1
|
Su Y, Meng L, Wang J, Zhao Y, Zheng N. Simultaneous Detection of Eight Dairy-Derived Components Using Double-Tube Multiplex qPCR Based TaqMan Probe. Foods 2024; 13:3213. [PMID: 39456275 PMCID: PMC11507643 DOI: 10.3390/foods13203213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The authentication of milk and dairy products has great significance for food fraud. The present investigation entailed the development of a novel method that amalgamates the double-tube approach with multiplex real-time polymerase chain reaction (PCR) technology, incorporating TaqMan probes, to facilitate the high-throughput screening and detection of animal-derived constituents within milk and dairy products. Eight dairy-derived animal-specific primers and probes were designed for the mitochondrial cytochrome b (Cytb) gene of eight dairy products, including cow, buffalo, yak, goat, sheep, horse, donkey, and camel. Through the developed double-tube detection assays, the above eight targets could be simultaneously identified with a detection limit of 0.00128-0.0064 ng/μL. The multiplex qPCR assay was effectively validated using simulated adulterated samples with different mixing ratios and demonstrated a detection limit of 0.1%. Upon analysis of 54 commercially available dairy products, a mislabeling rate of 33% was revealed. This method affords an efficacious means of detecting dairy product ingredients, thereby offering robust technical backing for market oversight and regulatory enforcement of milk and dairy products.
Collapse
Affiliation(s)
- Yingying Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China; (Y.S.); (L.M.); (J.W.)
| | - Lu Meng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China; (Y.S.); (L.M.); (J.W.)
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China; (Y.S.); (L.M.); (J.W.)
| | - Yankun Zhao
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China; (Y.S.); (L.M.); (J.W.)
| |
Collapse
|
2
|
Ji Z, Zhang J, Deng C, Guo T, Han R, Yang Y, Zang C, Chen Y. Identification of pasteurized mare milk and powder adulteration with bovine milk using quantitative proteomics and metabolomics approaches. Food Chem X 2024; 22:101265. [PMID: 38468636 PMCID: PMC10926301 DOI: 10.1016/j.fochx.2024.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Adulteration in dairy products presents food safety challenges, driven by economic factors. Processing may change specific biomarkers, thus affecting their effectiveness in detection. In this study, proteomics and metabolomics approaches were to investigate the detection of bovine milk (BM) constituents adulteration in pasteurized mare milk (PMM) and mare milk powder (MMP). Several bovine proteins and metabolites were identified, with their abundances in PMM and MMP increasing upon addition of BM. Proteins like osteopontin (OPN) and serotransferrin (TF) detected adulteration down to 1 % in PMM, whereas these proteins in MMP were utilized to identify 10 % adulteration. Biotin and N6-Me-adenosine were effective in detecting adulteration in PMM as low as 10 % and 1 % respectively, while in MMP, their detection limits extend down to 0.1 %. These findings offer insights for authenticating mare milk products and underscore the influence of processing methods on biomarker levels, stressing the need to consider these effects in milk product authentication.
Collapse
Affiliation(s)
- Zhongyuan Ji
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junyu Zhang
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830052, Xinjiang, China
| | - Chunxia Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Tongjun Guo
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830052, Xinjiang, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Changjiang Zang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Yong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| |
Collapse
|
3
|
Zhou C, Liu L, Chen J, Fu Q, Chen Z, Wang J, Sun X, Ai L, Xu X, Wang J. Rapid authentication of characteristic milk powders by recombinase polymerase amplification assays. Food Chem 2024; 443:138540. [PMID: 38277935 DOI: 10.1016/j.foodchem.2024.138540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/30/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
The authentication of dairy species has great significance for food safety. This study focused on a more rapid method for identifying major dairy species, and specific recombinase polymerase amplification (RPA)-based assays for cattle, goat, sheep, camel and donkey were developed. Through the developed RPA-based assays, goats and sheep could be simultaneously identified and bovine families could be differentiated. The performances of the RPA assays were validated using 37 milk powder samples, of which 16.2% (6/37) were suspected of being adulterated and 24.3% (9/37) were potentially at risk of being wrongly identified as adulteration. The effectiveness of the developed assays for crude DNA detection was also validated by a rapid nucleic acid extraction kit, and results showed that the presence of large amounts of protein and fat did not affect the qualitative results. Therefore, these assays could combine with the rapid nucleic acids extraction methods for being used in field detection.
Collapse
Affiliation(s)
- Cang Zhou
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Libing Liu
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Qi Fu
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Zhimin Chen
- Shijiazhuang Food and Drug Inspection Center, Shijiazhuang 050020, China
| | - Jinfeng Wang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Xiaoxia Sun
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Lianfeng Ai
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Xiangdong Xu
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| | - Jianchang Wang
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| |
Collapse
|
4
|
Wang H, Zhang X, Yao Y, Huo Z, Cui X, Liu M, Zhao L, Ge W. Oligosaccharide profiles as potential biomarkers for detecting adulteration of caprine dairy products with bovine dairy products. Food Chem 2024; 443:138551. [PMID: 38301550 DOI: 10.1016/j.foodchem.2024.138551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Adulteration of caprine dairy products raises concerns among consumers. This study aimed to identify the differences in oligosaccharide profiles of caprine dairy products, including raw milk, colostrum powder, and lactose powder, and their corresponding bovine dairy products, and provide new insights for detecting adulteration of bovine dairy products in caprine dairy products. Twenty-seven oligosaccharides were detected in caprine and bovine dairy products. The principal component analysis plot of the oligosaccharide profiles clearly differentiated among the six types of dairy products. Specific oligosaccharides that were most distinctive for caprine and bovine dairy products were identified. Lacto-N-triose (LNTri) could be used as a potential biomarker for distinguishing caprine milk from bovine milk, caprine colostrum powder from bovine colostrum powder, and caprine lactose powder from bovine lactose powder. The results demonstrated that oligosaccharides could be used as biomarkers for detecting bovine dairy products in caprine dairy products, especially caprine lactose powder.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Zhang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Yu Yao
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Zhenquan Huo
- Zhejiang Zhongmengchang Health Technology Co., Ltd., Hangzhou 310000, China
| | - Xiuxiu Cui
- Xi'an Baiyue Goat Dairy Group Co., Ltd., Yanliang 710089, China
| | - Mengjia Liu
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Lili Zhao
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China.
| | - Wupeng Ge
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Wen Y, Huang S, Lei H, Li X, Shen X. A Dual and Rapid RPA-CRISPR/Cas12a Method for Simultaneous Detection of Cattle and Soybean-Derived Adulteration in Goat Milk Powder. Foods 2024; 13:1637. [PMID: 38890866 PMCID: PMC11172236 DOI: 10.3390/foods13111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
The adulteration of goat milk powder occurs frequently; cattle-derived and soybean-derived ingredients are common adulterants in goat milk powder. However, simultaneously and rapidly detecting cattle-derived and soybean-derived components is still a challenge. An efficient, high-throughput screening method for adulteration detection is needed. In this study, a rapid method was developed to detect the adulteration of common cattle-derived and soybean-derived components simultaneously in goat milk powder by combining the CRISPR/Cas12a system with recombinant polymerase amplification (RPA). A dual DNA extraction method was employed. Primers and crRNA for dual detection were designed and screened, and a series of condition optimizations were carried out in this experiment. The optimized assay rapidly detected cattle-derived and soybean-derived components in 40 min. The detection limits of both cattle-derived and soybean-derived components were 1% (w/w) for the mixed adulteration models. The established method was applied to a blind survey of 55 commercially available goat milk powder products. The results revealed that 36.36% of the samples contained cattle-derived or soybean-derived ingredients, which revealed the noticeable adulteration situation in the goat milk powder market. This study realized a fast flow of dual extraction, dual amplification, and dual detection of cattle-derived and soybean-derived components in goat milk powder for the first time. The method developed can be used for high-throughput and high-efficiency on-site primary screening of goat milk powder adulterants, and provides a technical reference for combating food adulteration.
Collapse
Affiliation(s)
| | | | | | | | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (S.H.); (H.L.); (X.L.)
| |
Collapse
|
6
|
Kourkouli A, Thomaidis N, Dasenaki M, Markou A. Novel and Sensitive Touchdown Polymerase Chain Reaction Assays for the Detection of Goat and Sheep Milk Adulteration with Cow Milk. Molecules 2024; 29:1820. [PMID: 38675639 PMCID: PMC11052330 DOI: 10.3390/molecules29081820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Milk is the most consumed liquid food in the world due to its high nutritional value and relatively low cost, characteristics that make it vulnerable to adulteration. One of the most common types of milk adulteration involves the undeclared addition of cow's milk to milk from other mammalian species, such as goats, sheep, buffalo or donkeys. The incidence of such adulteration not only causes a crisis in terms of commercial market and consumer uncertainty but also poses a risk to public health, as allergies can be triggered by proteins in undeclared cow's milk. In this study, a specific qualitative touchdown (TD) PCR method was developed to detect the undeclared addition of cow's milk in goat and sheep milk based on the discrimination of the peak areas of the melting curves after the modification of bovine-specific primers. The developed methodology has high specificity for the DNA templates of other species, such as buffalos and donkeys, and is able to identify the presence of cow's milk down to 1%. Repeatability was tested at low bovine concentrations of 5% and 1% and resulted in %RSD values of 1.53-2.04 for the goat-cow assay and 2.49-7.16 for the sheep-cow assay, respectively. The application of this method to commercial goat milk samples indicated a high percentage of noncompliance in terms of labeling (50%), while a comparison of the results to rapid immunochromatographic and ELISA kits validated the excellent sensitivity and applicability of the proposed PCR methodology that was able to trace more adulterated samples. The developed assays offer the advantage of multiple detection in a single run, resulting in a cost- and time-efficient method. Future studies will focus on the applicability of these assays in dairy products such as cheese and yogurt.
Collapse
Affiliation(s)
- Ariadni Kourkouli
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.K.); (N.T.)
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.K.); (N.T.)
| | - Marilena Dasenaki
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (A.K.); (N.T.)
| |
Collapse
|
7
|
Han T, Wang X, Cao H, Song J, Deng X, Gong G, Huang L, Lu Y, Wang Z. Novel Method for Adulterated Identification of Saneen Goat Milk Based on Free Oligosaccharides α3'-Galactosyllactose and N-Acetylhexaminyllactose as Marker Molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5667-5673. [PMID: 36995191 DOI: 10.1021/acs.jafc.2c08649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methods for the detection of adulterated milk are essential for assessing the quality of goat milk products. We hypothesized that goat milk oligosaccharides could provide a basis for this purpose and compared the levels of α3'-galactosyllactose (α3'-GL) and N-acetylhexaminyllactose (NHL) between goat milk and bovine milk oligosaccharides using reverse-phase high-performance liquid chromatography. The α3'-GL was detected to be three times more abundant in goat milk than in bovine milk, whereas NHL showed the opposite trend. Linear relationships were established between the relative proportions of α3'-GL and NHL levels for different ratios of bovine and goat milk, with a minimum detection limit of 2% bovine milk. The new method was validated by analyses of adulterants in eight commercially available goat dairy products. Overall, the degree of adulteration in goat milk products can be determined based on the relative proportions of α3'-GL and NHL.
Collapse
Affiliation(s)
- Tianjiao Han
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xinyi Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Haige Cao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jiansen Song
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoli Deng
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
8
|
Huang S, Liu Y, Zhang X, Gai Z, Lei H, Shen X. A Rapid RPA-CRISPR/Cas12a Detection Method for Adulteration of Goat Milk Powder. Foods 2023; 12:foods12081569. [PMID: 37107364 PMCID: PMC10137891 DOI: 10.3390/foods12081569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Because of the serious adulteration of goat milk, the rapid on-site detection of goat milk powder adulteration is needed. In this study, the CRISPR/Cas12a detection system combined with recombinase polymerase amplification (RPA) was employed to qualitatively detect the adulteration of goat milk powder with cattle-derived components. Specific primers and crRNA were designed and screened. After the optimization of RPA and the Cas system, the RPA-CRISPR/Cas12a detection method was established. The detection can complete the rapid identification of cattle-derived components in 45 min, without the assistant of large equipment. The absolute detectability of the RPA-CRISPR/Cas12a assay could reach 10-2 ng/μL for cattle genomic DNA, and 1% (w/w) for cattle milk powder, which is suitable to meet the testing requirements for on-site detection. In total, 55 commercial goat milk powder products were collected for blind testing. The results showed that 27.3% of the samples were adulterated with cattle ingredients, revealing a serious adulteration situation in goat milk powder market. The RPA-CRISPR/Cas12a assay established in this research exhibited its potential for practical use of on-site detection to detect cow milk powder in goat milk powder and can provide reliable technical reference for combating food fraud of adulteration of goat milk products.
Collapse
Affiliation(s)
- Shuqin Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xu Zhang
- Guangzhou Editgene Co., Ltd., Guangzhou 510630, China
| | - Zuoqi Gai
- Guangzhou Editgene Co., Ltd., Guangzhou 510630, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
The detection of goat milk adulteration with cow milk using a combination of voltammetric fingerprints and chemometrics analysis. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
10
|
Baptista M, Domingues L. Mitochondrial DNA D-Loop Amplification and Sequencing for Species Differentiation in Milk. Methods Mol Biol 2023; 2967:173-180. [PMID: 37608111 DOI: 10.1007/978-1-0716-3358-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Adulteration of dairy products, mainly through the substitution of high-quality milk for lower-quality milk, results in the production of low-value products, raising health, social, and economic concerns. As such, the development of methods to ensure dairy products' safety and quality is of great concern for governments and consumers. Although several methods have been developed for species differentiation in dairy products, their application and the establishment of reliable molecular markers for authentication purposes still need to be improved. In this chapter, we describe a low-cost, sensitive, fast, and reliable PCR-based method for mitochondrial D-loop DNA amplification for efficient detection of cattle milk in binary mixtures with sheep milk, thereby allowing the authentication of processed dairy products.
Collapse
Affiliation(s)
- Marlene Baptista
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS -Associate Laboratory, Braga, Portugal.
| |
Collapse
|
11
|
The Application of Untargeted Metabolomics Using UHPLC-HRMS and Chemometrics for Authentication of Horse Milk Adulterated with Cow Milk. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Kang M, Wang H, Shi X, Chen H, Suo R. Goat milk authentication based on amino acid ratio and chemometric analysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Detection of Ovine or Bovine Milk Components in Commercial Camel Milk Powder Using a PCR-Based Method. Molecules 2022; 27:molecules27093017. [PMID: 35566364 PMCID: PMC9103995 DOI: 10.3390/molecules27093017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022] Open
Abstract
Food ingredient adulteration, especially the adulteration of milk and dairy products, is one of the important issues of food safety. The large price difference between camel milk powder, ovine, and bovine milk powder may be an incentive for the incorporation of ovine and bovine derived foods in camel milk products. This study evaluated the use of ordinary PCR and real-time PCR for the detection of camel milk powder adulteration based on the presence of ovine and bovine milk components. DNA was extracted from camel, ovine, and bovine milk powder using a deep-processed product column DNA extraction kit. The quality of the extracted DNA was detected by amplifying the target sequence from the mitochondrial Cytb gene, and the extracted DNA was used for the identification of milk powder based on PCR analysis. In addition, PCR-based methods (both ordinary PCR and real-time PCR) were used to detect laboratory adulteration models of milk powder using primers targeting mitochondrial genes. The results show that the ordinary PCR method had better sensitivity and could qualitatively detect ovine and bovine milk components in the range of 1% to 100% in camel milk powder. The commercial camel milk powder was used to verify the practicability of this method. The real-time PCR normalization system has a good exponential correlation (R2 = 0.9822 and 0.9923) between ovine or bovine content and Ct ratio (specific/internal reference gene) and allows for the quantitative determination of ovine or bovine milk contents in adulterated camel milk powder samples. Accuracy was effectively validated using simulated adulterated samples, with recoveries ranging from 80% to 110% with a coefficient of variation of less than 7%, exhibiting sufficient parameters of trueness. The ordinary PCR qualitative detection and real-time PCR quantitative detection method established in this study proved to be a specific, sensitive, and effective technology, which is expected to be used for market detection.
Collapse
|
14
|
Development of an optical immunoassay based on peroxidase-mimicking Prussian blue nanoparticles and a label-free electrochemical immunosensor for accurate and sensitive quantification of milk species adulteration. Mikrochim Acta 2022; 189:209. [PMID: 35501410 DOI: 10.1007/s00604-022-05302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
In contrast to reported enzyme-based immunoassays, an enzyme-free immunoassay (optical and electrochemical) is presented here for the first time that can be used as point-of-need detection bioplatforms of bovine IgG as goat milk adulterant. In the first format, Prussian blue nanoparticles (PBNPs) were used as antibody catalytic labels in a competitive colorimetric microplate immunoassay. Absorbance measurement was performed photometrically at 450 nm. After in-depth optimization, excellent sensitivity was achieved (0.01% cow/goat volume ratio), which is 100 times lower than the limit allowed by the European legislation (EL) (1% v/v), thanks to the high catalytic activity of PBNPs compared with natural peroxidase. Moreover, the antibody-PBNPs bioconjugates showed excellent stability over 4 weeks (> 94% of the initial response) confirming the successful anchoring of the antibodies to the surface of the PBNPs. On the other hand, a label-free voltammetric immunoassay for the detection of bovine IgG was developed. The sensing principle was based on the hindrance of charge transfer between ferri-ferrocyanide redox couple and the screen-printed gold electrodes modified with bovine IgG antibody. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the step-by-step modification of the electrode surface. Under optimal conditions, this single-step electrochemical analysis achieved a high sensitivity of 0.1% (cow/goat) when monitoring the ferrocyanide oxidation at + 0.092 V (vs. Ag/AgCl) using differential pulse voltammetry (DPV). The selectivity of the developed immunoassays was evaluated for different species of milk of similar composition, and both immunoassays exhibited a selective response only to bovine IgG. Unlike conventional immunoassays, the developed enzyme-free immunoassays have many attractive features for the detection of milk adulteration, whether they are used in quality control laboratories for routine milk analysis (optical immunoassay) or at on-site checkpoints (electrochemical immunoassay) using wireless electrochemical detectors. The sensors provide high sensitivity (≤ 0.1%), excellent precision (RSD < 6%), low cost (no enzyme is required) and ease of operation, including handling of milk samples.
Collapse
|
15
|
Zhang H, Abdallah MF, Zhang J, Yu Y, Zhao Q, Tang C, Qin Y, Zhang J. Comprehensive quantitation of multi-signature peptides originating from casein for the discrimination of milk from eight different animal species using LC-HRMS with stable isotope labeled peptides. Food Chem 2022; 390:133126. [PMID: 35567972 DOI: 10.1016/j.foodchem.2022.133126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/04/2022]
Abstract
Milk species adulteration has become an altering issue worldwide. In this study, a robust quantification method based on LC-HRMS for the simultaneous detection and differentiation of milk type from eight different animal species (namely: cow, water buffalo, wild yak, goat, sheep, donkey, horse, and camel) was established by detecting nine signature peptides originating from casein. The developed method was in-house validated in terms of sensitivity, accuracy, and precision. As a result, limits of quantification (LOQ) were ranging from 5 to 30 µg/L, recoveries ranged from 95.2% to 104.5%, and intra-day and inter-day variability were lower than 11.4% and 12.6%, respectively, for all the targeted peptides. Furthermore, this method was successfully applied to 46 commercial minor species' milk, in which 15 samples were false labeling. The obtained results indicate the necessity to monitor milk species adulteration in order to protect consumers from consuming misleading labeled minor species animal's milk.
Collapse
Affiliation(s)
- Huiyan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Jingjing Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
16
|
Zhang X, Qiao C, Fu S, Jiao Y, Liu Y. DNA-based qualitative and quantitative identification of bovine whey powder in goat dairy products. J Dairy Sci 2022; 105:4749-4759. [PMID: 35450717 DOI: 10.3168/jds.2021-21618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022]
Abstract
As one of the main ingredients in some milk powders, whey powder is sometimes added to pure goat milk products, which causes health risks, economic fraud, and unfair competition of food industries. This study is the first to explore qualitative and quantitative methods to identify adulteration of bovine whey powder in goat dairy products based on DNA. We extracted DNA from whey powder using a modified DNA extraction method; this exhibited good quality and integrity, with purity of 1.53 to 1.75 and concentration of 122 to 179 ng/μL. Conventional PCR and real-time PCR were compared for qualitative detection of bovine whey powder; real-time PCR demonstrated sensitivity of 0.01 ng/μL, which was higher than the 0.05 ng/μL detected by the conventional PCR method. Furthermore, real-time PCR was conducted for DNA quantitative detection, with good linearity (R2 = 0.9858) obtained for bovine whey powder contents from 0.1% to 30%. Relative error decreased with increase of the mixing proportion of whey powder; the coefficient of variation above 0.1% of the mixing ratio was close to or less than 5%; and the relative standard deviation of repeatability results was less than 5%. Considering the economic costs of testing, conventional PCR could be performed first, and samples with obvious intentional adulteration detected can be further accurately quantified by real-time PCR. Overall, this research provides a realistic and effective method for qualitative and quantitative identification of bovine whey powder in goat dairy products, thus laying a good foundation for verification of goat dairy product label claims and industrial control.
Collapse
Affiliation(s)
- Xueru Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Chunyan Qiao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Shangchen Fu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yang Jiao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
17
|
Mafra I, Honrado M, Amaral JS. Animal Species Authentication in Dairy Products. Foods 2022; 11:1124. [PMID: 35454711 PMCID: PMC9027536 DOI: 10.3390/foods11081124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Milk is one of the most important nutritious foods, widely consumed worldwide, either in its natural form or via dairy products. Currently, several economic, health and ethical issues emphasize the need for a more frequent and rigorous quality control of dairy products and the importance of detecting adulterations in these products. For this reason, several conventional and advanced techniques have been proposed, aiming at detecting and quantifying eventual adulterations, preferentially in a rapid, cost-effective, easy to implement, sensitive and specific way. They have relied mostly on electrophoretic, chromatographic and immunoenzymatic techniques. More recently, mass spectrometry, spectroscopic methods (near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR) and front face fluorescence coupled to chemometrics), DNA analysis (real-time PCR, high-resolution melting analysis, next generation sequencing and droplet digital PCR) and biosensors have been advanced as innovative tools for dairy product authentication. Milk substitution from high-valued species with lower-cost bovine milk is one of the most frequent adulteration practices. Therefore, this review intends to describe the most relevant developments regarding the current and advanced analytical methodologies applied to species authentication of milk and dairy products.
Collapse
Affiliation(s)
- Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Mónica Honrado
- CIMO, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
| | - Joana S. Amaral
- CIMO, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
| |
Collapse
|
18
|
Vafin RR, Galstyan AG, Tyulkin SV, Gilmanov KK, Yurova EA, Semipyatniy VK, Bigaeva AV. Species identification of ruminant milk by genotyping of the κ-casein gene. J Dairy Sci 2021; 105:1004-1013. [PMID: 34802731 DOI: 10.3168/jds.2020-19931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
The development of molecular genetic and bioinformatic systems for identifying the species of milk and the raw material composition of dairy products is of great scientific and practical importance with the purpose of introducing developments in the system for controlling the turnover of falsified products. The aim of the research is to develop a method of PCR-RFLP analysis for species identification of milk and dairy products from agricultural ruminant animals by the κ-casein gene (CSN3) with the possibility of qualitative and relative quantitative assessment of species-specific DNA of the tested biomaterial. The objects of research were samples of raw milk and milk powder, pasteurized cream, and hard and semi-hard cheeses. The developed method of species identification of milk and dairy products includes sample preparation of the studied samples, nucleic acid extraction, combined PCR-RFLP technique, detection of obtained results by the method of horizontal electrophoresis in agarose gel and their analysis, including using the developed mathematical algorithms and software. The synergistic effect established in combined operation of 2 restriction enzymes ensured their application in a mix with increased performance in an ergonomic way in the context of DNA authentication of cow, goat, and sheep milk and dairy products based on them. The specificity and sensitivity of the proposed method is potentially suitable for implementing the development of a system to control the turnover of falsified and counterfeit goods.
Collapse
Affiliation(s)
- R R Vafin
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - A G Galstyan
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| | - S V Tyulkin
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - Kh Kh Gilmanov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316, Moscow, Russia
| | - E A Yurova
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| | - V K Semipyatniy
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia.
| | - A V Bigaeva
- All-Russian Scientific Research Institute of the Dairy Industry, 115093, Moscow, Russia
| |
Collapse
|
19
|
Li L, Wang J, Li M, Yang Y, Wang Z, Miao J, Zhao Z, Yang J. Detection of the adulteration of camel milk powder with cow milk by ultra-high performance liquid chromatography (UPLC). Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Baptista M, Cunha JT, Domingues L. DNA-based approaches for dairy products authentication: A review and perspectives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Hai X, Liu GQ, Luo JX, Guo YS, Qian JP, Ya M, Guo L. Triplex real-time PCR assay for the authentication of camel-derived dairy and meat products. J Dairy Sci 2020; 103:9841-9850. [PMID: 32921473 DOI: 10.3168/jds.2019-17245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/29/2020] [Indexed: 11/19/2022]
Abstract
Authentication of dairy and meat products is important to ensure fair competition, consumer benefit, and food safety. The large difference in price between camel and cow milk may be an incentive to adulterate camel dairy products with cow-derived foodstuffs. However, no studies so far have used triplex real-time PCR with an endogenous control to identify camel and cow origins in dairy and meat products. In this study, we developed a triplex real-time PCR assay based on amplification of mitochondrial 12S ribosomal DNA for the authentication of camel-derived dairy and meat products. This method was applied to identify camel and cow DNA in milk, yogurt, cheese, milk powder, milk beverage, meat products, and mixtures with milk and meat. Concentrations as low as 1 to 5% and 0.1% camel milk and meat, respectively, were detected in the mixtures, and 1 to 5% and 0.1% cow milk and meat, respectively, were identified via this approach. The limits of detection were 0.005 to 0.0025 ng, 0.05 to 0.001 ng, 0.001 to 0.0005 ng, and 0.00025 to 0.0001 ng of DNA in camel milk, camel yogurt, commercial camel milk beverage, and camel meat, and from 0.0025 to 0.001 ng, 0.5 to 0.001 ng, 1 to 0.05 ng, 0.01 ng, 0.001 ng, 0.0005 to 0.00025 ng, 0.0005 to 0.00025 ng, and 0.005 ng of DNA from cow milk, yogurt, cheese, acidic whey, milk powder, beef, beef jerky, and beef sausage, respectively. Different dairy and meat samples of camel and cow origins had a range of authentication limits and limits of detection. The designed triplex real-time PCR assay was shown to be a specific, sensitive, and efficient technique for the identification of camel and cow DNA in foodstuffs.
Collapse
Affiliation(s)
- Xiao Hai
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Guo-Qiang Liu
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Jian-Xing Luo
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Yuan-Sheng Guo
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Jun-Ping Qian
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Mei Ya
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Liang Guo
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China.
| |
Collapse
|