1
|
Sun N, Wang T, Zhang S. Radionuclide-labelled nanoparticles for cancer combination therapy: a review. J Nanobiotechnology 2024; 22:728. [PMID: 39578828 PMCID: PMC11585169 DOI: 10.1186/s12951-024-03020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Radionuclide therapy (RT) is widely used to advanced local cancers. However, its therapeutic efficacy is limited to the radiation resistance of cancer cells. Combination therapy aims to circumvent tumor resistance, and the combination of RT with photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy (CMT), and immunotherapy has shown promising treatment outcomes. Nanotechnology holds promise in advancing combination therapy by integrating multiple therapies on a nanostructure platform. This is due to the increased surface area, passive/active targeting capabilities, high payload capacity, and enriched surface of nanomedicines, offering significant advantages in treatment sensitivity and specificity. In the first part of this review, we categorize radionuclide therapy. The second part summarizes the latest developments in combination therapies, specifically focusing on the integration of RT with PTT, PDT, CMT and immunotherapy. The last part provides an overview of the challenges and potential opportunities related to radionuclide-labelled nanoparticles for cancer combination therapy.
Collapse
Affiliation(s)
- Na Sun
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, ChongQing, 400037, China
| | - Tao Wang
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, ChongQing, 400037, China
| | - Song Zhang
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, ChongQing, 400037, China.
| |
Collapse
|
2
|
Houson HA, Wu Z, Cao PLD, Lindsey JS, Lapi SE. Customizable Porphyrin Platform Enables Folate Receptor PET Imaging Using Copper-64. Mol Pharm 2024; 21:2441-2455. [PMID: 38623055 DOI: 10.1021/acs.molpharmaceut.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Folate receptors including folate receptor α (FRα) are overexpressed in up to 90% of ovarian cancers. Ovarian cancers overexpressing FRα often exhibit high degrees of drug resistance and poor outcomes. A porphyrin chassis has been developed that is readily customizable according to the desired targeting properties. Thus, compound O5 includes a free base porphyrin, two water-solubilizing groups that project above and below the macrocycle plane, and a folate targeting moiety. Compound O5 was synthesized (>95% purity) and exhibited aqueous solubility of at least 0.48 mM (1 mg/mL). Radiolabeling of O5 with 64Cu in HEPES buffer at 37 °C gave a molar activity of 1000 μCi/μg (88 MBq/nmol). [64Cu]Cu-O5 was stable in human serum for 24 h. Cell uptake studies showed 535 ± 12% bound/mg [64Cu]Cu-O5 in FRα-positive IGROV1 cells when incubated at 0.04 nM. Subcellular fractionation showed that most radioactivity was associated with the cytoplasmic (39.4 ± 2.7%) and chromatin-bound nuclear (53.0 ± 4.2%) fractions. In mice bearing IGROV1 xenografts, PET imaging studies showed clear tumor uptake of [64Cu]Cu-O5 from 1 to 24 h post injection with a low degree of liver uptake. The tumor standardized uptake value at 24 h post injection was 0.34 ± 0.16 versus 0.06 ± 0.07 in the blocking group. In summary, [64Cu]Cu-O5 was synthesized at high molar activity, was stable in serum, exhibited high binding to FRα-overexpressing cells with high nuclear translocation, and gave uptake that was clearly visible in mouse tumor xenografts.
Collapse
Affiliation(s)
- Hailey A Houson
- Department of Radiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Zhiyuan Wu
- Oncurie, Inc., Raleigh, North Carolina 27608, United States
| | - Phuong-Lien Doan Cao
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Suzanne E Lapi
- Department of Radiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
3
|
Han J, Liu Y, Peng D, Liu J, Wu D. Biomedical Application of Porphyrin-Based Amphiphiles and Their Self-Assembled Nanomaterials. Bioconjug Chem 2023; 34:2155-2180. [PMID: 37955349 DOI: 10.1021/acs.bioconjchem.3c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Porphyrins have been vastly explored and applied in many cutting-edge fields with plenty of encouraging achievements because of their excellent properties. As important derivatives of porphyrins, porphyrin-based amphiphiles (PBAs) not only maintain the advanced properties of porphyrins (catalysis, imaging, and energy transfer) but also possess self-assembly and encapsulation capability in aqueous solution. Accordingly, PBAs and their self-assembles have had important roles in diagnosing and treating tumors and inflammation lesions in vivo, but not limited to these. In this article, we introduce the research progress of PBAs, including their constitution, structure design strategies, and performances in tumor and inflammation lesion diagnosis and treatments. On that basis, the defects of synthesized PBAs during their application and the possible effective strategies to overcome the limitations are also proposed. Finally, perspectives on PBAs exploration are updated based on our knowledge. We hope this review will bring researchers from various domains insights about PBAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong 518119, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| |
Collapse
|
4
|
Rowan JA, Rudd SE, Ganio K, McDevitt CA, White JM, Donnelly PS. Copper(II) Complexes of 2,2'- Bisdipyrrins: Synthesis, Characterization, Cell Uptake, and Radiolabeling with Copper-64. Inorg Chem 2023; 62:20666-20676. [PMID: 37552883 DOI: 10.1021/acs.inorgchem.3c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Complexes prepared with positron-emitting copper-64 are of interest as imaging agents for positron emission tomography (PET). This work investigates the potential of using acyclic tetrapyrrolic 2,2'-bisdipyrrins as ligands to prepare charge-neutral, lipophilic, cell-permeable, redox active complexes with positron-emitting copper-64. The synthesis and characterization of a series of tetrapyrrolic 2,2'-bisdipyrrin copper(II) complexes are reported. Four 2,2'-bisdipyrrin copper(II) complexes were prepared with different functional groups in the meso-position of the ligands. Two of the new copper(II) complexes, one palladium(II) complex, and one nickel(II) complex were characterized by X-ray crystallography, which demonstrated that the copper(II) is in a distorted square planar environment. An investigation of the electrochemical properties of the complexes by cyclic voltammetry revealed that the complexes undergo multiple quasi-reversible processes. A comparison of the cyclic voltammetry of the copper complexes with their palladium(II) analogues suggests that these redox processes are ligand-based and not metal-based. The copper(II) complexes are cell-permeable in A431 mammalian cells and are nontoxic at concentrations of 50 μM. The ligands can be radiolabeled with copper-64 at room temperature.
Collapse
Affiliation(s)
- Jacob A Rowan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jonathan M White
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
5
|
Pęgier M, Kilian K, Pyrzynska K. Increasing Reaction Rates of Water-Soluble Porphyrins for 64Cu Radiopharmaceutical Labeling. Molecules 2023; 28:molecules28052350. [PMID: 36903596 PMCID: PMC10005645 DOI: 10.3390/molecules28052350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Searching for new compounds and synthetic routes for medical applications is a great challenge for modern chemistry. Porphyrins, natural macrocycles able to tightly bind metal ions, can serve as complexing and delivering agents in nuclear medicine diagnostic imaging utilizing radioactive nuclides of copper with particular emphasis on 64Cu. This nuclide can, due to multiple decay modes, serve also as a therapeutic agent. As the complexation reaction of porphyrins suffers from relatively poor kinetics, the aim of this study was to optimize the reaction of copper ions with various water-soluble porphyrins in terms of time and chemical conditions, that would meet pharmaceutical requirements and to develop a method that can be applied for various water-soluble porphyrins. In the first method, reactions were conducted in a presence of a reducing agent (ascorbic acid). Optimal conditions, in which the reaction time was 1 min, comprised borate buffer at pH 9 with a 10-fold excess of ascorbic acid over Cu2+. The second approach involved a microwave-assisted synthesis at 140 °C for 1-2 min. The proposed method with ascorbic acid was applied for radiolabeling of porphyrin with 64Cu. The complex was then subjected to a purification procedure and the final product was identified using high-performance liquid chromatography with radiometric detection.
Collapse
Affiliation(s)
- Mateusz Pęgier
- Heavy Ion Laboratory, University of Warsaw, Pasteura 5A, 02-093 Warsaw, Poland
- Correspondence:
| | - Krzysztof Kilian
- Heavy Ion Laboratory, University of Warsaw, Pasteura 5A, 02-093 Warsaw, Poland
| | - Krystyna Pyrzynska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
6
|
Porphyrins as Chelating Agents for Molecular Imaging in Nuclear Medicine. Molecules 2022; 27:molecules27103311. [PMID: 35630788 PMCID: PMC9148099 DOI: 10.3390/molecules27103311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
Porphyrin ligands, showing a significant affinity for cancer cells, also have the ability to chelate metallic radioisotopes to form potential diagnostic radiopharmaceuticals. They can be applied in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) to evaluate metabolic changes in the human body for tumor diagnostics. The aim of this paper is to present a short overview of the main metallic radionuclides complexed by porphyrin ligands and used in these techniques. These chelation reactions are discussed in terms of the complexation conditions and kinetics and the complex stability.
Collapse
|
7
|
Distinctive detection of insulinoma using [ 18F]FB(ePEG12)12-exendin-4 PET/CT. Sci Rep 2021; 11:15014. [PMID: 34294854 PMCID: PMC8298522 DOI: 10.1038/s41598-021-94595-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
Specifying the exact localization of insulinoma remains challenging due to the lack of insulinoma-specific imaging methods. Recently, glucagon-like peptide-1 receptor (GLP-1R)-targeted imaging, especially positron emission tomography (PET), has emerged. Although various radiolabeled GLP-1R agonist exendin-4-based probes with chemical modifications for PET imaging have been investigated, an optimal candidate probe and its scanning protocol remain a necessity. Thus, we investigated the utility of a novel exendin-4-based probe conjugated with polyethylene glycol (PEG) for [18F]FB(ePEG12)12-exendin-4 PET imaging for insulinoma detection. We utilized [18F]FB(ePEG12)12-exendin-4 PET/CT to visualize mouse tumor models, which were generated using rat insulinoma cell xenografts. The probe demonstrated high uptake value on the tumor as 37.1 ± 0.4%ID/g, with rapid kidney clearance. Additionally, we used Pdx1-Cre;Trp53R172H;Rbf/f mice, which developed endogenous insulinoma and glucagonoma, since they enabled differential imaging evaluation of our probe in functional pancreatic neuroendocrine neoplasms. In this model, our [18F]FB(ePEG12)12-exendin-4 PET/CT yielded favorable sensitivity and specificity for insulinoma detection. Sensitivity: 30-min post-injection 66.7%, 60-min post-injection 83.3%, combined 100% and specificity: 30-min post-injection 100%, 60-min post-injection 100%, combined 100%, which was corroborated by the results of in vitro time-based analysis of internalized probe accumulation. Accordingly, [18F]FB(ePEG12)12-exendin-4 is a promising PET imaging probe for visualizing insulinoma.
Collapse
|
8
|
Wang LZ, Lim TL, Padakanti PK, Carlin SD, Alavi A, Mach RH, Prud’homme RK. Kinetics of Nanoparticle Radiolabeling of Metalloporphyrin with 64Cu for Positron Emission Tomography (PET) Imaging. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leon Z. Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Tristan L. Lim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Prashanth K. Padakanti
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sean D. Carlin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert H. Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Macrocyclic peptide-based inhibition and imaging of hepatocyte growth factor. Nat Chem Biol 2019; 15:598-606. [DOI: 10.1038/s41589-019-0285-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/03/2019] [Indexed: 11/08/2022]
|
10
|
Fazaeli Y, Hosseini MA, Shahabinia F, Feizi S. 68Ga-5, 10, 15, 20-Tetrakis (2, 4, 6-trimethoxy phenyl) porphyrin: a novel radio-labeled porphyrin complex for positron emission tomography. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06465-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Aguilar-Ortíz E, Jalilian AR, Ávila-Rodríguez MA. Porphyrins as ligands for 64copper: background and trends. MEDCHEMCOMM 2018; 9:1577-1588. [PMID: 30429966 PMCID: PMC6194497 DOI: 10.1039/c8md00263k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Porphyrins and 64Cu have emerged as a novel synergic option for applications in PET molecular imaging. Both the characteristics and photophysical properties of macrocyclic porphyrins and the relatively long half-life of the copper isotope, in addition to the increased tumor-specific uptake of porphyrins compared to normal cells, make this complex an attractive option not only for diagnosis but also for therapeutic applications. Herein, we present an overview of the latest results on the development of PET agents based on porphyrins and 64Cu, including methods used to improve the selectivity of these macrocycles when conjugated with biological units such as monoclonal antibodies, peptides or proteins.
Collapse
Affiliation(s)
- Edgar Aguilar-Ortíz
- Unidad Radiofarmacia-Ciclotrón , División de Investigación , Facultad de Medicina , Universidad Nacional Autónoma de México , 04510 Cd. Mx. , Mexico . ;
| | - Amir R Jalilian
- Department of Nuclear Sciences and Applications , International Atomic Energy Agency (IAEA) , Vienna , Austria
| | - Miguel A Ávila-Rodríguez
- Unidad Radiofarmacia-Ciclotrón , División de Investigación , Facultad de Medicina , Universidad Nacional Autónoma de México , 04510 Cd. Mx. , Mexico . ;
| |
Collapse
|
12
|
Sandland J, Malatesti N, Boyle R. Porphyrins and related macrocycles: Combining photosensitization with radio- or optical-imaging for next generation theranostic agents. Photodiagnosis Photodyn Ther 2018; 23:281-294. [DOI: 10.1016/j.pdpdt.2018.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/22/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
13
|
Affiliation(s)
| | - Marina Gobbo
- Department of Chemical SciencesUniversity of PadovaPadova35131 Italy
- Institute of Biomolecular Chemistry of CNR, Padova UnitPadova35131 Italy
| |
Collapse
|
14
|
Song H, Wang G, Wang J, Wang Y, Wei H, He J, Luo S. 131I-labeled 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin for combined photodynamic and radionuclide therapy. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5735-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Moret F, Reddi E. Strategies for optimizing the delivery to tumors of macrocyclic photosensitizers used in photodynamic therapy (PDT). J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617300014] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review briefly summaries the principles and mechanisms of action of photodynamic therapy (PDT) as concerns its application in the oncological field, highlighting its drawbacks and some of the strategies that have been or are being explored to overcome them. The major aim is to increase the efficiency and selectivity of the photosensitizer (PS) uptake in the cancer cells for optimizing the PDT effects on tumors while sparing normal cells. Some attempts to achieve this are based on the conjugation of the PS to biomolecules (small ligands, peptides) functioning as carriers with the ability to efficiently penetrate cells and/or specifically recognize and bind proteins/receptors overexpressed on the surface of cancer cells. Alternatively, the PS can be entrapped in nanocarriers derived from various types of materials that can target the tumor by exploiting the enhanced permeability and retention (EPR) effects. The use of nanocarriers is particularly attractive because it allows the simultaneous delivery of more than one drug with the possibility of combining PDT with other therapeutic modalities.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, via U. Bassi 58/B 35121 Padova, Italy
| |
Collapse
|
16
|
Folic acid conjugates with photosensitizers for cancer targeting in photodynamic therapy: Synthesis and photophysical properties. Bioorg Med Chem 2017; 25:1-10. [DOI: 10.1016/j.bmc.2016.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
|
17
|
Hervella P, Parra E, Needham D. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles: Liquid cored nanoparticles show better retention than a solid core formulation. Eur J Pharm Biopharm 2016; 102:64-76. [DOI: 10.1016/j.ejpb.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
18
|
Kilian K, Pęgier M, Pyrzyńska K. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:123-127. [PMID: 26836453 DOI: 10.1016/j.saa.2016.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/12/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and (64)Cu isotope can serve as a positron emitter (t1/2=12.7h). The other advantage of (64)Cu is its decay characteristics that facilitates the use of (64)Cu-porphyrin complex as a therapeutic agent. Thus, (64)Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH9 with the addition of 10-fold molar excess, with respect to Cu(2+) ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.
Collapse
Affiliation(s)
- Krzysztof Kilian
- Heavy Ion Laboratory, University of Warsaw, 5ath Pasteur Str., 02-093 Warsaw, Poland.
| | - Maria Pęgier
- Faculty of Chemistry, University of Warsaw, 1st Pasteur Str., 02-093 Warsaw, Poland
| | - Krystyna Pyrzyńska
- Faculty of Chemistry, University of Warsaw, 1st Pasteur Str., 02-093 Warsaw, Poland
| |
Collapse
|
19
|
Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 2016; 20:1055-73. [PMID: 26981612 DOI: 10.1517/14728222.2016.1164694] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite remarkable advances in tumor treatment, many patients still die from common tumors (breast, prostate, lung, CNS, colon, and pancreas), and thus, new approaches are needed. Many of these tumors synthesize bombesin (Bn)-related peptides and over-express their receptors (BnRs), hence functioning as autocrine-growth-factors. Recent studies support the conclusion that Bn-peptides/BnRs are well-positioned for numerous novel antitumor treatments, including interrupting autocrine-growth and the use of over-expressed receptors for imaging and targeting cytotoxic-compounds, either by direct-coupling or combined with nanoparticle-technology. AREAS COVERED The unique ability of common neoplasms to synthesize, secrete, and show a growth/proliferative/differentiating response due to BnR over-expression, is reviewed, both in general and with regard to the most frequently investigated neoplasms (breast, prostate, lung, and CNS). Particular attention is paid to advances in the recent years. Also considered are the possible therapeutic approaches to the growth/differentiation effect of Bn-peptides, as well as the therapeutic implication of the frequent BnR over-expression for tumor-imaging and/or targeted-delivery. EXPERT OPINION Given that Bn-related-peptides/BnRs are so frequently ectopically-expressed by common tumors, which are often malignant and become refractory to conventional treatments, therapeutic interventions using novel approaches to Bn-peptides and receptors are being explored. Of particular interest is the potential of reproducing with BnRs in common tumors the recent success of utilizing overexpression of somatostatin-receptors by neuroendocrine-tumors to provide the most sensitive imaging methods and targeted delivery of cytotoxic-compounds.
Collapse
Affiliation(s)
- Paola Moreno
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| | - Irene Ramos-Álvarez
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| | - Terry W Moody
- b Center for Cancer Research, Office of the Director , NCI, National Institutes of Health , Bethesda , MD , USA
| | - Robert T Jensen
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
20
|
Jadhav S, Yim CB, Rajander J, Grönroos TJ, Solin O, Virta P. Solid-Supported Porphyrins Useful for the Synthesis of Conjugates with Oligomeric Biomolecules. Bioconjug Chem 2016; 27:1023-9. [PMID: 26898631 DOI: 10.1021/acs.bioconjchem.6b00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
meso-Tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin and 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (Photochlor, HPPH) were amide-coupled to 1R,2S,3R,4R-2,3-dihydroxy-4-(hydromethyl)-1-aminocyclopentane and immobilized via an ester linkage to long chain alkyl amine-derivatized controlled pore glass (LCAA-CPG). The applicability of these supports (5 and 6) for the synthesis of porphyrin conjugates with oligomeric biomolecules was demonstrated using an automated phosphoramidite coupling chemistry. Cleavage from the support with concentrated ammonia gave the products, viz., porphyrin conjugates of oligonucleotides (7-9) and dendritic glycoclusters (10-13) and a cyclooctyne derivative (14) in 23-58% yield. In addition, the synthesized cyclooctyne derivative of meso-tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin (14) was conjugated with an azidopropyl-modified hyaluronic acid (19). The hyaluronic acid-porphyrin conjugate (15) was radiolabeled with (64)Cu and its (15[(64)Cu]) receptor binding affinity to CD44-expressing tumor cells was evaluated.
Collapse
Affiliation(s)
- Satish Jadhav
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland
| | - Cheng-Bin Yim
- Turku PET Centre, Åbo Akademi University , FI-20520 Turku, Finland
| | - Johan Rajander
- Turku PET Centre, Åbo Akademi University , FI-20520 Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku , FI-20520 Turku, Finland.,Medicity Research Laboratory, University of Turku , FI-20520 Turku, Finland
| | - Olof Solin
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland.,Turku PET Centre, University of Turku , FI-20520 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland
| |
Collapse
|
21
|
Jana A, McKenzie L, Wragg AB, Ishida M, Hill JP, Weinstein JA, Baggaley E, Ward MD. Porphyrin/Platinum(II) C^N^N Acetylide Complexes: Synthesis, Photophysical Properties, and Singlet Oxygen Generation. Chemistry 2016; 22:4164-74. [DOI: 10.1002/chem.201504509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/23/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Atanu Jana
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| | - Luke McKenzie
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| | - Ashley B. Wragg
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| | - Masatoshi Ishida
- Education Center for Global Leaders in Molecular Systems for Devices; Kyushu University; Fukuoka 819-0395 Japan
| | - Jonathan P. Hill
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); Namiki (Tsukuba Ibaraki 305-0044 Japan
| | - Julia A. Weinstein
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| | - Elizabeth Baggaley
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| | - Michael D. Ward
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| |
Collapse
|
22
|
|
23
|
Entract GM, Bryden F, Domarkas J, Savoie H, Allott L, Archibald SJ, Cawthorne C, Boyle RW. Development of PDT/PET Theranostics: Synthesis and Biological Evaluation of an (18)F-Radiolabeled Water-Soluble Porphyrin. Mol Pharm 2015; 12:4414-23. [PMID: 26559906 DOI: 10.1021/acs.molpharmaceut.5b00606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis of the first water-soluble porphyrin radiolabeled with fluorine-18 is described: a new molecular theranostic agent which integrates the therapeutic selectivity of photodynamic therapy (PDT) with the imaging efficacy of positron emission tomography (PET). Generation of the theranostic was carried out through the conjugation of a cationic water-soluble porphyrin bearing an azide functionality to a fluorine-18 radiolabeled prosthetic bearing an alkyne functionality through click conjugation, with excellent yields obtained in both cold and hot synthesis. Biological evaluation of the synthesized structures shows the first example of an (18)F-radiolabeled porphyrin retaining photocytotoxicity following radiolabeling and demonstrable conjugate uptake and potential application as a radiotracer in vivo. The promising results gained from biological evaluation demonstrate the potential of this structure as a clinically relevant theranostic agent, offering exciting possibilities for the simultaneous imaging and photodynamic treatment of tumors.
Collapse
Affiliation(s)
- Guy M Entract
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K
| | - Francesca Bryden
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K.,Positron Emission Tomography Research Centre, University of Hull , Cottingham Road, Hull, Yorkshire, HU6 7RX, U.K
| | - Juozas Domarkas
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K.,Positron Emission Tomography Research Centre, University of Hull , Cottingham Road, Hull, Yorkshire, HU6 7RX, U.K
| | - Huguette Savoie
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K
| | - Louis Allott
- Institute of Cancer Research , 123 Old Brompton Road, London, SW7 3RP, U.K
| | - Stephen J Archibald
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K.,Positron Emission Tomography Research Centre, University of Hull , Cottingham Road, Hull, Yorkshire, HU6 7RX, U.K
| | - Chris Cawthorne
- Positron Emission Tomography Research Centre, University of Hull , Cottingham Road, Hull, Yorkshire, HU6 7RX, U.K.,School of Biological, Biomedical and Environmental Sciences, University of Hull , Cottingham Road, Hull, Yorkshire, HU6 7RX, U.K
| | - Ross W Boyle
- Department of Chemistry, University of Hull , Cottingham Road, Hull, Yorkshire HU6 7RX, U.K
| |
Collapse
|
24
|
Desbois N, Pacquelet S, Dubois A, Michelin C, Gros CP. Easy access to heterobimetallic complexes for medical imaging applications via microwave-enhanced cycloaddition. Beilstein J Org Chem 2015; 11:2202-8. [PMID: 26664643 PMCID: PMC4660971 DOI: 10.3762/bjoc.11.239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/25/2015] [Indexed: 12/12/2022] Open
Abstract
The Cu(I)-catalysed Huisgen cycloaddition, known as “click” reaction, has been applied to the synthesis of a range of triazole-linked porphyrin/corrole to DOTA/NOTA derivatives. Microwave irradiation significantly accelerates the reaction. The synthesis of heterobimetallic complexes was easily achieved in up to 60% isolated yield. Heterobimetallic complexes were easily prepared as potential MRI/PET (SPECT) bimodal contrast agents incorporating one metal (Mn, Gd) for the enhancement of contrast for MRI applications and one “cold” metal (Cu, Ga, In) for future radionuclear imaging applications. Preliminary relaxivity measurements showed that the reported complexes are promising contrast agents (CA) in MRI.
Collapse
Affiliation(s)
- Nicolas Desbois
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Sandrine Pacquelet
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Adrien Dubois
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Clément Michelin
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| | - Claude P Gros
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France
| |
Collapse
|
25
|
Paul AK, Karunakaran SC, Joseph J, Ramaiah D. Amino Acid-Porphyrin Conjugates: Synthesis and Study of their Photophysical and Metal Ion Recognition Properties. Photochem Photobiol 2015; 91:1348-55. [DOI: 10.1111/php.12527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/14/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Albish K. Paul
- Photosciences and Photonics Section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram Kerala India
| | - Suneesh C. Karunakaran
- Photosciences and Photonics Section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram Kerala India
| | - Joshy Joseph
- Photosciences and Photonics Section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-NIIST Campus; Thiruvananthapuram India
| | - Danaboyina Ramaiah
- Photosciences and Photonics Section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram Kerala India
- CSIR-North East Institute of Science and Technology; Jorhat Assam India
| |
Collapse
|
26
|
Kamarulzaman EE, Mohd Gazzali A, Acherar S, Frochot C, Barberi-Heyob M, Boura C, Chaimbault P, Sibille E, Wahab HA, Vanderesse R. New Peptide-Conjugated Chlorin-Type Photosensitizer Targeting Neuropilin-1 for Anti-Vascular Targeted Photodynamic Therapy. Int J Mol Sci 2015; 16:24059-80. [PMID: 26473840 PMCID: PMC4632738 DOI: 10.3390/ijms161024059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/10/2015] [Accepted: 09/23/2015] [Indexed: 01/04/2023] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment modality that requires three components, namely light, dioxygen and a photosensitizing agent. After light excitation, the photosensitizer (PS) in its excited state transfers its energy to oxygen, which leads to photooxidation reactions. In order to improve the selectivity of the treatment, research has focused on the design of PS covalently attached to a tumor-targeting moiety. In this paper, we describe the synthesis and the physico-chemical and photophysical properties of six new peptide-conjugated photosensitizers designed for targeting the neuropilin-1 (NRP-1) receptor. We chose a TPC (5-(4-carboxyphenyl)-10,15, 20-triphenyl chlorine as photosensitizer, coupled via three different spacers (aminohexanoic acid, 1-amino-3,6-dioxaoctanoic acid, and 1-amino-9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid) to two different peptides (DKPPR and TKPRR). The affinity towards the NRP-1 receptor of the conjugated chlorins was evaluated along with in vitro and in vivo stability levels. The tissue concentration of the TPC-conjugates in animal model shows good distribution, especially for the DKPPR conjugates. The novel peptide-PS conjugates proposed in this study were proven to have potential to be further developed as future NRP-1 targeting photodynamic therapy agent.
Collapse
Affiliation(s)
- Ezatul Ezleen Kamarulzaman
- LCPM UMR 7375, CNRS, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy Cedex, France; E-Mails: (E.E.K.); (A.M.G.); (S.A.)
- LCPM, UMR 7375, Université de Lorraine, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy Cedex, France
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; E-Mail:
| | - Amirah Mohd Gazzali
- LCPM UMR 7375, CNRS, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy Cedex, France; E-Mails: (E.E.K.); (A.M.G.); (S.A.)
- LCPM, UMR 7375, Université de Lorraine, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy Cedex, France
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; E-Mail:
| | - Samir Acherar
- LCPM UMR 7375, CNRS, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy Cedex, France; E-Mails: (E.E.K.); (A.M.G.); (S.A.)
- LCPM, UMR 7375, Université de Lorraine, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy Cedex, France
| | - Céline Frochot
- LRGP, UMR 7274, CNRS, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy Cedex, France; E-Mail:
- LRGP, UMR 7274, Université de Lorraine, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy cedex, France
| | - Muriel Barberi-Heyob
- CRAN, UMR 7039, Université de Lorraine, Campus Sciences, BP 70239-54506 Vandœuvre Cedex, France; E-Mails: (M.B.-H.); (C.B.)
- CRAN, UMR 7039, CNRS, Campus Sciences, BP 70239-54506 Vandœuvre Cedex, France
| | - Cédric Boura
- CRAN, UMR 7039, Université de Lorraine, Campus Sciences, BP 70239-54506 Vandœuvre Cedex, France; E-Mails: (M.B.-H.); (C.B.)
- CRAN, UMR 7039, CNRS, Campus Sciences, BP 70239-54506 Vandœuvre Cedex, France
| | - Patrick Chaimbault
- SRSMC, UMR 7565 ICPM, Université de Lorraine, 1 boulevard Arago, 57078 Metz Cedex 3, France; E-Mail:
- SRSMC, UMR 7565 ICPM, CNRS, 1 boulevard Arago, 57078 Metz Cedex 3, France
| | - Estelle Sibille
- LCP-A2MC, EA 4632, ICPM, 1 boulevard Arago, 57078 Metz Cedex 3, France; E-Mail:
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; E-Mail:
| | - Régis Vanderesse
- LCPM UMR 7375, CNRS, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy Cedex, France; E-Mails: (E.E.K.); (A.M.G.); (S.A.)
- LCPM, UMR 7375, Université de Lorraine, ENSIC, 1 rue Grandville, BP 20451-54001 Nancy Cedex, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-(0)383-175-204; Fax: +33-(0)383-379-977
| |
Collapse
|
27
|
Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015; 72:128-44. [PMID: 25976083 PMCID: PMC4641779 DOI: 10.1016/j.peptides.2015.04.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331].
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Paola Moreno
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Samuel A Mantey
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Taichi Nakamura
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Bernardo Nuche-Berenguer
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - Terry W Moody
- Center for Cancer Research, Office of the Director, NCI, National Institutes of Health, Bethesda, MD 20892-1804, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, United States
| | - Robert T Jensen
- Digestive Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1804, United States.
| |
Collapse
|
28
|
Bryden F, Savoie H, Rosca EV, Boyle RW. PET/PDT theranostics: synthesis and biological evaluation of a peptide-targeted gallium porphyrin. Dalton Trans 2015; 44:4925-32. [DOI: 10.1039/c4dt02949f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In pursuit of the goal of a molecular theranostic suitable for use as a PET radiotracer and a photosensitiser for PDT, a novel 68Ga radiolabelled peptide–porphyrin conjugate targeting the α6β1-integrin has been developed.
Collapse
|
29
|
Kim WL, Cho H, Li L, Kang HC, Huh KM. Biarmed Poly(ethylene glycol)-(pheophorbide a)2 Conjugate as a Bioactivatable Delivery Carrier for Photodynamic Therapy. Biomacromolecules 2014; 15:2224-34. [DOI: 10.1021/bm5003619] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wool Lim Kim
- Department
of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Hana Cho
- Department
of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences,
College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Li Li
- Department
of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Han Chang Kang
- Department
of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences,
College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Kang Moo Huh
- Department
of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Republic of Korea
| |
Collapse
|