1
|
Palermo C, Mentana A, Tomaiuolo M, Campaniello M, Iammarino M, Centonze D, Zianni R. Headspace Solid-Phase Microextraction/Gas Chromatography-Mass Spectrometry and Chemometric Approach for the Study of Volatile Profile in X-ray Irradiated Surface-Ripened Cheeses. Foods 2024; 13:416. [PMID: 38338551 PMCID: PMC10855764 DOI: 10.3390/foods13030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
X-ray irradiation is an emerging non-thermal technology that is used as a preservation and sanitization technique to inactivate pathogens and spoilage organisms, increasing the shelf life of products. In this work, two different types of surface-ripened cheeses, Brie and Camembert, produced with cow milk, were treated with X-rays at three dose levels, 2.0, 4.0 and 6.0 kGy, to evaluate the irradiation effects on the volatile profile using a volatolomic approach. The headspace solid-phase microextraction (HS-SPME) technique combined with gas chromatography-mass spectrometry (GC-MS) was used to extract and analyze the volatile fraction from these dairy matrices. The HS-SPME method was optimized by a central composite design in combination with a desirability optimization methodology. The Carboxen/PDMS fiber, 50 °C for extraction temperature and 60 min for time extraction were found to be the best parameter settings and were applied for this investigation. The obtained fingerprints demonstrated that the irradiation-induced changes are dose dependent. The X-ray irradiation produced many new volatiles not found in the non-irradiated samples, but it also varied the amount of some volatiles already present in the control. Specifically, aldehydes and hydrocarbons increased with the irradiation dose, whereas alcohols, carboxylic acids, esters, methyl esters, ketones, lactones and sulfur-containing compounds showed a non-linear dependence on the dose levels; indeed, they increased up to 4.0 kGy, and then decreased slightly at 6.0 kGy. This trend, more evident in the Camembert profile, is probably due to the fact that these compounds are involved in different oxidation mechanisms of lipids and proteins, which were induced by the radiation treatment. In these oxidative chemical changes, the production and degradation processes of the volatiles are competitive, but at higher doses, the decomposition reactions exceed those of formation. A principal component analysis and partial least square discriminant analysis were used to discriminate between the treated and untreated samples. Moreover, this study allowed for the identification of potential markers of X-ray treatment for the two cheeses, confirming this approach as a useful tool for the control of irradiated surface-ripened cheeses.
Collapse
Affiliation(s)
- Carmen Palermo
- Dipartimento di Medicina Clinica e Sperimentale, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy;
| | - Annalisa Mentana
- Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei Loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (M.T.); (M.C.); (M.I.); (R.Z.)
| | - Michele Tomaiuolo
- Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei Loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (M.T.); (M.C.); (M.I.); (R.Z.)
| | - Maria Campaniello
- Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei Loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (M.T.); (M.C.); (M.I.); (R.Z.)
| | - Marco Iammarino
- Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei Loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (M.T.); (M.C.); (M.I.); (R.Z.)
| | - Diego Centonze
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy;
| | - Rosalia Zianni
- Laboratorio Nazionale di Riferimento per il Trattamento degli Alimenti e dei Loro Ingredienti con Radiazioni Ionizzanti, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; (M.T.); (M.C.); (M.I.); (R.Z.)
| |
Collapse
|
2
|
Chemat A, Song M, Li Y, Fabiano-Tixier AS. Shade of Innovative Food Processing Techniques: Potential Inducing Factors of Lipid Oxidation. Molecules 2023; 28:8138. [PMID: 38138626 PMCID: PMC10745320 DOI: 10.3390/molecules28248138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
With increasing environmental awareness and consumer demand for high-quality food products, industries are strongly required for technical innovations. The use of various emerging techniques in food processing indeed brings many economic and environmental benefits compared to conventional processes. However, lipid oxidation induced by some "innovative" processes is often "an inconvenient truth", which is scarcely mentioned in most studies but should not be ignored for the further improvement and optimization of existing processes. Lipid oxidation poses a risk to consumer health, as a result of the possible ingestion of secondary oxidation products. From this point of view, this review summarizes the advance of lipid oxidation mechanism studies and mainly discloses the shade of innovative food processing concerning lipid degradation. Sections involving a revisit of classic three-stage chain reaction, the advances of polar paradox and cut-off theories, and potential lipid oxidation factors from emerging techniques are described, which might help in developing more robust guidelines to ensure a good practice of these innovative food processing techniques in future.
Collapse
Affiliation(s)
- Aziadé Chemat
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| | - Mengna Song
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Anne-Sylvie Fabiano-Tixier
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| |
Collapse
|
3
|
Zhou R, Chen X, Huang M, Chen H, Zhang L, Xu D, Wang D, Gao P, Wang B, Dai X. ATR-FTIR spectroscopy combined with chemometrics to assess the spectral markers of irradiated baijius and their potential application in irradiation dose control. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123162. [PMID: 37478760 DOI: 10.1016/j.saa.2023.123162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Although some methods have been proposed for the identification of irradiated baijius, they are often costly, time-consuming, and destructive. It is also unclear what instrumentation can be used to fully characterize the quality changes in irradiated baijius. To address this issue, this study pioneers the use of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in combination with chemometrics to open up new avenues for characterizing irradiated baijius and their quality control. Principal component analysis, five spectral pre-processing methods (Savitzky-Golay smoothing (S-G), second-order derivative (SD), multiple scattering correction (MSC), S-G + SD and S-G + MSC), five wavelength selection methods (random forest variable importance (RFVI), two-dimensional correlation spectroscopy (2D-COS), variable importance in projection (VIP), ReliefF, and Venn), and three classification models (partial least squares-discriminant analysis (PLS-DA), random forest (RF), and grasshopper optimization algorithm-based support vector machine (GOA-SVM)) were integrated into the analytical framework of ATR-FTIR spectroscopy, aiming to accurately identify baijiu samples according to different irradiation doses and to search for irradiation-induced spectral difference characteristics (spectral markers). The results showed that SD was the best spectral pre-processing method, and RF models constructed using the 20 most competitive and discriminative spectral markers (selected by Venn) could achieve accurate identification of baijiu samples based on irradiation dose (0, 4, 6, and 8 kGy). After Pearson correlation analysis, the five significantly (P<0.05) changed spectral markers (1596, 2025, 2309, 2329, and 2380 cm-1) were attributed to changes in the content of total acids, alcohols, and aromatic compounds. These findings demonstrate for the first time the potential of ATR-FTIR spectroscopy as a fast, low-cost, and non-destructive tool for the characterization and identification of irradiated baijiu samples. This approach may also offer a promising solution for labeling management of irradiated foods, vintage identification of baijius, and brand protection.
Collapse
Affiliation(s)
- Rui Zhou
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Xiaoming Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China.
| | - Min Huang
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Hao Chen
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Lili Zhang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Defu Xu
- Luzhou Laojiao Co., Ltd, Luzhou 646699, Sichuan, PR China
| | - Dan Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Peng Gao
- Sichuan Institute of Atomic Energy, Chengdu 610101, Sichuan, PR China
| | - Bensheng Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Xiaoxue Dai
- Luzhou Laojiao Co., Ltd, Luzhou 646699, Sichuan, PR China
| |
Collapse
|
4
|
Shik AV, Skorobogatov EV, Bliznyuk UA, Chernyaev AP, Avdyukhina VM, Yu Borschegovskaya P, Zolotov SA, Baytler MO, Doroshenko IA, Podrugina TA, Beklemishev MK. Estimation of doses absorbed by potato tubers under electron beam or X-ray irradiation using an optical fingerprinting strategy. Food Chem 2023; 414:135668. [PMID: 36841105 DOI: 10.1016/j.foodchem.2023.135668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
High-energy electron beam and X-ray processing of foods can be used for extending their storage life and for combating pests and pathogens. Several instrumental techniques are used to estimate irradiation doses in foods, but these methods are complex and laborious, require expensive equipment, and do not always allow to determine low doses. This study was aimed at developing simple methods for detecting irradiation in potato tubers and for dose estimation. We used a "fingerprinting" strategy that does not involve quantitation of any compound; instead, the rate of indicator reactions involving carbocyanine dyes is measured. The dye content was monitored by its near-infrared fluorescence intensity and visible-light absorption. Potatoes not subjected to treatment and those irradiated with different doses (10, 100, 1000, 5000, or 10,000 Gray) could be distinguished by linear discriminant analysis. Thus, the order of magnitude of the absorbed dose can be estimated with 89% ± 3% accuracy for a mixture of tubers of two potato varieties irradiated with an electron beam or with 95% ± 8% accuracy for one variety irradiated with an X-ray source.
Collapse
Affiliation(s)
- Anna V Shik
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia.
| | - Evgenii V Skorobogatov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia
| | - Ulyana A Bliznyuk
- Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia; Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia.
| | - Alexander P Chernyaev
- Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia; Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia.
| | | | - Polina Yu Borschegovskaya
- Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia; Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia.
| | - Sergey A Zolotov
- Physics Department, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia; Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia
| | - Maksim O Baytler
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia
| | - Irina A Doroshenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia
| | - Tatyana A Podrugina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia.
| | - Mikhail K Beklemishev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991 GSP-1, Russia.
| |
Collapse
|
5
|
Zianni R, Mentana A, Tomaiuolo M, Campaniello M, Iammarino M, Centonze D, Palermo C. Volatolomic approach by HS-SPME/GC-MS and chemometric evaluations for the discrimination of X-ray irradiated mozzarella cheese. Food Chem 2023; 423:136239. [PMID: 37182488 DOI: 10.1016/j.foodchem.2023.136239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
In this work, an untargeted screening of the volatile profile of X-ray irradiated mozzarella cheese was carried out to study the possible radio-induced modifications. A Central Composite Design (CCD) for Response Surface Methodology (RSM) was employed to optimise the HS-SPME analysis of volatile organic compounds (VOCs). The optimised HS-SPME conditions, in terms of sample amount (5.0 g), extraction temperature (50 °C) and extraction time (75 min), were used to analyse non-irradiated and irradiated samples at three dose levels, 1.0, 2.0, 3.0 kGy. Partial Least Squares-Discriminant Analysis (PLS-DA) and Linear Discriminant Analysis (LDA) were applied to explore the variation of volatile profile with respect to the X-ray irradiation treatment. Both methods highlighted a high discriminant capability with excellent values of accuracy, specificity and sensitivity, demonstrating the effectiveness of the volatolomic approach to evaluate the variations induced by the treatment and allowing to select a total of 35 VOCs as potential irradiation markers.
Collapse
Affiliation(s)
- Rosalia Zianni
- Università di Foggia, Dipartimento di Medicina Clinica e Sperimentale, Via Napoli, 25, 71122 Foggia, Italy.
| | - Annalisa Mentana
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121 Foggia, Italy.
| | - Michele Tomaiuolo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121 Foggia, Italy.
| | - Maria Campaniello
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121 Foggia, Italy.
| | - Marco Iammarino
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121 Foggia, Italy.
| | - Diego Centonze
- Università di Foggia, Dipartimento di Scienze Mediche e Chirurgiche, Via Napoli, 25, 71122 Foggia, Italy.
| | - Carmen Palermo
- Università di Foggia, Dipartimento di Medicina Clinica e Sperimentale, Via Napoli, 25, 71122 Foggia, Italy.
| |
Collapse
|
6
|
Liu GX, Tu ZC, Wang H, Hu Y, Yang WH. Co-60 gamma irradiation induced ovalbumin-glucose glycation and allergenicity reduction revealed by high-resolution mass spectrometry and ELISA assay. Food Chem 2023; 399:134013. [DOI: 10.1016/j.foodchem.2022.134013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
|
7
|
Yim DG, Kim HJ, Kim SS, Lee HJ, Kim JK, Jo C. Effects of different X-ray irradiation doses on quality traits and metabolites of marinated ground beef during storage. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Wang J, Fu T, Sang X, Liu Y. Effects of high voltage atmospheric cold plasma treatment on microbial diversity of tilapia (Oreochromis mossambicus) fillets treated during refrigeration. Int J Food Microbiol 2022; 375:109738. [DOI: 10.1016/j.ijfoodmicro.2022.109738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
|
9
|
Panseri S, Arioli F, Pavlovic R, Di Cesare F, Nobile M, Mosconi G, Villa R, Chiesa LM, Bonerba E. Impact of irradiation on metabolomics profile of ground meat and its implications toward food safety. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Nardiello M, Scieuzo C, Salvia R, Farina D, Franco A, Cammack JA, Tomberlin JK, Falabella P, Persaud KC. Odorant binding proteins from Hermetia illucens: potential sensing elements for detecting volatile aldehydes involved in early stages of organic decomposition. NANOTECHNOLOGY 2022; 33:205501. [PMID: 35114654 DOI: 10.1088/1361-6528/ac51ab] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Organic decomposition processes, involving the breakdown of complex molecules such as carbohydrates, proteins and fats, release small chemicals known as volatile organic compounds (VOCs), smelly even at very low concentrations, but not all readily detectable by vertebrates. Many of these compounds are instead detected by insects, mostly by saprophytic species, for which long-range orientation towards organic decomposition matter is crucial. In the present work the detection of aldehydes, as an important measure of lipid oxidation, has been possible exploiting the molecular machinery underlying odour recognition inHermetia illucens(Diptera: Stratiomyidae). This voracious scavenger insect is of interest due to its outstanding capacity in bioconversion of organic waste, colonizing very diverse environments due to the ability of sensing a wide range of chemical compounds that influence the choice of substrates for ovideposition. A variety of soluble odorant binding proteins (OBPs) that may function as carriers of hydrophobic molecules from the air-water interface in the antenna of the insect to the receptors were identified, characterised and expressed. An OBP-based nanobiosensor prototype was realized using selected OBPs as sensing layers for the development of an array of quartz crystal microbalances (QCMs) for vapour phase detection of selected compounds at room temperature. QCMs coated with four recombinantH. illucensOBPs (HillOBPs) were exposed to a wide range of VOCs indicative of organic decomposition, showing a high sensitivity for the detection of three chemical compounds belonging to the class of aldehydes and one short-chain fatty acid. The possibility of using biomolecules capable of binding small ligands as reversible gas sensors has been confirmed, greatly expanding the state-of the-art in gas sensing technology.
Collapse
Affiliation(s)
- Marisa Nardiello
- Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Farina
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Antonio Franco
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Jonathan A Cammack
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Jeffrey K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Krishna C Persaud
- Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Zianni R, Mentana A, Campaniello M, Chiappinelli A, Tomaiuolo M, Chiaravalle AE, Marchesani G. An investigation using a validated method based on HS-SPME-GC-MS detection for the determination of 2-dodecylcyclobutanone and 2-tetradecylcyclobutanone in X-ray irradiated dairy products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Chacha JS, Zhang L, Ofoedu CE, Suleiman RA, Dotto JM, Roobab U, Agunbiade AO, Duguma HT, Mkojera BT, Hossaini SM, Rasaq WA, Shorstkii I, Okpala COR, Korzeniowska M, Guiné RPF. Revisiting Non-Thermal Food Processing and Preservation Methods-Action Mechanisms, Pros and Cons: A Technological Update (2016-2021). Foods 2021; 10:1430. [PMID: 34203089 PMCID: PMC8234293 DOI: 10.3390/foods10061430] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022] Open
Abstract
The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.
Collapse
Affiliation(s)
- James S. Chacha
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Liyan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Rashid A. Suleiman
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Joachim M. Dotto
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447 Arusha, Tanzania;
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Technology, University of Ibadan, Ibadan 200284, Nigeria
| | - Haile Tesfaye Duguma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 378 Jimma, Ethiopia
| | - Beatha T. Mkojera
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Sayed Mahdi Hossaini
- DIL German Institute of Food Technologies, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Ivan Shorstkii
- Department of Technological Equipment and Life-Support Systems, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Malgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
13
|
Li Y, Shi B, He Y, Long M, Zhao Y. Gamma irradiation-induced degradation of dehydroacetic acid and sodium dehydroacetate in aqueous solution and pear juice. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Zheng L, Regenstein JM, Teng F, Li Y. Tofu products: A review of their raw materials, processing conditions, and packaging. Compr Rev Food Sci Food Saf 2020; 19:3683-3714. [PMID: 33337041 DOI: 10.1111/1541-4337.12640] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Tofu is a traditional product made mainly from soybeans, which has become globally popular because of its inclusion in vegetarian, vegan, and hypocaloric diets. However, with both commercial production of tofu and scientific research, it remains a challenge to produce tofu with high quality, high nutrition, and excellent flavor. This is because tofu production involves multiple complicated steps, such as soybean selection, utilization of appropriate coagulants, and tofu packaging. To make high-quality tofu product, it is important to systematically understand critical factors that influence tofu quality. This article reviews the current research status of tofu production. The diversity of soybean seeds (the raw material), protein composition, structural properties, and nutritional values are reviewed. Then, selection of tofu coagulants is reviewed to provide insights on its role in tofu quality, where the focus is on the usage of mix coagulants and recent developments with new coagulants. Moreover, a comprehensive summary is provided on recent development in making high-fiber tofu using Okara (the major by-product during tofu production), which has a number of potential applications in the food industry. To help encourage automatic, environmental friendly, and high-efficient tofu production, new developments and applications in production technology, such as ultrasound and high-pressure process, are reviewed. Tofu packaging, including packaging materials and techniques, is evaluated as it has been found to have a positive impact on extending the shelf life and improving the quality of tofu products. Finally, the future research directions and potential areas for new developments are discussed.
Collapse
Affiliation(s)
- Li Zheng
- College of Food Science, Northeast Agricultural University, Harbin, China
- Department of Food Science, Cornell University, Ithaca, New York
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
- Harbin Institute of Food Industry, Harbin, China
- Heilongjiang Academy of Green Food Science, Harbin, China
| |
Collapse
|
15
|
Gamma ray irradiation improves feather meal as a fish meal alternate in largemouth bass Micropterus salmoides diet. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Tonyali B, Sommers C, Ceric O, Smith JS, Yucel U. An analysis of cellulose- and dextrose-based radicals in sweet potatoes as irradiation markers. J Food Sci 2020; 85:2745-2753. [PMID: 32799366 DOI: 10.1111/1750-3841.15359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 11/30/2022]
Abstract
Dried sweet potatoes (SPs) are often irradiated for improved safety and shelf life. Formation of irradiation-derived radicals was analyzed using electron paramagnetic resonance (EPR) spectroscopy. These irradiation-specific radicals can be used to characterize the irradiation history of dry plant-based foods containing cellulose and sugars. The signal characteristics (intensity and peak shape) were evaluated at different sample locations (skin and flesh), as a function of sample preparation method (grinding, sieving, and pelletizing). The signal intensity was quantified using a double integration method of the peaks based on the area under the curve. The sieving caused ca. 50% decrease in total signal intensity as compared to nonsieved samples due to loss of cellulose-based radicals. The flesh of irradiated SP showed complex EPR spectra with multiple satellite peaks of cellulose radicals (333.5 and 338.8 mT) and split peak of dextrose radicals (337.4 mT); while skin spectra were distinctive of cellulose radicals. In this study, we demonstrated the effects of sample composition and preparation method on formation and analysis of irradiation-specific radicals based on EPR. PRACTICAL APPLICATION: In the last decade or so, there have been health concerns related to the consumption of irradiated pet food products. Electron paramagnetic resonance spectroscopy can be used to analyze the irradiation history of dry products containing cellulose and sugar, such as the popular dog treat dried sweet potatoes, to ensure the products were irradiated within safe limits. This work demonstrates that the formation of irradiation-specific radicals is affected by the sample location (skin and flesh) and moisture content.
Collapse
Affiliation(s)
- Bade Tonyali
- Food Science Institute, Kansas State University, Manhattan, KS, 66506, U.S.A
| | | | - Olgica Ceric
- U.S. Food and Drug Administration, Veterinary Laboratory Investigation and Response Network, Laurel, MD, 20708, U.S.A
| | - J Scott Smith
- Food Science Institute, Kansas State University, Manhattan, KS, 66506, U.S.A.,Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, U.S.A
| | - Umut Yucel
- Food Science Institute, Kansas State University, Manhattan, KS, 66506, U.S.A.,Animal Sciences and Industry, Kansas State University, Manhattan, KS, 66506, U.S.A
| |
Collapse
|
17
|
Screening and identification of electron-beam irradiated dried spice-mixture products by electronic sensing and standard analytical methods through dose estimation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Varrà MO, Fasolato L, Serva L, Ghidini S, Novelli E, Zanardi E. Use of near infrared spectroscopy coupled with chemometrics for fast detection of irradiated dry fermented sausages. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Campaniello M, Marchesani G, Zianni R, Tarallo M, Mangiacotti M, Chiaravalle AE. Validation of an alternative method for the identification of 2‐dodecylcyclebutanone (2‐
DCB
) of irradiated meats by solid‐phase microextraction (
SPME
) gas chromatography–mass spectrometry (
GC
‐
MS
). Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maria Campaniello
- Centro di Referenza Nazionale per la Ricerca della Radioattività nel Settore Zootecnico‐Veterinario Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata Via Manfredonia 20 71121 Foggia Italy
| | - Giuliana Marchesani
- Centro di Referenza Nazionale per la Ricerca della Radioattività nel Settore Zootecnico‐Veterinario Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata Via Manfredonia 20 71121 Foggia Italy
| | - Rosalia Zianni
- Centro di Referenza Nazionale per la Ricerca della Radioattività nel Settore Zootecnico‐Veterinario Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata Via Manfredonia 20 71121 Foggia Italy
| | - Marina Tarallo
- Centro di Referenza Nazionale per la Ricerca della Radioattività nel Settore Zootecnico‐Veterinario Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata Via Manfredonia 20 71121 Foggia Italy
| | - Michele Mangiacotti
- Centro di Referenza Nazionale per la Ricerca della Radioattività nel Settore Zootecnico‐Veterinario Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata Via Manfredonia 20 71121 Foggia Italy
| | - A. Eugenio Chiaravalle
- Centro di Referenza Nazionale per la Ricerca della Radioattività nel Settore Zootecnico‐Veterinario Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata Via Manfredonia 20 71121 Foggia Italy
| |
Collapse
|
20
|
Hamad AM, Fahmy HM, Elshemey WM. FT-IR spectral features of DNA as markers for the detection of liver preservation using irradiation. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Affiliation(s)
- Michael Hellwig
- Professur für LebensmittechemieTechnische Universität Dresden D-01062 Dresden Deutschland
| |
Collapse
|
22
|
Abstract
Oxidation is one of the deterioration reactions of proteins in food, the importance of which is comparable to others such as Maillard, lipation, or protein-phenol reactions. While research on protein oxidation has led to a precise understanding of the processes and consequences in physiological systems, knowledge about the specific effects of protein oxidation in food or the role of "oxidized" dietary protein for the human body is comparatively scarce. Food protein oxidation can occur during the whole processing axis, from primary production to intestinal digestion. The present review summarizes the current knowledge and mechanisms of food protein oxidation from a chemical, technological, and nutritional-physiological viewpoint and gives a comprehensive classification of the individual reactions. Different analytical approaches are compared, and the relationship between oxidation of food proteins and oxidative stress in vivo is critically evaluated.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| |
Collapse
|
23
|
Escudero R, Segura J, Velasco R, Valhondo M, Romero de Ávila MD, Garcia-Garcia AB, Cambero MI. Electron spin resonance (ESR) spectroscopy study of cheese treated with accelerated electrons. Food Chem 2019; 276:315-321. [PMID: 30409600 DOI: 10.1016/j.foodchem.2018.09.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 11/29/2022]
Abstract
The generation, accumulation and decay of free radicals in six varieties of cheese, irradiated (0-4 kGy) in an electron accelerator, have been studied by electron spin resonance (ESR) spectroscopy. Remarkably, the ESR spectra of all untreated cheeses showed only one singlet signal with a g-factor of 2.0064 ± 0.0005. Surprisingly, the ESR spectra of irradiated samples presented a new signal with g-factor of 2.0037 ± 0.0003 which was independent of the type of cheese, and which might be due to free radicals from the radiolysis of proteins. Surface regression models (P < 0.0001) established the relationship among signal intensity, absorbed dose (0, 1, 2 and 4 kGy) and storage time (0-180 days) for the different types of cheese. Results suggested that the analysis by ESR (or electron paramagnetic resonance, EPR) is suitable to evaluate, either qualitatively or quantitatively, the irradiation treatment of different types of cheese.
Collapse
Affiliation(s)
- Rosa Escudero
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid. Av, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Jose Segura
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid. Av, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Raquel Velasco
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid. Av, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Margarita Valhondo
- C.A.I. de Resonancia Magnética Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M Dolores Romero de Ávila
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid. Av, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Ana Belén Garcia-Garcia
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid. Av, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - M Isabel Cambero
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid. Av, Puerta de Hierro s/n, 28040 Madrid, Spain.
| |
Collapse
|
24
|
Barbosa AJM, Oliveira AR, Roque ACA. Protein- and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol 2018; 36:1244-1258. [PMID: 30213453 DOI: 10.1016/j.tibtech.2018.07.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Animals' olfactory systems rely on proteins, olfactory receptors (ORs) and odorant-binding proteins (OBPs), as their native sensing units to detect odours. Recent advances demonstrate that these proteins can also be employed as molecular recognition units in gas-phase biosensors. In addition, the interactions between odorant molecules and ORs or OBPs are a source of inspiration for designing peptides with tunable odorant selectivity. We review recent progress in gas biosensors employing biological units (ORs, OBPs, and peptides) in light of future developments in artificial olfaction, emphasizing examples where biological components have been employed to detect gas-phase analytes.
Collapse
Affiliation(s)
- Arménio J M Barbosa
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Rita Oliveira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana C A Roque
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
25
|
Fukui N, Takatori S, Kitagawa Y, Fujiwara T, Ishikawa E, Fujiyama T, Kajimura K, Furuta M, Obana H. Rapid and Reliable Method for Determining Irradiation Histories of Ground Beef and Prawns by Measuring 5,6-Dihydrothymidine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9342-9352. [PMID: 28954193 DOI: 10.1021/acs.jafc.7b03266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A rapid and reliable method for determining irradiation histories of ground beef and prawns was developed on the basis of a method for determining the irradiation history of beef liver by liquid chromatography-tandem mass spectrometry (LC-MS/MS) of 5,6-dihydrothymidine (DHdThd). Improvements in the method included the following: (1) 50% ethanol precipitation in the DNA extraction step was conducted before the RNase step, (2) snake venom phosphodiesterase I was used for DNA digestion to boost liberation of DHdThd, and (3) a matrix-matched calibration curve was used for determining DHdThd by LC-MS/MS analysis. This method successfully determined irradiation histories of ground beef and prawns. Furthermore, a close correlation between the formation of DHdThd and 2-alkylcyclobutanones, which are an established index of irradiation histories, was observed in ground beef. DHdThd in DNA could be a promising candidate for a new index of irradiation histories of various foods.
Collapse
Affiliation(s)
- Naoki Fukui
- Division of Hygienic Chemistry, Osaka Institute of Public Health , Nakamichi 1-3-69, Higashinari-ku, Osaka, Japan
- Laboratory of Quantum-Beam Chemistry and Biology, Radiation Research Center, Osaka Prefecture University , 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Satoshi Takatori
- Division of Hygienic Chemistry, Osaka Institute of Public Health , Nakamichi 1-3-69, Higashinari-ku, Osaka, Japan
| | - Yoko Kitagawa
- Division of Hygienic Chemistry, Osaka Institute of Public Health , Nakamichi 1-3-69, Higashinari-ku, Osaka, Japan
| | - Takuya Fujiwara
- Division of Hygienic Chemistry, Osaka Institute of Public Health , Nakamichi 1-3-69, Higashinari-ku, Osaka, Japan
| | - Etsuko Ishikawa
- Laboratory of Quantum-Beam Chemistry and Biology, Radiation Research Center, Osaka Prefecture University , 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Takatomo Fujiyama
- Laboratory of Quantum-Beam Chemistry and Biology, Radiation Research Center, Osaka Prefecture University , 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Keiji Kajimura
- Division of Hygienic Chemistry, Osaka Institute of Public Health , Nakamichi 1-3-69, Higashinari-ku, Osaka, Japan
| | - Masakazu Furuta
- Laboratory of Quantum-Beam Chemistry and Biology, Radiation Research Center, Osaka Prefecture University , 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Hirotaka Obana
- Division of Hygienic Chemistry, Osaka Institute of Public Health , Nakamichi 1-3-69, Higashinari-ku, Osaka, Japan
| |
Collapse
|