1
|
Liu M, Liu JP, Wang P, Fu YJ, Zhao M, Jiang YJ, Zhang ZN, Shang H. Approaches for Performance Verification Toward Standardization of Peripheral Blood Regulatory T-Cell Detection by Flow Cytometry. Arch Pathol Lab Med 2024; 148:1234-1243. [PMID: 38385871 DOI: 10.5858/arpa.2023-0284-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 02/23/2024]
Abstract
CONTEXT.— Regulatory T-cell (Treg) detection in peripheral blood, based on flow cytometry, is invaluable for diagnosis and treatment of immune-mediated diseases. However, there is a lack of reliable methods to verify the performance, which is pivotal toward standardization of the Tregs assay. OBJECTIVE.— To conduct standardization studies and verify the performance of 3 commercially available reagent sets for the Tregs assay based on flow cytometry and agreement analysis for Treg detection across the different reagent sets. DESIGN.— The analytical performance of Tregs assay using reagent sets supplied by 3 manufacturers was evaluated after establishing the gating strategy and determining the optimal antibody concentration. Postcollection sample stability was evaluated, as well as the repeatability, reproducibility, reportable range, linearity, and assay carryover. Agreement between the different assays was assessed via Bland-Altman plots and linear regression analysis. The relationship between the frequency of CD4+CD25+CD127low/- Tregs and CD4+CD25+Foxp3+ Tregs was evaluated. RESULTS.— The postcollection sample stability was set at 72 hours after collection at room temperature. The accuracy, repeatability, reproducibility, and accuracy all met the requirements for clinical analysis. Excellent linearity, with R2 ≥0.9 and no assay carryover, was observed. For reportable range, a minimum of 1000 events in the CD3+CD4+ gate was required for Tregs assay. Moreover, the results for Tregs labeled by antibodies from the 3 manufacturers were in good agreement. The percentage of CD4+CD25+CD127low/- Tregs was closely correlated with CD4+CD25+Foxp3+ Tregs. CONCLUSIONS.— This is the first study to evaluate systematically the measurement performance of Tregs in peripheral blood by flow cytometry, which provides a practical solution to verifying the performance of flow cytometry-based immune monitoring projects in clinical practice.
Collapse
Affiliation(s)
- Mei Liu
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Jin-Peng Liu
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Pan Wang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Ya-Jing Fu
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Min Zhao
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
| | - Yong-Jun Jiang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Zi-Ning Zhang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
- Units of Medical Laboratory (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang) and Key Laboratory of AIDS Immunology (J-P Liu, Wang, Fu, Jiang, Zhang, Shang), Chinese Academy of Medical Sciences, Shenyang, China
| | - Hong Shang
- From NHC Key Laboratory of AIDS Immunology - China Medical University (M Liu, J-P Liu, Wang, Fu, Jiang, Zhang, Shang), National Clinical Research Center for Laboratory Medicine (M Liu, J-P Liu, Wang, Fu, Zhao, Jiang, Zhang, Shang), and the Department of Laboratory Medicine (Zhao, Shang), The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Gessner P, Tessema B, Scholz M, Sack U, Boldt A, Kühnapfel A, Gessner C. The influence of anti-cancer therapies on lymphocyte subpopulations of lung cancer patients. Front Immunol 2023; 14:1239097. [PMID: 37701442 PMCID: PMC10493868 DOI: 10.3389/fimmu.2023.1239097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction There are limited data on the influence of different anti-cancer therapies on lymphocyte subpopulations and their relationships to survival of non-small cell lung cancer (NSCLC) patients. This study aimed to assess the effect of immunotherapy, chemotherapy, immunochemotherapy, adjuvant chemotherapy after surgery, and antibodies against Vascular Endothelial Growth Factors (VEGF) on B cell, T cell, and NK cell subpopulations, and the survival time of NSCLC patients. Methods A total of 32 consecutive NSCLC patients were recruited at Pulmonology Clinic, Leipzig from January 2018 to March 2020 and enrolled in this study. Immunophenotyping was done using a FACS Canto II flow cytometer (BD Biosciences) before the administration of the planned therapy and during therapy with up to 7 observational windows for each patient targeting 130 immunologic parameters. Results Absolute transitional B cells was significantly increased after immunotherapy (p = 0.032), immunochemotherapy (p = 0.030), and antibodies against VEGF (p = 0.024). Similarly, absolute counts and percentage of B cells were significantly increased after adjuvant chemotherapy (p = 0.023). However, absolute counts and percentage of transitional B cells are significantly decreased after chemotherapy (p = 0.001). Activated cytotoxic T cells were significantly increased after immunotherapy (p = 0.031) and immunochemotherapy (p = 0.030). The overall survival rate of NSCLC patients was 31%. Conclusions In conclusion, this study suggests that different types of anti-cancer therapies affect lymphocyte subpopulations of NSCLC patients. Further large-scale and multicentre studies are required to confirm our results and to evaluate the prognostic value of lymphocyte subpopulations.
Collapse
Affiliation(s)
- Philipp Gessner
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Respiratory Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Belay Tessema
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Andreas Boldt
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Andreas Kühnapfel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Christian Gessner
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Pulmonary Practice, Leipzig, Germany
| |
Collapse
|
3
|
Qiu J, Shi W, Zhang J, Gao Q, Feng L, Zhuang Z. Peripheral CD4 +CD25 hiCD127 low regulatory T cells are increased in patients with gastrointestinal cancer. BMC Gastroenterol 2023; 23:168. [PMID: 37210494 DOI: 10.1186/s12876-023-02798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 05/03/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play an important role in regulation of immune response and immunologic tolerance in cancer. Gastrointestinal cancer is still a leading cause of cancer-related death in the world. This study aimed to detect Tregs in patients with gastrointestinal cancer. METHODS In this study, 45 gastric cancer patients, 50 colorectal cancer patients and 50 healthy controls were enrolled. Flow cytometry was used to detect CD4+CD25hiCD127low Tregs, CD4+CD25hi, and CD4+ cells in peripheral blood. Cytokine interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1) in peripheral blood and in the supernatant of Tregs cultures were measured by enzyme linked immunosorbent assay. RESULTS Compared with healthy controls, the levels of CD4+CD25hiCD127low Tregs and CD4+CD25hi cells increased significantly in patients with gastrointestinal cancer. Patients with gastrointestinal cancer also showed a significantly increased levels of IL-10 and TGF-β1 in both peripheral blood and CD4+CD25hiCD127low Tregs culture medium. CONCLUSION The present study firstly demonstrated that gastrointestinal patients have a compromised immune status where the CD4+CD25hiCD127low Tregs, as well as levels of IL-10 and TGF-β1 are elevated. The data offered new information for understanding the immunological features of gastrointestinal patients, as well as provided new insights into approaches to develop new immunotherapies for patients with gastrointestinal cancer.
Collapse
Affiliation(s)
- Junlan Qiu
- Department of Oncology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China.
| | - Weiqiang Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jin Zhang
- Department of Pathology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Lin Feng
- Department of Oncology, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu, 215153, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| |
Collapse
|
4
|
Phillips JD, Fay KA, Bergeron AJ, Zhang P, Mielcarz DW, Calkins AM, Searles TG, Christensen BC, Finley DJ, Turk MJ, Channon JY. The Effect of Lung Resection for NSCLC on Circulating Immune Cells: A Pilot Study. Curr Oncol 2023; 30:5116-5134. [PMID: 37232845 PMCID: PMC10217048 DOI: 10.3390/curroncol30050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
This pilot study sought to evaluate the circulating levels of immune cells, particularly regulatory T-cell (Treg) subsets, before and after lung resection for non-small cell lung cancer. Twenty-five patients consented and had specimens collected. Initially, peripheral blood of 21 patients was collected for circulating immune cell studies. Two of these patients were excluded due to technical issues, leaving 19 patients for the analyses of circulating immune cells. Standard gating and high-dimensional unsupervised clustering flow cytometry analyses were performed. The blood, tumors and lymph nodes were analyzed via single-cell RNA and TCR sequencing for Treg analyses in a total of five patients (including four additional patients from the initial 21 patients). Standard gating flow cytometry revealed a transient increase in neutrophils immediately following surgery, with a variable neutrophil-lymphocyte ratio and a stable CD4-CD8 ratio. Unexpectedly, the total Treg and Treg subsets did not change with surgery with standard gating in short- or long-term follow-up. Similarly, unsupervised clustering of Tregs revealed a dominant cluster that was stable perioperatively and long-term. Two small FoxP3hi clusters slightly increased following surgery. In the longer-term follow-up, these small FoxP3hi Treg clusters were not identified, indicating that they were likely a response to surgery. Single-cell sequencing demonstrated six CD4+FoxP3+ clusters among the blood, tumors and lymph nodes. These clusters had a variable expression of FoxP3, and several were mainly, or only, present in tumor and lymph node tissue. As such, serial monitoring of circulating Tregs may be informative, but not completely reflective of the Tregs present in the tumor microenvironment.
Collapse
Affiliation(s)
- Joseph D. Phillips
- Department of Surgery, Dartmouth-Hitchcock Medical Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Kayla A. Fay
- Department of Surgery, Dartmouth-Hitchcock Medical Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | - Peisheng Zhang
- DartLab, Dartmouth Cancer Center, Lebanon, NH 03756, USA
| | | | | | - Tyler G. Searles
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Brock C. Christensen
- Departments of Epidemiology and Molecular & Systems Biology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Finley
- Department of Surgery, Dartmouth-Hitchcock Medical Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Mary Jo Turk
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | |
Collapse
|
5
|
Yan Y, Wang X, Liu C, Jia J. Association of lymphocyte subsets with efficacy and prognosis of immune checkpoint inhibitor therapy in advanced non-small cell lung carcinoma: a retrospective study. BMC Pulm Med 2022; 22:166. [PMID: 35484541 PMCID: PMC9052648 DOI: 10.1186/s12890-022-01951-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/11/2022] [Indexed: 01/07/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have achieved promising effects in patients with non-small cell lung cancer (NSCLC). However, not all patients with NSCLC benefit from immunotherapy. There is an urgent need to explore biomarkers that could predict the survival outcomes and therapeutic efficacy in advanced NSCLC patients treated with immunotherapy. In this study, we aimed to assess the changes in peripheral blood lymphocyte subsets and their association with the therapeutic efficacy and clinical prognosis of advanced NSCLC patients treated with immunotherapy.
Methods A total of 276 patients with advanced NSCLC were enrolled. Peripheral blood lymphocyte subsets including CD4+ T cells, CD8+ T cells, CD4+/CD8+ ratio, NK cells, Tregs and B cells were collected before any treatment, before immunotherapy or chemotherapy, and after 4 cycles of immunotherapy or chemotherapy. T-test was used to analyze the factors influencing lymphocyte subsets and their changes before and after therapy. Logistic regression was used to plot ROC curves and analyze the relationship between lymphocyte subsets and therapeutic efficacy. Log-rank test and Cox regression model were used to evaluate the relationship between lymphocyte subsets and progression-free survival (PFS). Results Gender, distant metastasis, and EGFR mutation status are known to affect the proportion of peripheral blood lymphocyte subsets in patients with advanced NSCLC. The proportions of CD4+ T cells, CD8+ T cells, Tregs and B cells were found to decrease after chemotherapy as compared to the baseline. The proportion of CD4+ T cells, CD8+ T cells, CD4+/CD8+ ratio, NK cells and Tregs were higher after immunotherapy than after chemotherapy. Compared to the baseline, the effective group showed significant increase in the proportions of CD4+ T cells, CD4+/CD8+ ratio, NK cells and Tregs, and the number of CD8+ T cells was significantly lower in the peripheral blood after 4 cycles of immunotherapy. On the contrary, the ineffective group did not show any significant differences in the above parameters. Baseline CD4+ T cells and NK cells were independent predictors of immunotherapy efficacy and PFS. Baseline Tregs were independent predictor of immunotherapy efficacy. Conclusion Immune checkpoint inhibitors induced changes in the proportion of peripheral blood lymphocyte subsets in patients that responded well to immunotherapy. The levels of the different lymphocyte subsets could serve as valuable predictive biomarkers of efficacy and clinical prognosis for NSCLC patients treated with immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01951-x.
Collapse
Affiliation(s)
- Yi Yan
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyan Wang
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenan Liu
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junmei Jia
- Department of Oncology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Fathi F, Saidi RF, Banafshe HR, Arbabi M, Lotfinia M, Motedayyen H. Changes in immune profile affect disease progression in hepatocellular carcinoma. Int J Immunopathol Pharmacol 2022; 36:3946320221078476. [PMID: 35226515 PMCID: PMC8891922 DOI: 10.1177/03946320221078476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) as a chronic liver condition is largely associated with immune responses. Previous studies have revealed that different subsets of lymphocytes play fundamental roles in controlling or improving the development and outcome of solid tumors like HCC. Hence, this study aimed to investigate whether immune system changes were related to disease development in HCC patients. Methods: Peripheral blood mononuclear cells were isolated from 30 HCC patients and 30 healthy volunteers using Ficoll density centrifugation. The isolated cells were stained with different primary antibodies and percentages of different immune cells were determined by flow cytometry. Results: HCC patients indicated significant reductions in the numbers of CD4+ cells, Tbet+IFNγ+cells, and GATA+IL-4+cells in peripheral blood in comparison with healthy individuals (p < 0.05). There was no significant change in IL-17+RORγt+cells between patient and healthy groups. In contrast, Foxp3+CD127lowcell frequency was significantly higher in patients than healthy subjects (p < 0.0001). The numbers of Th1, Th2, and Th17 cells were significantly lower in HCC patients than healthy control (p < 0.0001), although the reduction in Th2 cell numbers was not statistically significant. On the contrary, Treg percentage showed a significant increase in patients compared to healthy subjects (p < 0.0001). Other data revealed that Th1, Th2, and Th17 cell frequencies were significantly higher in healthy individuals than patients with different TNM stages of HCC, with the exception of Th2 in patients with stage II HCC (p < 0.01-0.05). Treg percentage was significantly increased in patients with different TNM stages (p < 0.0001). Among all CD4+ T cells, the frequency of Th2 cell was significantly associated with TNM stages of HCC (p < 0.05). Conclusion: Our data provide further evidence to show that immune changes may participate in determining HCC progression and disease outcome. However, it should be mentioned that more investigations are needed to clarify our results and explain possible impacts of other immune cells on the pathogenesis of HCC.
Collapse
Affiliation(s)
- Farshid Fathi
- Department of Immunology, School of Medicine, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza F Saidi
- Division of Transplant Services, Department of Surgery, 12302SUNY Upstate Medical University Syracuse, Syracuse, NY, USA
| | - Hamid Reza Banafshe
- Physiology Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Arbabi
- Department of Medical Parasitology, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Lotfinia
- Physiology Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Hu R, Chen T, Yan Y, Zhou Y, Yang R, Xiong Y. Short- and long-term effects of antiretroviral therapy on peripheral regulatory CD4+/CD25hi/CD127low T lymphocytes in people living with HIV/AIDS. Rev Inst Med Trop Sao Paulo 2022; 64:e11. [PMID: 35170712 PMCID: PMC8845442 DOI: 10.1590/s1678-9946202264011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
The effect of antiretroviral therapy (ART) on CD4+/CD25hi/CD127low T lymphocyte changes in people living with HIV/AIDS (PLWHA) is still a matter of debate. From October 2015 to December 2019, peripheral blood from 70 cases of PLWHA were collected for the detection of CD4+/CD25hi/CD127low T lymphocytes by flow cytometry. Statistical analysis was performed to detect changes of CD4+/CD25hi/CD127low T lymphocytes in patients with different duration of ART and different treatment effects. We found that the number of CD4+/CD25hi/CD127low T lymphocytes in ART-naive PLWHA were lower than those in healthy volunteers (10.3±٦.٠ cells/uL vs 31.7±8.0 cells/uL, P < 0.05). CD4+/CD25hi/CD127low T lymphocyte counts increased to 17.8±٤.٠ cells/uL 6 months post-ART and 25.0±١١.٩ cells/uL 9 months post-ART, respectively (P < 0.05). There was no significant difference in CD4+/CD25hi/CD127low T lymphocyte counts between PLWHA who reached a complete immune reconstruction after ART and healthy volunteers. The growth of CD4+/CD25hi/CD127low T lymphocyte counts in patients who had baseline CD4 > 200 cells/uL was greater than those who had baseline CD4 ≤ 200 cells/uL (12.6±٤.٦ cells/uL vs 5.6±٥.٠ cells/uL, P = 0.027). CD4+/CD25hi/CD127low T lymphocyte counts were positively correlated with CD4+ T lymphocyte counts (r = 0.923, P < 0.001) and CD4+/CD8+ ratio (r = 0.741, P < 0.001), but were negatively correlated with HIV-VL (r = −0.648, P = 0.000). In conclusion, the results of the present study showed that changes in CD4+/CD25hi/CD127low T lymphocyte counts can be used to assess the effect of ART in PLWHA.
Collapse
|
8
|
Zhong Q, Lu Y, Xu W, Rong Z, Chang X, Qin L, Chen X, Zhou F. The differentiation of new human CD303 + Plasmacytoid dendritic cell subpopulations expressing CD205 and/or CD103 regulated by Non-Small-Cell lung cancer cells. Int Immunopharmacol 2021; 99:107983. [PMID: 34298400 DOI: 10.1016/j.intimp.2021.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022]
Abstract
CD303+ plasmacytoid dendritic cells (pDCs) play an important role in the induction of immune tolerance and antitumor immunity. Here, we focused on the effect of NSCLC cells on the development of CD303+ pDC subsets expressing CD205 and/or CD103. The NSCLC cell line H1299 and primary NSCLC cells were incubated with DCs. The protein expression of costimulatory molecules on CD303+ pDCs, the production of pro-inflammatory and anti-inflammatory cytokines by CD303+ pDCs and the development of CD303+ pDC subsets were detected by using flow cytometry. Coculture with NSCLC cells modulates the protein expression of CD86 and HLA-DR on CD303+ pDCs. Moreover, NSCLC cells suppressed the production of IL-12 and IL-23 but facilitated the secretion of IL-27 and TGF-β by CD303+ pDCs. There were new CD303+ pDC subsets expressing CD205 and/or CD103 in healthy donors and NSCLC patients: CD303+CD205+CD103+, CD303+CD205+CD103-, CD303+CD205-CD103+ and CD303+CD205-CD103- pDCs. NSCLC cells modulated the differentiation of CD303+ pDC subpopulations by regulating the protein expression of CD205 and/or CD103 on CD303+ pDCs. NSCLC cells may regulate the immune functions of CD303+ pDCs by modulating the expression of costimulatory molecules on DCs and the production of pro-inflammatory/anti-inflammatory cytokines by DCs. NSCLC cells also regulate the development of CD303+ pDC subsets expressing CD205 and/or CD103. These outcomes may reveal a new cellular mechanism leading to the NSCLC-induced immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Qifeng Zhong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Yong Lu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Wenlong Xu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Zhien Rong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Xu Chang
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Li Qin
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510820, PR China; State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China; Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China.
| | - Fang Zhou
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China.
| |
Collapse
|
9
|
Laza‐Briviesca R, Cruz‐Bermúdez A, Nadal E, Insa A, García‐Campelo MDR, Huidobro G, Dómine M, Majem M, Rodríguez‐Abreu D, Martínez‐Martí A, De Castro Carpeño J, Cobo M, López Vivanco G, Del Barco E, Bernabé Caro R, Viñolas N, Barneto Aranda I, Viteri S, Massuti B, Casarrubios M, Sierra‐Rodero B, Tarín C, García‐Grande A, Haymaker C, Wistuba II, Romero A, Franco F, Provencio M. Blood biomarkers associated to complete pathological response on NSCLC patients treated with neoadjuvant chemoimmunotherapy included in NADIM clinical trial. Clin Transl Med 2021; 11:e491. [PMID: 34323406 PMCID: PMC8288017 DOI: 10.1002/ctm2.491] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Immunotherapy is being tested in early-stage non-small cell lung cancer (NSCLC), and achieving higher rates of complete pathological responses (CPR) as compared to standard of care. Early identification of CPR patients has vital clinical implications. In this study, we focused on basal peripheral immune cells and their treatment-related changes to find biomarkers associated to CPR. METHODS Blood from 29 stage IIIA NSCLC patients participating in the NADIM trial (NCT03081689) was collected at diagnosis and post neoadjuvant treatment. More than 400 parameters of peripheral blood mononuclear cells (PBMCs) phenotype and plasma soluble factors were analyzed. RESULTS Neoadjuvant chemoimmunotherapy altered more than 150 immune parameters. At diagnosis, 11 biomarkers associated to CPR were described, with an area under the ROC curve >0.70 and p-value <.05. CPR patients had significantly higher levels of CD4+ PD-1+ cells, NKG2D, and CD56 expression on T CD56 cells, intensity of CD25 expression on CD4+ CD25hi+ cells and CD69 expression on intermediate monocytes; but lower levels of CD3+ CD56- CTLA-4+ cells, CD14++ CD16+ CTLA-4+ cells, CTLA-4 expression on T CD56 cells and lower levels of b-NGF, NT-3, and VEGF-D in plasma compared to non-CPR. Post treatment, CPR patients had significantly higher levels of CD19 expression on B cells, BCMA, 4-1BB, MCSF, and PARC and lower levels of MPIF-1 and Flt-3L in plasma compared to non-CPR. CONCLUSIONS Patients achieving CPR seem to have a distinctive peripheral blood immune status at diagnosis, even showing different immune response to treatment. These results reinforce the different biology behind CPR and non-CPR responses.
Collapse
Affiliation(s)
- Raquel Laza‐Briviesca
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro‐Segovia de Arana (IDIPHISA)Hospital Universitario Puerta de Hierro‐MajadahondaMadridSpain
- Doctoral SchoolUniversidad Autónoma de MadridMadridSpain
| | - Alberto Cruz‐Bermúdez
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro‐Segovia de Arana (IDIPHISA)Hospital Universitario Puerta de Hierro‐MajadahondaMadridSpain
| | - Ernest Nadal
- Institut Català d'Oncologia, L'Hospitalet De LlobregatBarcelonaSpain
| | - Amelia Insa
- Fundación INCLIVAHospital Clínico Universitario de ValenciaValenciaSpain
| | | | | | - Manuel Dómine
- Hospital Universitario Fundación Jiménez DíazMadridSpain
| | | | | | - Alex Martínez‐Martí
- Hospital Universitario e Instituto de Oncología Vall d´Hebron (VHIO)BarcelonaSpain
| | | | - Manuel Cobo
- Hospital Universitario Regional de MálagaMálagaSpain
| | | | | | | | | | | | - Santiago Viteri
- Instituto Oncológico Dr. Rosell, Hospital Universitario Quiron DexeusGrupo QuironSaludBarcelonaSpain
| | | | - Marta Casarrubios
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro‐Segovia de Arana (IDIPHISA)Hospital Universitario Puerta de Hierro‐MajadahondaMadridSpain
- Doctoral SchoolUniversidad Autónoma de MadridMadridSpain
| | - Belén Sierra‐Rodero
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro‐Segovia de Arana (IDIPHISA)Hospital Universitario Puerta de Hierro‐MajadahondaMadridSpain
- Doctoral SchoolUniversidad Autónoma de MadridMadridSpain
| | - Carlos Tarín
- Bioinformatics UnitInstituto de Investigación Sanitaria Puerta de Hierro‐Segovia de AranaMadridSpain
| | - Aránzazu García‐Grande
- Flow Cytometry Core FacilityInstituto de Investigación Sanitaria Puerta de Hierro‐Segovia de Arana (IDIPHISA)MadridSpain
| | - Cara Haymaker
- Departments of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ignacio I. Wistuba
- Departments of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Atocha Romero
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro‐Segovia de Arana (IDIPHISA)Hospital Universitario Puerta de Hierro‐MajadahondaMadridSpain
| | - Fernando Franco
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro‐Segovia de Arana (IDIPHISA)Hospital Universitario Puerta de Hierro‐MajadahondaMadridSpain
| | - Mariano Provencio
- Servicio de Oncología Médica, Instituto de Investigación Sanitaria Puerta de Hierro‐Segovia de Arana (IDIPHISA)Hospital Universitario Puerta de Hierro‐MajadahondaMadridSpain
| |
Collapse
|
10
|
Lu Y, Xu W, Gu Y, Chang X, Wei G, Rong Z, Qin L, Chen X, Zhou F. Non-small Cell Lung Cancer Cells Modulate the Development of Human CD1c + Conventional Dendritic Cell Subsets Mediated by CD103 and CD205. Front Immunol 2019; 10:2829. [PMID: 31921114 PMCID: PMC6914740 DOI: 10.3389/fimmu.2019.02829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) leads to a high death rate in patients and is a major threat to human health. NSCLC induces an immune suppressive microenvironment and escapes from immune surveillance in vivo. At present, the molecular mechanisms of NSCLC immunopathogenesis and the immune suppressive microenvironment induced by NSCLC have not been fully elucidated. Here, we focus on the effect of NSCLC cells on the development and differentiation of human CD1c+ conventional dendritic cell (DC) subsets mediated by CD205 and CD103. The peripheral blood mononuclear cells (PBMCs) were isolated from NSCLC patients and healthy donors. DCs were induced and cocultured with primary NSCLC cells or tumor cell line H1299. DCs without incubation with tumor cells are control. The protein expression of costimulatory molecules such as CD80 and CD86, HLA-DR, pro-/anti-inflammatory cytokines such as IL-10 and IL-12, and CD205 and CD103 on CD1c+ DCs was detected by flow cytometry. Our data revealed two new subpopulations of human CD1c+ DCs (CD1c+CD205+CD103+ and CD1c+CD205+CD103− DC) in healthy donors and NSCLC patients. NSCLC cells modulate the development of the CD1c+CD205+CD103+ DC and CD1c+CD205+CD103− DC subpopulations in vitro and ex vivo. NSCLC cells also suppress the expression of signal molecules such as CD40, CD80, CD86, and HLA-DR on CD1c+ DCs. In addition, the production of pro-inflammatory cytokines, including IL-12 and IL-23, is downregulated by NSCLC cells; however, the secretion of anti-inflammatory cytokines, such as IL-10 and IL-27, by CD1c+ DCs is upregulated by NSCLC cells. Our results suggest that NSCLC cells may induce immune tolerogenic DCs, which block DC-mediated anti-tumor immunity in NSCLC patients. Our data may be helpful in revealing new cellular mechanisms related to the induction of tolerogenic CD1c+ DCs by NSCLCs and the development of an immune suppressive microenvironment that causes tumor cells to escape immune surveillance. Our results indicate a potential role for CD1c+ DC subsets mediated by CD205 and CD103 in DC-mediated immunotherapy to target NSCLC in the future.
Collapse
Affiliation(s)
- Yong Lu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Wenlong Xu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Yanli Gu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Xu Chang
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Guojian Wei
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Zhien Rong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Li Qin
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China.,Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fang Zhou
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd., Guangzhou, China
| |
Collapse
|