1
|
Yuan C, Hansen AL, Bruschweiler-Li L, Brüschweiler R. NMR 1H, 13C, 15N backbone resonance assignments of wild-type human K-Ras and its oncogenic mutants G12D and G12C bound to GTP. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:7-13. [PMID: 37948018 DOI: 10.1007/s12104-023-10162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Human K-Ras protein, which is a member of the GTPase Ras family, hydrolyzes GTP to GDP and concomitantly converts from its active to its inactive state. It is a key oncoprotein, because several mutations, particularly those at residue position 12, occur with a high frequency in a wide range of human cancers. The K-Ras protein is therefore an important target for developing therapeutic anti-cancer agents. In this work we report the almost complete sequence-specific resonance assignments of wild-type and the oncogenic G12C and G12D mutants in the GTP-complexed active forms, including the functionally important Switch I and Switch II regions. These assignments serve as the basis for a comprehensive functional dynamics study of wild-type K-Ras and its G12 mutants.
Collapse
Affiliation(s)
- Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Rafael Brüschweiler
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Huynh MV, Parsonage D, Forshaw TE, Chirasani VR, Hobbs GA, Wu H, Lee J, Furdui CM, Poole LB, Campbell SL. Oncogenic KRAS G12C: Kinetic and redox characterization of covalent inhibition. J Biol Chem 2022; 298:102186. [PMID: 35753348 PMCID: PMC9352912 DOI: 10.1016/j.jbc.2022.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
The recent development of mutant-selective inhibitors for the oncogenic KRASG12C allele has generated considerable excitement. These inhibitors covalently engage the mutant C12 thiol located within the phosphoryl binding loop of RAS, locking the KRASG12C protein in an inactive state. While clinical trials of these inhibitors have been promising, mechanistic questions regarding the reactivity of this thiol remain. Here, we show by NMR and an independent biochemical assay that the pKa of the C12 thiol is depressed (pKa ∼7.6), consistent with susceptibility to chemical ligation. Using a validated fluorescent KRASY137W variant amenable to stopped-flow spectroscopy, we characterized the kinetics of KRASG12C fluorescence changes upon addition of ARS-853 or AMG 510, noting that at low temperatures, ARS-853 addition elicited both a rapid first phase of fluorescence change (attributed to binding, Kd = 36.0 ± 0.7 μM) and a second, slower pH-dependent phase, taken to represent covalent ligation. Consistent with the lower pKa of the C12 thiol, we found that reversible and irreversible oxidation of KRASG12C occurred readily both in vitro and in the cellular environment, preventing the covalent binding of ARS-853. Moreover, we found that oxidation of the KRASG12C Cys12 to a sulfinate altered RAS conformation and dynamics to be more similar to KRASG12D in comparison to the unmodified protein, as assessed by molecular dynamics simulations. Taken together, these findings provide insight for future KRASG12C drug discovery efforts, and identify the occurrence of G12C oxidation with currently unknown biological ramifications.
Collapse
Affiliation(s)
- Minh V Huynh
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tom E Forshaw
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Venkat R Chirasani
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - G Aaron Hobbs
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jingyun Lee
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA; Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Sharon L Campbell
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Huang Q, Ng EY, Li Q, Kang C. 1 H, 15 N and 13 C resonance assignments of the Q61H mutant of human KRAS bound to GDP. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:51-56. [PMID: 34787842 DOI: 10.1007/s12104-021-10058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
KRAS proteins are small GTPases binding to the cell membrane and playing important roles in signal transduction. KRAS proteins form complexes with GTP and GDP to result in active and inactive conformations favouring interactions with different proteins. Mutations in KRAS have impact on the GTPase activity and some mutants are related to certain types of cancers. In addition to mutation at position 12, the Q61H mutant is also identified as an oncogenic mutant. Here, we describe resonance assignment for Q61H mutant of human KRAS-4B. A construct containing 1-169 residues of KRAS with a point mutation at position 61 (Q to H) was made for solution NMR studies. The backbone and some side chain resonance assignments were obtained using conventional multi-dimensional experiments. The secondary structures were analysed based on the assigned residues. As NMR is a powerful tool in probing target and ligand interactions, the assignment will be useful for later compound binding studies.
Collapse
Affiliation(s)
- Qiwei Huang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, 05-01, 138670, Singapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, 05-01, 138670, Singapore
| | - Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, 05-01, 138670, Singapore.
| |
Collapse
|
4
|
Menyhárd DK, Pálfy G, Orgován Z, Vida I, Keserű GM, Perczel A. Structural impact of GTP binding on downstream KRAS signaling. Chem Sci 2020; 11:9272-9289. [PMID: 34094198 PMCID: PMC8161693 DOI: 10.1039/d0sc03441j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oncogenic RAS proteins, involved in ∼30% of human tumors, are molecular switches of various signal transduction pathways. Here we apply a new protocol for the NMR study of KRAS in its (inactive) GDP- and (activated) GTP-bound form, allowing a comprehensive analysis of the backbone dynamics of its WT-, G12C- and G12D variants. We found that Tyr32 shows opposite mobility with respect to the backbone of its surroundings: it is more flexible in the GDP-bound form while more rigid in GTP-complexes (especially in WT- and G12D-GTP). Using the G12C/Y32F double mutant, we showed that the presence of the hydroxyl group of Tyr32 has a marked effect on the G12C-KRAS-GTP system as well. Molecular dynamics simulations indicate that Tyr32 is linked to the γ-phosphate of GTP in the activated states – an arrangement shown, using QM/MM calculations, to support catalysis. Anchoring Tyr32 to the γ-phosphate contributes to the capture of the catalytic waters participating in the intrinsic hydrolysis of GTP and supports a simultaneous triple proton transfer step (catalytic water → assisting water → Tyr32 → O1G of the γ-phosphate) leading to straightforward product formation. The coupled flip of negatively charged residues of switch I toward the inside of the effector binding pocket potentiates ligand recognition, while positioning of Thr35 to enter the coordination sphere of the Mg2+ widens the pocket. Position 12 mutations do not disturb the capture of Tyr32 by the γ-phosphate, but (partially) displace Gln61, which opens up the catalytic pocket and destabilizes catalytic water molecules thus impairing intrinsic hydrolysis. Nucleotide exchange to the physiological, activated, GTP-bound form of KRAS results in the anchoring of Tyr32 within the active site.![]()
Collapse
Affiliation(s)
- Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - István Vida
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| |
Collapse
|
5
|
Pálfy G, Vida I, Perczel A. 1H, 15N backbone assignment and comparative analysis of the wild type and G12C, G12D, G12V mutants of K-Ras bound to GDP at physiological pH. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:1-7. [PMID: 31468366 PMCID: PMC7069925 DOI: 10.1007/s12104-019-09909-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/02/2019] [Indexed: 05/14/2023]
Abstract
K-Ras protein is a membrane-bound small GTPase acting as a molecular switch. It plays a key role in many signal transduction pathways regulating cell proliferation, differentiation, survival, etc. It alternates between its GTP-bound active and the GDP-bound inactive conformers regulated by guanine nucleotide exchange factors and GTPase activating proteins. Its most frequent oncogenic mutants are G12C, G12D, and G12V that have impaired GTPase activity, thus induce malignant tumors. Here we report the resonance assignment of the backbone 1H and 15N nuclei of K-Ras wildtype, G12C, G12D and G12V proteins' catalytic G domain (1-169 residues) in GDP-bound state, and 13C of backbone and side chains of G12C mutant at physiological pH 7.4. Triple resonance data were used to get secondary structure information and backbone dynamics of G12C, the best-known drug target among K-Ras mutants. Simultaneous investigation of G12C, G12D and G12V mutants, along with the wild type form at the very same conditions allowed us to perform a comprehensive analysis based on the combined chemical shifts to reveal the effect of mutation at G12 position on structure. Intriguingly, the G12C and G12V mutants found to be structurally very similar at the three most important regions of K-Ras (P-loop, Switch-I, Switch-II), while the G12D mutant significantly differs at P-loop and Switch-II from the wildtype as well as G12C and G12V mutants. However, in Switch-I it hardly deviates from the wildtype protein.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary
| | - István Vida
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary.
- MTA-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, 1/a. Pázmány Péter stny, Budapest, H-1117, Hungary.
| |
Collapse
|
6
|
Sharma AK, Lee SJ, Zhou M, Rigby AC, Townson SA. NMR 1H, 13C, 15N resonance assignment of the G12C mutant of human K-Ras bound to GppNHp. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:227-231. [PMID: 30798456 DOI: 10.1007/s12104-019-09882-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/16/2019] [Indexed: 05/27/2023]
Abstract
K-Ras exists in two distinct structural conformations specific to binding of GDP and GTP nucleotides. The cycling between an inactive, GDP-bound state and an active, GTP-bound state is regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. The activated form of K-Ras regulates cell proliferation, differentiation and survival by controlling several downstream signaling pathways. Oncogenic mutations that attenuate the GTPase activity of K-Ras result in accumulation of this key signaling protein in its hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. Mutations at position 12 are the most prevalent in K-Ras associated cancers, hence K-RasG12C has become a recent focus of research for therapeutic intervention. Here we report 1HN, 15N, and 13C backbone and 1H, 13C side-chain resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the active GppNHp-bound form (K-RasG12C-GppNHp), using heteronuclear, multidimensional NMR spectroscopy at 298K. Triple-resonance data assisted the assignments of the backbone 1H, 15N, and 13C resonances of 126 out of 165 non-proline residues. The vast majority of unassigned residues are exchange-broadened beyond detection on the NMR time scale and belong to the P-loop and two flexible Switch regions.
Collapse
Affiliation(s)
- Alok K Sharma
- Warp Drive Bio, Inc., A Subsidiary of Revolution Medicines, 700 Saginaw Drive, Redwood City, CA, 94063, USA
| | - Seung-Joo Lee
- Warp Drive Bio, Inc., A Subsidiary of Revolution Medicines, 700 Saginaw Drive, Redwood City, CA, 94063, USA
| | - Minyun Zhou
- Warp Drive Bio, Inc., A Subsidiary of Revolution Medicines, 700 Saginaw Drive, Redwood City, CA, 94063, USA
| | - Alan C Rigby
- Warp Drive Bio, Inc., A Subsidiary of Revolution Medicines, 700 Saginaw Drive, Redwood City, CA, 94063, USA
| | - Sharon A Townson
- Warp Drive Bio, Inc., A Subsidiary of Revolution Medicines, 700 Saginaw Drive, Redwood City, CA, 94063, USA.
| |
Collapse
|