1
|
Peehl DM, Badea CT, Chenevert TL, Daldrup-Link HE, Ding L, Dobrolecki LE, Houghton AM, Kinahan PE, Kurhanewicz J, Lewis MT, Li S, Luker GD, Ma CX, Manning HC, Mowery YM, O’Dwyer PJ, Pautler RG, Rosen MA, Roudi R, Ross BD, Shoghi KI, Sriram R, Talpaz M, Wahl RL, Zhou R. Animal Models and Their Role in Imaging-Assisted Co-Clinical Trials. Tomography 2023; 9:657-680. [PMID: 36961012 PMCID: PMC10037611 DOI: 10.3390/tomography9020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients' tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials.
Collapse
Affiliation(s)
- Donna M. Peehl
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.K.); (R.S.)
| | - Cristian T. Badea
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Thomas L. Chenevert
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (T.L.C.); (G.D.L.); (B.D.R.)
| | - Heike E. Daldrup-Link
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA; (H.E.D.-L.); (R.R.)
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (L.D.); (S.L.); (C.X.M.)
| | - Lacey E. Dobrolecki
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Paul E. Kinahan
- Department of Radiology, University of Washington, Seattle, WA 98105, USA;
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.K.); (R.S.)
| | - Michael T. Lewis
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (L.D.); (S.L.); (C.X.M.)
| | - Gary D. Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (T.L.C.); (G.D.L.); (B.D.R.)
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Cynthia X. Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (L.D.); (S.L.); (C.X.M.)
| | - H. Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708, USA;
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27708, USA
| | - Peter J. O’Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.J.O.); (M.A.R.); (R.Z.)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Mark A. Rosen
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.J.O.); (M.A.R.); (R.Z.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA; (H.E.D.-L.); (R.R.)
| | - Brian D. Ross
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (T.L.C.); (G.D.L.); (B.D.R.)
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Kooresh I. Shoghi
- Mallinckrodt Institute of Radiology (MIR), Washington University School of Medicine, St. Louis, MO 63110, USA; (K.I.S.); (R.L.W.)
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.K.); (R.S.)
| | - Moshe Talpaz
- Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Richard L. Wahl
- Mallinckrodt Institute of Radiology (MIR), Washington University School of Medicine, St. Louis, MO 63110, USA; (K.I.S.); (R.L.W.)
| | - Rong Zhou
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.J.O.); (M.A.R.); (R.Z.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Yin YX, Xie MZ, Liang XQ, Ye ML, Li JL, Hu BL. Clinical Significance and Prognostic Value of the Maximum Standardized Uptake Value of 18F-Flurodeoxyglucose Positron Emission Tomography-Computed Tomography in Colorectal Cancer. Front Oncol 2021; 11:741612. [PMID: 34956868 PMCID: PMC8695495 DOI: 10.3389/fonc.2021.741612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
Background The role of 18F-flurodeoxyglucose (18F-FDG) positron emission tomography–computed tomography (PET/CT) in colorectal cancer (CRC) remains unclear. This study aimed to explore the association of the maximum standardized uptake value (SUVmax), a parameter of 18F-FDG PET/CT, with KRAS mutation, the Ki-67 index, and survival in patients with CRC. Methods Data of 66 patients with CRC who underwent 18F-FDG PET/CT was retrospectively collected in our center. The clinical significance of the SUVmax in CRC and the association of the SUVmax with KRAS mutation and the Ki-67 index were determined. A meta-analysis was conducted by a systematic search of PubMed, Web of Science, and CNKI databases, and the data from published articles were combined with that of our study. The association of the SUVmax with KRAS mutation and the Ki-67 index was determined using the odds ratio to estimate the pooled results. The hazard ratio was used to quantitatively evaluate the prognosis of the SUVmax in CRC. Results By analyzing the data of 66 patients with CRC, the SUVmax was found not to be related to the tumor-node-metastasis stage, clinical stage, sex, and KRAS mutation but was related to the tumor location and nerve invasion. The SUVmax had no significant correlation with the tumor biomarkers and the Ki-67 index. Data of 17 studies indicated that the SUVmax was significantly increased in the mutated type compared with the wild type of KRAS in CRC; four studies showed that there was no remarkable difference between patients with a high and low Ki-67 index score regarding the SUVmax. Twelve studies revealed that the SUVmax had no significant association with overall survival and disease-free survival in CRC patients. Conclusions Based on the combined data, this study demonstrated that the SUVmax of 18F-FDG PET/CT was different between colon and rectal cancers and associated with KRAS mutation but not the Ki-67 index; there was no significant association between the SUVmax and survival of patients with CRC.
Collapse
Affiliation(s)
- Yi-Xin Yin
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ming-Zhi Xie
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xin-Qiang Liang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meng-Ling Ye
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ji-Lin Li
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Rao S, Viola A, Ksissa O, Fries W. Ménétrier's disease in a patient with refractory ulcerative colitis: a clinical challenge and review of the literature. BMJ Case Rep 2021; 14:e246137. [PMID: 34667052 PMCID: PMC8527133 DOI: 10.1136/bcr-2021-246137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
Ménétrier's disease (MD) is a rare disease of the stomach, characterised by hypertrophic gastric folds leading to protein loss. The association with ulcerative colitis (UC) is rare but has been reported in the literature. We report a case of a 29-year-old male affected by UC with an additional diagnosis of MD 3 years after UC diagnosis. UC was refractory to several treatment lines (thiopurines, infliximab, vedolizumab and ustekinumab), and the patient underwent colectomy. Octreotide was administered for MD normalising blood biochemistry, but it was not effective in inducing endoscopic remission of the stomach. Treatment options in patients with MD and UC are discussed.
Collapse
Affiliation(s)
- Sofia Rao
- IBD-unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Sicilia (omit), Italy
| | - Anna Viola
- IBD-unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Omar Ksissa
- IBD-unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Palermo, Sicilia (omit), Italy
| | - Walter Fries
- IBD-unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Ma G, Liu C, Lian W, Zhang Y, Yuan H, Zhang Y, Song S, Yang Z. 18F-FLT PET/CT imaging for early monitoring response to CDK4/6 inhibitor therapy in triple negative breast cancer. Ann Nucl Med 2021; 35:600-607. [PMID: 33689138 DOI: 10.1007/s12149-021-01603-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Our study was to investigate 18F-FLT PET/CT imaging monitor the early response of CDK4/6 inhibitor therapy in triple negative breast cancer (TNBC). METHODS MDA-MB-231 and MDA-MB-468 cell lines and corresponding subcutaneous tumor models in CB17-SCID mice were used. Cell viability assay, cell-cycle analysis, and western blotting were performed in vitro experiments. 18F-FLT PET/CT imaging was performed and the value of tumor/muscle (T/M) of mice was measured before and 1-3 days after treatment in vivo experiments. Then, the tumor volume was recorded every day for 15 days. RESULTS In the presence of Palbociclib (CDK4/6 inhibitor), the results of in vitro experiments showed that protein pRB and E2F levels were significantly down-regulated in MDA-MB-231 cells leading to G0/G1 arrest with consumption in S phase compared with MDA-MB-468 cells. In PET/CT imaging, the 18F-FLT T/M ratio of treatment group was a significant and sustained reduction from 1 to 3 days (all p < 0.05) compared with control group in MDA-MB-231 section. However, there was no significant difference between treatment and control groups in MDA-MB-468 section. Compared with the control group, the tumor volume of the treatment group was significantly reduced from the 11th day in MDA-MB-231 section, but not in MDA-MB-468 section until 15 days. CONCLUSION 18F-FLT PET/CT imaging can immediately and effectively monitor the early treatment response of CDK4/6 inhibitors in TNBC.
Collapse
Affiliation(s)
- Guang Ma
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Cheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Weiling Lian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Yongping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Huiyu Yuan
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Yingjian Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China.
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China.
| |
Collapse
|
5
|
Almazar AE, Penfield JD, Saito YA, Talley NJ. Survival Times of Patients With Menetrier's Disease and Risk of Gastric Cancer. Clin Gastroenterol Hepatol 2021; 19:707-712. [PMID: 32184187 DOI: 10.1016/j.cgh.2020.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Menetrier's disease is a rare acquired disorder associated with giant gastric folds along with protein-losing enteropathy, low stomach acid, or achlorhydria, and histologic features of massive foveolar hyperplasia. Little is known about the etiology, clinical features, or epidemiology of this disorder, including risk of gastric cancer. We investigated the outcomes and characteristics of patients with Menetrier's disease, including development of gastric cancer and survival times. METHODS We performed a case-control study of all Menetrier's disease cases (n = 76; mean age, 56 ± 45 y; 59% male; mean body mass index, 24) diagnosed at Mayo Clinic, Rochester, MN, from January 1975 through 2005. Diagnosis of Menetrier's disease was based on a combination of clinical, endoscopic, radiologic, and histologic features. Patients with dyspepsia who underwent gastric biopsy analysis were included as controls. We obtained demographic, clinical history, laboratory, imaging, histopathology, and follow-up data from medical records. Clinical characteristics of Menetrier's disease were analyzed using descriptive statistics. The Kaplan-Meier method was used to estimate overall survival in cases. RESULTS Clinical features found in a significantly higher proportion of patients with Menetrier's disease than controls included vomiting, abdominal pain, postprandial fullness, and weight loss of 10 lb or more. Smoking was associated with Menetrier's disease (P = .002 vs controls), but not alcohol use. Infection with Helicobacter pylori was not associated with Menetrier's disease (2.6% of patients vs 4.0% of controls; P = 1.00). There was no significant difference between patients with Menetrier's disease vs controls in proportions with inflammatory bowel disease. Gastric cancer developed in 8.9% of patients with Menetrier's disease by 10 years after the Menetrier's disease diagnosis vs 3.7% of controls over the same time period (P = .09). Of patients with Menetrier's disease, 72.7% and 65.0% survived for 5 and 10 years, respectively, compared with 100% of controls (P < .0001 for both time periods). CONCLUSIONS In a case-control study of 76 patients with Menetrier's disease, we found this rare disorder to be associated with increased mortality. Patients with Menetrier's disease therefore should be followed up with surveillance endoscopy.
Collapse
Affiliation(s)
- Ann E Almazar
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Yuri A Saito
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Nicholas J Talley
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
6
|
Scarpelli M, Zahm C, Perlman S, McNeel DG, Jeraj R, Liu G. FLT PET/CT imaging of metastatic prostate cancer patients treated with pTVG-HP DNA vaccine and pembrolizumab. J Immunother Cancer 2019; 7:23. [PMID: 30700328 PMCID: PMC6354338 DOI: 10.1186/s40425-019-0516-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Immunotherapy has demonstrated remarkable success in treating different cancers. Nonetheless, a large number of patients do not respond, many respond without immediate changes detectable with conventional imaging, and many have unusual immune-related adverse events that cannot be predicted in advance. In this exploratory study, we investigate how 3′-Deoxy-3’-18F-fluorothymidine (FLT) positron emission tomography (PET) measurements of tumor and immune cell proliferation might be utilized as biomarkers in immunotherapy. Methods Seventeen patients with metastatic castrate resistant prostate cancer were treated with combination pTVG-HP DNA vaccine and pembrolizumab. Patients underwent baseline and 12-week FLT PET/CT scans. FLT PET standardized uptake values (SUVs) were extracted from tumors, non-metastatic lymph nodes, spleen, bone marrow, pancreas, and thyroid to quantify cell proliferation in these tissues. Regional immune cell responses to pTVG-HP DNA vaccine were assessed by comparing FLT uptake changes in vaccine draining and non-draining lymph nodes. Cox proportional hazards regression was utilized to relate FLT uptake and other clinical markers (PSA and tumor size) to progression-free survival. Area under receiver operating characteristic (AUC) curves and concordance indices were used to assess the predictive capabilities of FLT uptake. Results Changes in FLT uptake in vaccine draining lymph nodes were significantly greater than changes in non-draining lymph nodes (P = 0.02), suggesting a regional immune response to vaccination. However, the changes in FLT uptake in lymph nodes were not significantly predictive of progression-free survival. Increases in tumor FLT uptake were significantly predictive of shorter progression-free survival (concordance index = 0.83, P < 0.01). Baseline FLT uptake in the thyroid was significantly predictive of whether or not a patient would subsequently experience a thyroid-related adverse event (AUC = 0.97, P < 0.01). Conclusions FLT PET uptake was significantly predictive of progression-free survival and the occurrence of adverse events relating to thyroid function. The results suggest FLT PET imaging has potential as a biomarker in immunotherapy, providing a marker of tumor and immune responses, and as a possible means of anticipating specific immune-related adverse events. Trial registration NCT02499835. Electronic supplementary material The online version of this article (10.1186/s40425-019-0516-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew Scarpelli
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave, Madison, WI, 53792, USA
| | - Christopher Zahm
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, Madison, WI, 53792, USA
| | - Scott Perlman
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, Madison, WI, 53792, USA.,Department of Radiology, Section of Nuclear Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, Madison, WI, 53792, USA.,Department of Medicine, Division of Hematology/Oncology, University of Wisconsin, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Robert Jeraj
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave, Madison, WI, 53792, USA.,University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, Madison, WI, 53792, USA.,Department of Radiology, Section of Nuclear Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Glenn Liu
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, Madison, WI, 53792, USA. .,Department of Medicine, Division of Hematology/Oncology, University of Wisconsin, 600 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
7
|
McKinley ET, Watchmaker JM, Chakravarthy AB, Meyerhardt JA, Engelman JA, Walker RC, Washington MK, Coffey RJ, Manning HC. [(18)F]-FLT PET to predict early response to neoadjuvant therapy in KRAS wild-type rectal cancer: a pilot study. Ann Nucl Med 2015; 29:535-42. [PMID: 25899481 DOI: 10.1007/s12149-015-0974-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/13/2015] [Indexed: 01/04/2023]
Abstract
OBJECT This pilot study evaluated the utility of 3'-deoxy-3'[18F]-fluorothymidine ([(18)F]-FLT) positron emission tomography (PET) to predict response to neoadjuvant therapy that included cetuximab in patients with wild-type KRAS rectal cancers. METHODS Baseline [(18)F]-FLT PET was collected prior to treatment initiation. Follow-up [(18)F]-FLT was collected after three weekly infusions of cetuximab, and following a combined regimen of cetuximab, 5-FU, and radiation. Imaging-matched biopsies were collected with each PET study. RESULTS Diminished [(18)F]-FLT PET was observed in 3/4 of patients following cetuximab treatment alone and in all patients following combination therapy. Reduced [(18)F]-FLT PET following combination therapy predicted disease-free status at surgery. Overall, [(18)F]-FLT PET agreed with Ki67 immunoreactivity from biopsy samples and surgically resected tissue, and was predictive of treatment-induced rise in p27 levels. CONCLUSION These results suggest that [(18)F]-FLT PET is a promising imaging biomarker to predict response to neoadjuvant therapy that included EGFR blockade with cetuximab in patients with rectal cancer.
Collapse
Affiliation(s)
- Eliot T McKinley
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical School, 1161 21st Ave. S., AA1105 MCN, Nashville, TN, 37232-2310, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
High-yielding, automated production of 3'-deoxy-3'-[(18)F]fluorothymidine using a modified Bioscan Coincidence FDG reaction module. Appl Radiat Isot 2014; 97:47-51. [PMID: 25531913 DOI: 10.1016/j.apradiso.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 07/29/2014] [Accepted: 11/14/2014] [Indexed: 11/22/2022]
Abstract
INTRODUCTION High-yielding, automated production of a PET tracer that reflects proliferation, 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), is reported using a modified Bioscan Coincidence FDG reaction module. METHODS Production of [(18)F]FLT was implemented through: (1) modification of an original FDG manifold; (2) application of an alternate time sequence; and (3) altered solid-phase extraction (SPE) purification. Quality control testing, including standard radiochemical figures of merit and preclinical positron emission tomography (PET) imaging, was carried out. RESULTS High decay-corrected yields of [(18)F]FLT (16-39%) were reproducibly obtained. The product exhibited very high specific activity (4586.9TBq/mmol; 123,969Ci/mmol) and radiochemical purity (>99%). Overall, the [(18)F]FLT produced in this manner was superior to typical productions that utilized a GE TRACERlab FXF-N reaction module. Additionally, purification with SPE cartridges, followed by manual elution, accelerated overall run time and resulted in a two-fold increase in [(18)F]FLT concentration. PET imaging showed the [(18)F]FLT produced by this method was highly suitable for non-invasive tumor imaging in mice. CONCLUSIONS The Bioscan Coincidence GE FDG Reaction Module was readily adapted to reproducibly provide [(18)F]FLT in high yield, specific activity, and radiochemical purity. The approach was suitable to provide sufficient amounts of material for preclinical studies.
Collapse
|
9
|
McKinley ET, Zhao P, Coffey RJ, Washington MK, Manning HC. 3'-Deoxy-3'-[18F]-Fluorothymidine PET imaging reflects PI3K-mTOR-mediated pro-survival response to targeted therapy in colorectal cancer. PLoS One 2014; 9:e108193. [PMID: 25247710 PMCID: PMC4172755 DOI: 10.1371/journal.pone.0108193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/24/2014] [Indexed: 01/02/2023] Open
Abstract
Biomarkers that predict response to targeted therapy in oncology are an essential component of personalized medicine. In preclinical treatment response studies that featured models of wild-type KRAS or mutant BRAF colorectal cancer treated with either cetuximab or vemurafenib, respectively, we illustrate that [18F]-FLT PET, a non-invasive molecular imaging readout of thymidine salvage, closely reflects pro-survival responses to targeted therapy that are mediated by PI3K-mTOR activity. Activation of pro-survival mechanisms forms the basis of numerous modes of resistance. Therefore, we conclude that [18F]-FLT PET may serve a novel and potentially critical role to predict tumors that exhibit molecular features that tend to reflect recalcitrance to MAPK-targeted therapy. Though these studies focused on colorectal cancer, we envision that the results may be applicable to other solid tumors as well.
Collapse
Affiliation(s)
- Eliot T. McKinley
- The Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical School, Nashville, TN, United States of America
- Department of Biomedical Engineering, Vanderbilt University Medical School, Nashville, TN, United States of America
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN, United States of America
| | - Ping Zhao
- The Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical School, Nashville, TN, United States of America
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN, United States of America
- Department of Vanderbilt Ingram Cancer Center, Vanderbilt University Medical School, Nashville, TN, United States of America
| | - M. Kay Washington
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN, United States of America
- Department of Vanderbilt Ingram Cancer Center, Vanderbilt University Medical School, Nashville, TN, United States of America
- Department of Pathology, Vanderbilt University Medical School, Nashville, TN, United States of America
| | - H. Charles Manning
- The Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical School, Nashville, TN, United States of America
- Department of Biomedical Engineering, Vanderbilt University Medical School, Nashville, TN, United States of America
- Department of Vanderbilt Ingram Cancer Center, Vanderbilt University Medical School, Nashville, TN, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, Nashville, TN, United States of America
- Department of Neurosurgery, Vanderbilt University Medical School, Nashville, TN, United States of America
- Department of Chemical and Physical Biology, Vanderbilt University Medical School, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
10
|
McKinley ET, Ayers GD, Smith RA, Saleh SA, Zhao P, Washington MK, Coffey RJ, Manning HC. Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS One 2013; 8:e58938. [PMID: 23554961 PMCID: PMC3598948 DOI: 10.1371/journal.pone.0058938] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/08/2013] [Indexed: 11/29/2022] Open
Abstract
Background Non-invasive imaging biomarkers of cellular proliferation hold great promise for quantifying response to personalized medicine in oncology. An emerging approach to assess tumor proliferation utilizes the positron emission tomography (PET) tracer 3’-deoxy-3’[18F]-fluorothymidine, [18F]-FLT. Though several studies have associated serial changes in [18F]-FLT-PET with elements of therapeutic response, the degree to which [18F]-FLT-PET quantitatively reflects proliferative index has been continuously debated for more that a decade. The goal of this study was to elucidate quantitative relationships between [18F]-FLT-PET and cellular metrics of proliferation in treatment naïve human cell line xenografts commonly employed in cancer research. Methods and Findings [18F]-FLT-PET was conducted in human cancer xenograft-bearing mice. Quantitative relationships between PET, thymidine kinase 1 (TK1) protein levels and immunostaining for proliferation markers (Ki67, TK1, PCNA) were evaluated using imaging-matched tumor specimens. Overall, we determined that [18F]-FLT-PET reflects TK1 protein levels, yet the cell cycle specificity of TK1 expression and the extent to which tumors utilize thymidine salvage for DNA synthesis decouple [18F]-FLT-PET data from standard estimates of proliferative index. Conclusions Our findings illustrate that [18F]-FLT-PET reflects tumor proliferation as a function of thymidine salvage pathway utilization. Unlike more general proliferation markers, such as Ki67, [18F]-FLT PET reflects proliferative indices to variable and potentially unreliable extents. [18F]-FLT-PET cannot discriminate moderately proliferative, thymidine salvage-driven tumors from those of high proliferative index that rely primarily upon de novo thymidine synthesis. Accordingly, the magnitude of [18F]-FLT uptake should not be considered a surrogate of proliferative index. These data rationalize the diversity of [18F]-FLT-PET correlative results previously reported and suggest future best-practices when [18F]-FLT-PET is employed in oncology.
Collapse
Affiliation(s)
- Eliot T. McKinley
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - R. Adam Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Samir A. Saleh
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ping Zhao
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mary Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - H. Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|