angeles, , United States
| | | |
Collapse
|
36
|
The bed and the bugs: interactions between the tumor microenvironment and cancer stem cells. Semin Cancer Biol 2012; 22:462-70. [PMID: 22548722 DOI: 10.1016/j.semcancer.2012.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/16/2012] [Indexed: 12/26/2022]
Abstract
Tumors have been increasingly recognized as organs with a complexity that approaches, and may even exceed, that of healthy tissues. When viewed from this perspective, the biology of a tumor can be understood only by studying tumor cell heterogeneity and the microenvironment that is constructed during the course of tumorigenesis and malignant progression. Recent work has revealed the existence of cancer stem cells, the "bugs", with the capacity for self-renewal and tumor propagation. In addition, it is now recognized that the tumor microenvironment, the "bed", plays a critical role in supporting cancer stem cells and also may promote neoplasia and malignant progression. The interdependence of the cell-intrinsic features of cancer, including the cancer stem cell "bugs" and the tumor microenvironment "bed", is only beginning to be understood. In this review, we highlight the rapidly evolving concepts about the interactions between tumor stem cells and their microenvironment, the insights gained from studying their normal tissue counterparts, and the questions and controversies surrounding this area of research, with an emphasis on breast and lung cancer. Finally, we address evidence supporting the notion that eliminating the bed as well as the bugs should lead to more effective and personalized cancer treatments that improve patient outcome.
Collapse
|
37
|
Li X, Jia Y, Zhang W, Zhang Y, Li B, Huang M, Bao F, Wu J, Lou Y. [The research progress about Wnt pathway of lung cancer stem cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:695-8. [PMID: 21859553 PMCID: PMC5999629 DOI: 10.3779/j.issn.1009-3419.2011.08.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Being the most critical signaling molecule in the Wnt pathway, the Wnt/β-catenin signaling pathway plays an important role in the maintenance of the cell proliferation and clone formation of lung cancer stem cells. Since it is closely related to the WNT pathway, the proliferation of lung cancer stem cells can be restrained by blocking the WNT pathway or influencing its key protein. Such method provides a new method for the treatment of lung cancer. By summarizing the state of-the-art research of lung cancer stem cells and the Wnt pathway from 2005 to 2010, their relationship is investigated.
Collapse
Affiliation(s)
- Xiaojiang Li
- Department of Oncology, the First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yue W, Jiao F, Liu B, You J, Zhou Q. [Enrichment and function research of large cell lung cancer stem cell-like cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:484-91. [PMID: 21645450 PMCID: PMC5999898 DOI: 10.3779/j.issn.1009-3419.2011.06.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
背景与目的 目前国内外还没有确切的、得到公认的肺癌干细胞的筛选标记分子、指标和方法,常用方法为通过流式细胞技术,借鉴其他肿瘤干细胞分选标记来分选肺癌干细胞,但其筛选特异性低、工作量巨大。本研究采用无血清悬浮培养法富集肺癌干细胞,对肺癌干细胞的筛选方法进行探索。 方法 采用添加生长因子的无血清培养基对人大细胞肺癌细胞株L9981进行悬浮培养,获得肺癌细胞球体。对含血清培养贴壁L9981细胞和无血清培养成球后的L9981细胞,通过显微镜下观察比较二者的生物学形态,应用Vi-cell细胞活力分析仪计数细胞并绘制生长曲线比较二者的增殖能力,通过Transwell实验研究它们的侵袭能力差异,并通过接种裸鼠观察二者在体内的成瘤性来研究肺癌细胞球体的生物学功能。 结果 与血清贴壁培养L9981细胞相比,无血清培养L9981细胞成球形生长,贴壁L9981和L9981球体细胞的倍增时间分别为(56.05±1.95)h和(33.00±1.44)h,球体细胞的侵袭和成瘤能力分别为贴壁L9981细胞的5倍和20倍。 结论 通过无血清悬浮培养的L9981细胞可以形成肺癌球体细胞群,L9981球体细胞的侵袭和成瘤能力均明显高于贴壁L9981细胞,显示L9981球体细胞中富集了肺癌干细胞样的细胞。无血清悬浮培养肺癌球体细胞可作为富集肺癌干细胞样细胞的一种候选方法。
Collapse
Affiliation(s)
- Wenke Yue
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | | | | | | | | |
Collapse
|