1
|
Liu J, Sun W, Liu C, Na Q. Umbilical Cord Blood-Derived Exosomes in Maternal-Fetal Disease: a Review. Reprod Sci 2023; 30:54-61. [PMID: 35157260 DOI: 10.1007/s43032-022-00879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 01/06/2023]
Abstract
The nutrients and other factors transported by umbilical cord blood, which is vital for fetal survival, play crucial roles in fetal development. There are various communication modes between the fetal-placental system and the maternal-placental system, and these communication modes are all mediated by umbilical cord blood. During the process of umbilical cord blood transportation, the changes of some nutrients and factors may play a key role in fetal development. Exosomes, which are members of the extracellular vesicle family, are present in the umbilical cord blood and play roles in information transmission as a result of their efficient cellular communication activity. The study of umbilical cord blood-derived exosomes provides a new approach for research on the etiology of maternal-fetal diseases and they may be useful for the development of intrauterine treatments. This review summarizes specific functions and research directions regarding umbilical cord blood-derived exosomes, and their potential associations with pregnancy complications.
Collapse
Affiliation(s)
- Jingyi Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Quan Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Pisula A, Sienicka A, Stachyra K, Kacperczyk-Bartnik J, Bartnik P, Dobrowolska-Redo A, Romejko-Wolniewicz E. Women's attitude towards umbilical cord blood banking in Poland. Cell Tissue Bank 2021; 22:587-596. [PMID: 33751309 PMCID: PMC8558205 DOI: 10.1007/s10561-021-09914-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
Umbilical cord blood (UCB) is considered as a valuable potential source of hematopoietic stem and progenitor cells. A process of collecting and storing UCB in the immediate period after the birth is called UCB banking. The study was conducted in order to determine women's knowledge, awareness, preferences and attitude towards UCB banking in Poland, considering the sociodemographic and obstetric factors. A cross-sectional, self-administered, online questionnaire-based study including mostly multiple choice questions concerning attitude and awareness regarding UCB banking was conducted entirely online among Facebook female users in Poland. A total of 1077 participants correctly completed the survey. Most participants (n = 911, 84.6%) were aware of the possibility of UCB banking. Social media were considered as the main source of information (47.5%). However, the participants mostly indicated the doctor as their preferred source of reliable information (86.8%). The majority of women (61.8%) assessed their level of knowledge of UCB banking as still insufficient. Among the participants who supported UCB banking (70%), the following reasons were considered as the most vital: potential possibility of helping their child (93.9%) and helping other relatives (64.4%). More than half of the respondents (66.9%), who have not stored and are not willing to store their children's UCB, indicated the high cost of UCB banking as the main reason of this decision. The knowledge and awareness of UCB storage and banking possibilities amongst women in Poland could be improved. The professional medical personnel should be a source of reliable information.
Collapse
Affiliation(s)
- Agata Pisula
- Students' Scientific Group Affiliated to 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Sienicka
- Students' Scientific Group Affiliated to 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Stachyra
- Students' Scientific Group Affiliated to 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Kacperczyk-Bartnik
- 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Karowa 2 St., 00-315, Warsaw, Poland.
| | - Paweł Bartnik
- 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Karowa 2 St., 00-315, Warsaw, Poland
| | - Agnieszka Dobrowolska-Redo
- 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Karowa 2 St., 00-315, Warsaw, Poland
| | - Ewa Romejko-Wolniewicz
- 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Karowa 2 St., 00-315, Warsaw, Poland
| |
Collapse
|
3
|
Kahraman NS, Öner A. Umbilical cord-derived mesenchymal stem cell implantation in patients with optic atrophy. Eur J Ophthalmol 2020; 31:3463-3470. [PMID: 33307808 DOI: 10.1177/1120672120977824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Optic nerve cells can be irreversibly damaged by common various causes. Unfortunately optic nerve and retinal ganglion cells have no regenerative capacity and undergo apoptosis in case of damage. In this study, our aim is to investigate the safety and efficacy of suprachoroidal umbilical cord-derived MSCs (UC-MSCs) implantation in patients with optic atrophy. METHODS This study enrolled 29 eyes of 23 patients with optic atrophy who were followed in the ophthalmology department of our hospital. BCVA, anterior segment, fundus examination, color photography, and optical coherence tomography (OCT) were carried out at each visit. Fundus fluorescein angiography and visual field examination were performed at the end of the first, third, sixth months, and 1 year follow-up. RESULTS After suprachoroidal UC-MSCs implantation there were statistically significant improvements in BCVA and VF results during 12 months follow-up (p < 0.05). When we evaluate the results of VF tests, the mean deviation (MD) value at baseline was -26.11 ± 8.36 (range -14.18 to -34.41). At the end of the first year it improved to -25.01 ± 8.73 (range -12.56 to -34.41) which was statistically significant (p < 0.05). When we evaluate the mean RNFL thickness measurements at baseline and at 12 month follow-up the results were 81.8 ± 24.9 μm and 76.6 ± 22.6 μm, respectively. There was not a significant difference between the mean values (p > 0.05). CONCLUSION Stem cell treatment with suprachoroidal implantation of UCMSCs seems to be safe and effective in the treatment for optic nerve diseases that currently have no curative treatment options.
Collapse
Affiliation(s)
| | - Ayşe Öner
- Department of Ophthalmology, Acibadem Hospital, Kayseri, Turkey
| |
Collapse
|
4
|
Huang S, Tang Z, Wang Y, Chen D, Li J, Zhou C, Lu X, Yuan Y. Comparative profiling of exosomal miRNAs in human adult peripheral and umbilical cord blood plasma by deep sequencing. Epigenomics 2020; 12:825-842. [DOI: 10.2217/epi-2019-0213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: To assess differential expression profiles of miRNAs in exosomes derived from human peripheral blood (PB) and umbilical cord blood (UCB). Materials & methods: Small RNA sequencing was performed to characterize the miRNA expression in plasma exosomes processed from UCB of five healthy newborns and PB of five normal adult volunteers, and differentially expressed miRNAs were further analyzed. Results: A total of 65 exosomal miRNAs, including 46 upregulated and 19 downregulated, showed differential expression between UCB and PB. Target genes of these miRNAs were mainly enriched in signaling pathways associated with pregnancy, cancers, cell mobility and nervous system. Conclusion: Exosomal miRNAs may have essential roles in the biological functions of UCB, suggesting the therapeutic and biomarker potentials of exosomes in UCB.
Collapse
Affiliation(s)
- Sirui Huang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| | - Zhenlin Tang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| | - Yuheng Wang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| | - Danliang Chen
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Jinan University, Number 613 Huangpu Avenue, Guangzhou, Guangdong 510630, PR China
| | - Jinhua Li
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| | - Chang Zhou
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| | - Xin Lu
- School of Life Science, South China Normal University, Number 55 Zhongshan Avenue, Guangzhou, Guangdong 510631, PR China
| | - Yin Yuan
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Number 280 Outer Ring East Road, Higher Education Mega Center, Guangzhou, Guangdong 510006,PR China
| |
Collapse
|
5
|
Allison BJ, Youn H, Malhotra A, McDonald CA, Castillo-Melendez M, Pham Y, Sutherland AE, Jenkin G, Polglase GR, Miller SL. Is Umbilical Cord Blood Therapy an Effective Treatment for Early Lung Injury in Growth Restriction? Front Endocrinol (Lausanne) 2020; 11:86. [PMID: 32194502 PMCID: PMC7063054 DOI: 10.3389/fendo.2020.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/11/2020] [Indexed: 11/22/2022] Open
Abstract
Fetal growth restriction (FGR) and prematurity are often co-morbidities, and both are risk factors for lung disease. Despite advances in early delivery combined with supportive ventilation, rates of ventilation-induced lung injury (VILI) remain high. There are currently no protective treatments or interventions available that target lung morbidities associated with FGR preterm infants. Stem cell therapy, such as umbilical cord blood (UCB) cell administration, demonstrates an ability to attenuate inflammation and injury associated with VILI in preterm appropriately grown animals. However, no studies have looked at the effects of stem cell therapy in growth restricted newborns. We aimed to determine if UCB treatment could attenuate acute inflammation in the first 24 h of ventilation, comparing effects in lambs born preterm following FGR with those born preterm but appropriately grown (AG). Placental insufficiency (FGR) was induced by single umbilical artery ligation in twin-bearing ewes at 88 days gestation, with twins used as control (appropriately grown, AG). Lambs were delivered preterm at ~126 days gestation (term is 150 days) and randomized to either immediate euthanasia (unventilated controls, AGUVC and FGRUVC) or commenced on 24 h of gentle supportive ventilation (AGV and FGRV) with additional cohorts receiving UCB treatment at 1 h (AGCELLS, FGRCELLS). Lungs were collected at post-mortem for histological and biochemical examination. Ventilation caused lung injury in AG lambs, as indicated by decreased septal crests and elastin density, as well as increased inflammation. Lung injury in AG lambs was attenuated with UCB therapy. Ventilated FGR lambs also sustained lung injury, albeit with different indices compared to AG lambs; in FGR, ventilation reduced septal crest density, reduced alpha smooth muscle actin density and reduced cell proliferation. UCB treatment in ventilated FGR lambs further decreased septal crest density and increased collagen deposition, however, it increased angiogenesis as evidenced by increased vascular endothelial growth factor (VEGF) expression and vessel density. This is the first time that a cell therapy has been investigated in the lungs of growth restricted animals. We show that the uterine environment can alter the response to both secondary stress (ventilation) and therapy (UCB). This study highlights the need for further research on the potential impact of novel therapies on a growth restricted offspring.
Collapse
Affiliation(s)
- Beth J. Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
- *Correspondence: Beth J. Allison
| | - Hannah Youn
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash Newborn, Monash Medical Centre, Clayton, VIC, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Amy E. Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology and Paediatrics, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Ren Z, Xu F, Zhang X, Zhang C, Miao J, Xia X, Kang M, Wei W, Ma T, Zhang Q, Lu L, Wen J, Liu G, Liu K, Wang Q, Yang J. Autologous cord blood cell infusion in preterm neonates safely reduces respiratory support duration and potentially preterm complications. Stem Cells Transl Med 2019; 9:169-176. [PMID: 31702120 PMCID: PMC6988763 DOI: 10.1002/sctm.19-0106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Preterm birth and its complications are the leading cause of neonatal death. The main underlying pathological mechanisms for preterm complications are disruption of the normal maturation processes within the target tissues, interrupted by premature birth. Cord blood, as a new and convenient source of stem cells, may provide new, promising options for preventing preterm complications. This prospective, nonrandomized placebo controlled study aimed at investigating the effect of autologous cord blood mononuclear cells (ACBMNC) for preventing preterm associated complications. Preterm infants less than 35 weeks gestational age were assigned to receive ACBMNC (5 × 107 cells/kg) intravenous or normal saline within 8 hours after birth. Preterm complication rates were compared between two groups to demonstrate the effect of ACBMNC infusion in reducing preterm complications. Fifteen preterm infants received ACBMNC infusion, and 16 infants were assigned to the control group. There were no significant differences when comparing mortality and preterm complication rates before discharge. However, ACBMNC infusion demonstrated significant decreases in duration of mechanical ventilation (3.2 days vs 6.41 days, P = .028) and oxygen therapy (5.33 days vs 11.31 days, P = .047). ACBMNC infusion was effective in reducing respiratory support duration in very preterm infants. Due to the limited number of patients enrolled, powered randomized controlled trials are needed to better define its efficacy.
Collapse
Affiliation(s)
- Zhuxiao Ren
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Fang Xu
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoling Zhang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chunyi Zhang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiayu Miao
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xin Xia
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mengmeng Kang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wei Wei
- Guangdong Cord Blood and Stem Cell Bank, Guangzhou, People's Republic of China
| | - Tianbao Ma
- Guangdong Cord Blood and Stem Cell Bank, Guangzhou, People's Republic of China
| | - Qi Zhang
- Department of Clinical Genetic Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lijuan Lu
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiying Wen
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Guocheng Liu
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kaiyan Liu
- Institute of Hematology, People's Hospital, Peking University, Beijing, People's Republic of China
| | - Qi Wang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangdong Cord Blood and Stem Cell Bank, Guangzhou, People's Republic of China
| | - Jie Yang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Pinheiro CCG, Leyendecker Junior A, Tanikawa DYS, Ferreira JRM, Jarrahy R, Bueno DF. Is There a Noninvasive Source of MSCs Isolated with GMP Methods with Better Osteogenic Potential? Stem Cells Int 2019; 2019:7951696. [PMID: 31781247 PMCID: PMC6875366 DOI: 10.1155/2019/7951696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/11/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND A new trend in the treatment for alveolar clefts in patients with cleft lip and palate involves the use of bone tissue engineering strategies to reduce or eliminate the morbidity associated with autologous bone grafting. The use of mesenchymal stem cells-autologous cells obtained from tissues such as bone marrow and fat-combined with various biomaterials has been proposed as a viable option for use in cleft patients. However, invasive procedures are necessary to obtain the mesenchymal stem cells from these two sources. To eliminate donor site morbidity, noninvasive stem cell sources such as the umbilical cord, orbicularis oris muscle, and deciduous dental pulp have been studied for use in alveolar cleft bone tissue engineering. In this study, we evaluate the osteogenic potential of these various stem cell types. METHODS Ten cellular strains obtained from each different source (umbilical cord, orbicularis oris muscle, or deciduous dental pulp) were induced to osteogenic differentiation in vitro, and the bone matrix deposition of each primary culture was quantified. To evaluate whether greater osteogenic potential of the established mesenchymal stem cell strains was associated with an increase in the expression profile of neural crest genes, real-time qPCR was performed on the following genes: SRY-box 9, SRY-box 10, nerve growth factor receptor, transcription factor AP-2 alpha, and paired box 3. RESULTS The mesenchymal stem cells obtained from deciduous dental pulp and orbicularis oris muscle demonstrated increased osteogenic potential with significantly more extracellular bone matrix deposition when compared to primary cultures obtained from the umbilical cord after twenty-one days in culture (p = 0.007 and p = 0.005, respectively). The paired box 3 gene was more highly expressed in the MSCs obtained from deciduous dental pulp and orbicularis oris muscle than in those obtained from the umbilical cord. CONCLUSION These results suggest that deciduous dental pulp and orbicularis oris muscle stem cells demonstrate superior osteogenic differentiation potential relative to umbilical cord-derived stem cells and that this increased potential is related to their neural crest origins. Based on these observations, and the distinct translational advantage of incorporating stem cells from noninvasive tissue sources into tissue engineering protocols, greater study of these specific cell lines in the setting of alveolar cleft repair is indicated.
Collapse
Affiliation(s)
- Carla C. G. Pinheiro
- Hospital Sírio-Libanês-Instituto de Ensino e Pesquisa, São Paulo, SP 01308-050, Brazil
| | | | | | - José Ricardo Muniz Ferreira
- Instituto Militar de Engenharia (IME), Departamento de Ciências de Materiais, Programa de Pós Graduação em Ciências de Materiais, Rio de Janeiro, RJ 22290-270, Brazil
| | - Reza Jarrahy
- David Geffen School of Medicine, Division of Plastic and Reconstructive Surgery, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daniela F. Bueno
- Hospital Sírio-Libanês-Instituto de Ensino e Pesquisa, São Paulo, SP 01308-050, Brazil
| |
Collapse
|
8
|
Sane MS, Tang H, Misra N, Pu X, Malara S, Jones CD, Mustafi SB. Characterization of an umbilical cord blood sourced product suitable for allogeneic applications. Regen Med 2019; 14:769-789. [PMID: 31313975 DOI: 10.2217/rme-2019-0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Umbilical cord blood (UCB) sourced allografts are promising interventions for tissue regeneration. As applications of these allografts and regulations governing them continue to evolve, we were prompted to identify parameters determining their quality, safety and regenerative potential. Materials & methods: Flow-cytometry, mass-spectrometry, protein multiplexing, nanoparticle tracking analysis and standard biological techniques were employed. Results: Quality attributes of a uniquely processed UCB-allograft (UCBr) were enumerated based on identity (cell viability, immunophenotyping, proteomic profiling, and quantification of relevant cytokines); safety (bioburden and microbiological screening), purity (endotoxin levels) and potency (effect of UCBr on chondrocytes and mesenchymal stem cells derived exosomes). These attributes were stable up to 24 months in cryopreserved UCBr. Conclusion: We identified a comprehensive panel of tests to establish the clinical efficacy and quality control attributes of a UCB-sourced allograft.
Collapse
Affiliation(s)
- Mukta S Sane
- Department of Research & Development, Burst Biologics, Boise, ID 83705, USA
| | - Huiyuan Tang
- Department of Research & Development, Burst Biologics, Boise, ID 83705, USA
| | - Neha Misra
- Department of Research & Development, Burst Biologics, Boise, ID 83705, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA
| | - Sara Malara
- Department of Research & Development, Burst Biologics, Boise, ID 83705, USA
| | | | | |
Collapse
|
9
|
Jeon RH, Lee WJ, Son YB, Bharti D, Shivakumar SB, Lee SL, Rho GJ. PPIA, HPRT1, and YWHAZ Genes Are Suitable for Normalization of mRNA Expression in Long-Term Expanded Human Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3093545. [PMID: 31240211 PMCID: PMC6556274 DOI: 10.1155/2019/3093545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
Long-term expansion of mesenchymal stem cells (MSCs) under defined culture conditions is necessary in human stem cell therapy. However, it alters the characteristics of MSCs. Since quantitative real time polymerase chain reaction (qRT-PCR) is widely used as one of the key analytical methods for comparative characterization, the validation of reference genes (RGs) for normalization under each experimental condition is important to achieve reliable qRT-PCR results. Therefore, the most stable RGs for long-term expanded bone marrow- and umbilical cord blood-derived MSCs (BM-MSCs and UCB-MSCs) under defined culture conditions for up to 20 passages were evaluated. The more apparent alterations in characteristics such as differentiation capacity, proliferation, senescence, and the expression of RGs were noted in BM-MSCs than UCB-MSCs during long-term expansion. The RG validation programs (GeNorm and NormFinder) suggested that PPIA, HPRT1, and YWHAZ were suitable for normalization in qRT-PCR regardless of MSC types and long-term culture expansion, and the traditional RGs (ACTB and GAPDH) were less stable in long-term expanded MSCs. In addition, the use of these RGs for normalization of OCT4 expression in long-term expanded BM-MSCs showed that a less stable RG (GAPDH) showed contrasting data compared to other RGs. Therefore, the use of RGs such as PPIA, HPRT1, and YWHAZ for normalization in qRT-PCR experiments is highly recommended for long-term expanded MSCs to generate accurate and reliable data.
Collapse
Affiliation(s)
- Ryoung-Hoon Jeon
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Bum Son
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dinesh Bharti
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | | | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
10
|
In vitro differentiation of human umbilical cord blood mesenchymal stem cells into functioning hepatocytes. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Dimas-González J, Nieto-Linares A, Millán-Rocha M, Salazar-Bailón JL, Lorenzo-Moreno BA, Rojo-Medina J. Thawing methods do not affect cell viability of CD45+ and CD34+ cells, but long-term cryopreservation of umbilical cord blood units generally decreases cell viability. Transfus Apher Sci 2019; 58:196-200. [PMID: 30902449 DOI: 10.1016/j.transci.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Umbilical cord blood units (UCBUs) are collected and cryopreserved in biobanks for a future transplant. Hematopoietic stem cells and hematopoietic progenitor cells (HSC/HPC) present in UCB can be damaged due to factors such as the cryopreservation process, the thawing process, and prolonged storage time. METHODS UCBUs (n = 27) were obtained from the Biobank of the National Center of Blood Transfusion (NCBT) from Mexico. They contained three attached segments of UCBU, including 1.0-2.3 × 106 CD34+ cells prior to cryopreservation and were stored during the period from 2003 to 2015. Each UCB segment was thawed with three different methods and CD34 cells, CD45 cells, and 7-AAD were identified by flow cytometry. Furthermore, we carried out CFU assays, and trypan blue staining. RESULTS Viable CD45+ (vCD45+) cells, vCD34+ cells, CFU, and percentage of E-Clone were not statistically significant among three different thawing methods. The number of vCD45+ and vCD34+ cells diminished in the three thawing methods compared with the same cells prior to their cryopreservation (p < 0.0001). vCD45+ and vCD34+ cells diminished in the ≥10-year cryopreservation group (p < 0.001). In addition, percentage of recovery of vCD45+ and vCD34+ cells diminished in this same group (p = 0.013 and p < 0.0001, respectively). CONCLUSION The thawing methods did not affect either cell viability (vCD45+ and vCD34+ cells) or pluripotency (CFU, percentage of E-Clone) in attached segments of UCBUs. The ≥10-year cryopreservation time in attached segments of UCBUs alters the number of vCD45+ and vCD34+ cells; however, it does not affect their pluripotency.
Collapse
Affiliation(s)
- Jisela Dimas-González
- Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico..
| | - Adán Nieto-Linares
- Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico..
| | - Miriam Millán-Rocha
- Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico..
| | - José Luis Salazar-Bailón
- Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico..
| | - Bardo Abraham Lorenzo-Moreno
- Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico..
| | - Julieta Rojo-Medina
- Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico..
| |
Collapse
|
12
|
Abstract
Stem cells possess the extraordinary capacity of self-renewal and differentiation to various cell types, thus to form original tissues and organs. Stem cell heterogeneity including genetic and nongenetic mechanisms refers to biological differences amongst normal and stem cells originated within the same tissue. Cell differentiation hierarchy and stochasticity in gene expression and signaling pathways may result in phenotypic differences of stem cells. The maintenance of stemness and activation of differentiation potential are fundamentally orchestrated by microenvironmental stem cell niche-related cellular and humoral signals.
Collapse
Affiliation(s)
- Györgyi Műzes
- 2nd Department of Medicine, Immunology Division, Semmelweis University, Szentkirályi u. 46., Budapest, 1088, Hungary.
| | - Ferenc Sipos
- 2nd Department of Medicine, Immunology Division, Semmelweis University, Szentkirályi u. 46., Budapest, 1088, Hungary
| |
Collapse
|
13
|
Garbuzova-Davis S, Ehrhart J, Sanberg PR. Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2017; 17:837-851. [DOI: 10.1080/14712598.2017.1323862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Jared Ehrhart
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
14
|
Efficacy of human umbilical cord derived-mesenchymal stem cells in treatment of rat bone marrow exposed to gamma irradiation. Ann Anat 2017; 210:64-75. [DOI: 10.1016/j.aanat.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 11/19/2022]
|
15
|
Chung S, Rho S, Kim G, Kim SR, Baek KH, Kang M, Lew H. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury. Int J Mol Med 2016; 37:1170-80. [PMID: 26986762 PMCID: PMC4829137 DOI: 10.3892/ijmm.2016.2532] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) in cell therapy in regenerative medicine has great potential, particularly in the treatment of nerve injury. Umbilical cord blood (UCB) reportedly contains stem cells, which have been widely used as a hematopoietic source and may have therapeutic potential for neurological impairment. Although ongoing research is dedicated to the management of traumatic optic nerve injury using various measures, novel therapeutic strategies based on the complex underlying mechanisms responsible for optic nerve injury, such as inflammation and/or ischemia, are required. In the present study, a rat model of optic nerve crush (ONC) injury was established in order to examine the effects of transplanting human chorionic plate-derived MSCs (CP‑MSCs) isolated from the placenta, as well as human UCB mononuclear cells (CB-MNCs) on compressed rat optic nerves. Expression markers for inflammation, apoptosis, and optic nerve regeneration were analyzed, as well as the axon survival rate by direct counting. Increased axon survival rates were observed following the injection of CB‑MNCs at at 1 week post-transplantation compared with the controls. The levels of growth-associated protein-43 (GAP‑43) were increased after the injection of CB‑MNCs or CP‑MSCs compared with the controls, and the expression levels of hypoxia-inducible factor-1α (HIF-1α) were also significantly increased following the injection of CB-MNCs or CP-MSCs. ERM-like protein (ERMN) and SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2) were found to be expressed in the optic nerves of the CP‑MSC-injected rats with ONC injury. The findings of our study suggest that the administration of CB‑MNCs or CP‑MSCs may promote axon survival through systemic concomitant mechanisms involving GAP‑43 and HIF‑1α. Taken together, these findings provide further understanding of the mechanisms repsonsible for optic nerve injury and may aid in the development of novel cell-based therapeutic strategies with future applications in regenerative medicine, particularly in the management of optic nerve disorders.
Collapse
Affiliation(s)
- Sokjoong Chung
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seungsoo Rho
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Gijin Kim
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - So-Ra Kim
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Myungseo Kang
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
16
|
Shalaby SM, El-Shal AS, Zidan HE, Mazen NF, Abd El-Haleem MR, Abd El Motteleb DM. Comparing the effects of MSCs and CD34+ cell therapy in a rat model of myocardial infarction. IUBMB Life 2016; 68:343-54. [DOI: 10.1002/iub.1487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Sally M. Shalaby
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Amal S. El-Shal
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Haidy E. Zidan
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Nehad F. Mazen
- Histology and Cell Biology Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Manal R. Abd El-Haleem
- Histology and Cell Biology Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | | |
Collapse
|
17
|
Chen G, Yue A, Yu H, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L. Mesenchymal Stem Cells and Mononuclear Cells From Cord Blood: Cotransplantation Provides a Better Effect in Treating Myocardial Infarction. Stem Cells Transl Med 2016; 5:350-7. [PMID: 26798061 DOI: 10.5966/sctm.2015-0199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the effect of cotransplanting mononuclear cells from cord blood (CB-MNCs) and mesenchymal stem cells (MSCs) as treatment for myocardial infarction (MI). Transplanting CD34+ cells or MSCs separately has been shown effective in treating MI, but the effect of cotransplanting CB-MNCs and MSCs is not clear. In this study, MSCs were separated by their adherence to the tissue culture. The morphology, immunophenotype, and multilineage potential of MSCs were analyzed. CB-MNCs were separated in lymphocyte separation medium 1.077. CD34+ cell count and viability were analyzed by flow cytometry. Infarcted male Sprague-Dawley rats in a specific-pathogen-free grade were divided into four treatment groups randomly: group I, saline; group II, CB-MNCs; group III, MSCs; and group IV, CB-MNCs plus MSCs. The saline, and CB-MNCs and/or MSCs were injected intramyocardially in infarcted rats. Their cardiac function was evaluated by echocardiography. The myocardial capillary density was analyzed by immunohistochemistry. Both cell types induced an improvement in the left ventricular cardiac function and increased tissue cell proliferation in myocardial tissue and neoangiogenesis. However, CB-MNCs plus MSCs were more effective in reducing the infarct size and preventing ventricular remodeling. Scar tissue was reduced significantly in the CB-MNCs plus MSCs group. MSCs facilitate engraftment of CD34+ cells and immunomodulation after allogeneic CD34+ cell transplantation. Cotransplanting MSCs and CB-MNCs might be more effective than transplanting MSCs or CB-MNCs separately for treating MI. This study contributes knowledge toward effective treatment strategies for MI.
Collapse
Affiliation(s)
- Gecai Chen
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Aihuan Yue
- Jiangsu Province Stem Cell Bank, Taizhou, Jiangsu Province, People's Republic of China
| | - Hong Yu
- Department of Pathology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Zhongbao Ruan
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Yigang Yin
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Ruzhu Wang
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Yin Ren
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| | - Li Zhu
- Department of Cardiology, Taizhou People Hospital, Taizhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
18
|
Chang MY, Huang TT, Chen CH, Cheng B, Hwang SM, Hsieh PCH. Injection of Human Cord Blood Cells With Hyaluronan Improves Postinfarction Cardiac Repair in Pigs. Stem Cells Transl Med 2015; 5:56-66. [PMID: 26574556 DOI: 10.5966/sctm.2015-0092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Recent clinical trials using autologous bone marrow or peripheral blood cells to treat myocardial infarction (MI) show controversial results, although the treatment has a good safety profile. These discrepancies are likely caused by factors such as aging, systemic inflammation, and cell processing procedures, all of which might impair the regenerative capability of the cells used. Here, we tested whether injection of human cord blood mononuclear cells (CB-MNCs) combined with hyaluronan (HA) hydrogel improves cell therapy efficacy in a pig MI model. A total of 34 minipigs were divided into 5 groups: sham operation (Sham), surgically induced-MI plus injection with normal saline (MI+NS), HA only (MI+HA), CB-MNC only (MI+CB-MNC), or CB-MNC combined with HA (MI+CB-MNC/HA). Two months after the surgery, injection of MI+CB-MNC/HA showed the highest left ventricle ejection fraction (51.32%±0.81%) compared with MI+NS (42.87%±0.97%, p<.001), MI+HA (44.2%±0.63%, p<.001), and MI+CB-MNC (46.17%±0.39%, p<.001) groups. The hemodynamics data showed that MI+CB-MNC/HA improved the systolic function (+dp/dt) and diastolic function (-dp/dt) as opposed to the other experimental groups, of which the CB-MNC alone group only modestly improved the systolic function (+dp/dt). In addition, CB-MNC alone or combined with HA injection significantly decreased the scar area and promoted angiogenesis in the infarcted region. Together, these results indicate that combined CB-MNC and HA treatment improves heart performance and may be a promising treatment for ischemic heart diseases. SIGNIFICANCE This study using healthy human cord blood mononuclear cells (CB-MNCs) to treat myocardial infarction provides preclinical evidence that combined injection of hyaluronan and human CB-MNCs after myocardial infarction significantly increases cell retention in the peri-infarct area, improves cardiac performance, and prevents cardiac remodeling. Moreover, using healthy cells to replace dysfunctional autologous cells may constitute a better strategy to achieve heart repair and regeneration.
Collapse
Affiliation(s)
- Ming-Yao Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China Institute of Clinical Medicine, and National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tzu-Ting Huang
- Institute of Clinical Medicine, and National Cheng Kung University, Tainan, Taiwan, Republic of China Department of Life Science, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chien-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Bill Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China
| | - Patrick C H Hsieh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China Institute of Clinical Medicine, and National Cheng Kung University, Tainan, Taiwan, Republic of China Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China Division of Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
19
|
Kim HJ, Seo SW, Chang JW, Lee JI, Kim CH, Chin J, Choi SJ, Kwon H, Yun HJ, Lee JM, Kim ST, Choe YS, Lee KH, Na DL. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer's disease dementia: A phase 1 clinical trial. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2015; 1:95-102. [PMID: 29854930 PMCID: PMC5975048 DOI: 10.1016/j.trci.2015.06.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction We conducted a phase 1 clinical trial in nine patients with mild-to-moderate Alzheimer's disease to evaluate the safety and dose-limiting toxicity of stereotactic brain injection of human umbilical cord blood–derived mesenchymal stem cells (hUCB-MSCs). Methods The low- (n = 3) and high-dose (n = 6) groups received a total of 3.0 × 106 cells/60 μL and 6.0 × 106 cells/60 μL, respectively, into the bilateral hippocampi and right precuneus. Results No patient showed serious adverse events including fever during the 24-month follow-up period. During the 12-week follow-up period, the most common acute adverse event was wound pain from the surgical procedure (n = 9), followed by headache (n = 4), dizziness (n = 3), and postoperative delirium (n = 3). There was no dose-limiting toxicity. Discussion Administration of hUCB-MSCs into the hippocampus and precuneus by stereotactic injection was feasible, safe, and well tolerated. Further trials are warranted to test the efficacy. Clinical Trial Registration ClinicalTrial.gov identifier NCT01297218 and NCT01696591.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea.,Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul, Korea
| | - Jung Il Lee
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chi Hun Kim
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Juhee Chin
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul, Korea
| | - Hunki Kwon
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Hyuk Jin Yun
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jong Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Sung Tae Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
20
|
Safety of Allogeneic Umbilical Cord Blood Stem Cells Therapy in Patients with Severe Cerebral Palsy: A Retrospective Study. Stem Cells Int 2015; 2015:325652. [PMID: 26236347 PMCID: PMC4510256 DOI: 10.1155/2015/325652] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/28/2015] [Indexed: 12/19/2022] Open
Abstract
This retrospective study aimed to assess the safety of patients with severe cerebral palsy (CP), who received allogeneic umbilical cord blood stem cells (UCBSCs) treatment from August 2009 to December 2012 in Guangdong Provincial Hospital of Chinese Medicine. A total of 47 patients with average age of 5.85 ± 6.12 years were evaluated in this study. There was no significant association with allogeneic UCBSCs treatments found in the data of the laboratory index . No casualties occurred. Some adverse events during treatments were found in 26 (55.3%) patients, including fever (42.6%) and vomiting (21.2%). Intrathecal infusion and the ages at the initiation of treatment (≤10 years old) were risk factors for the occurrence of adverse events by logistic regression analysis. However, all adverse events disappeared after symptomatic treatment. No treatment related serious adverse events were found in follow-up visits within 6 months. In conclusion, allogeneic UCBSCs treatment was relatively safe for severe CP patients.
Collapse
|
21
|
Amiri F, Jahanian-Najafabadi A, Roudkenar MH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability. Cell Stress Chaperones 2015; 20:237-51. [PMID: 25527070 PMCID: PMC4326383 DOI: 10.1007/s12192-014-0560-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are under intensive investigation for use in cell-based therapies because their differentiation abilities, immunomodulatory effects, and homing properties offer potential for significantly augmenting regenerative capacity of many tissues. Nevertheless, major impediments to their therapeutic application, such as low proliferation and survival rates remain as obstacles to broad clinical use of MSCs. Another major challenge to evolution of MSC-based therapies is functional degradation of these cells as a result of their exposure to oxidative stressors during isolation. Indeed, oxidative stress-mediated MSC depletion occurs due to inflammatory processes associated with chemotherapy, radiotherapy, and expression of pro-apoptotic factors, and the microenvironment of damaged tissue in patients receiving MSC therapy is typically therapeutic not favorable to their survival. For this reason, any strategies that enhance the viability and proliferative capacity of MSCs associated with their therapeutic use are of great value. Here, recent strategies used by various researchers to improve MSC allograft function are reviewed, with particular focus on in vitro conditioning of MSCs in preparation for clinical application. Preconditioning, genetic manipulation, and optimization of MSC culture conditions are some examples of the methodologies described in the present article, along with novel strategies such as treatment of MSCs with secretome and MSC-derived microvesicles. This topic material is likely to find value as a guide for both research and clinical use of MSC allografts and for improvement of the value that use of these cells brings to health care.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
22
|
Min K, Song J, Kang JY, Ko J, Ryu JS, Kang MS, Jang SJ, Kim SH, Oh D, Kim MK, Kim SS, Kim M. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells 2014; 31:581-91. [PMID: 23281216 PMCID: PMC3744768 DOI: 10.1002/stem.1304] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/30/2012] [Accepted: 11/26/2012] [Indexed: 12/16/2022]
Abstract
Allogeneic umbilical cord blood (UCB) has therapeutic potential for cerebral palsy (CP). Concomitant administration of recombinant human erythropoietin (rhEPO) may boost the efficacy of UCB, as it has neurotrophic effects. The objectives of this study were to assess the safety and efficacy of allogeneic UCB potentiated with rhEPO in children with CP. Children with CP were randomly assigned to one of three parallel groups: the pUCB group, which received allogeneic UCB potentiated with rhEPO; the EPO group, which received rhEPO and placebo UCB; and the Control group, which received placebo UCB and placebo rhEPO. All participants received rehabilitation therapy. The main outcomes were changes in scores on the following measures during the 6 months treatment period: the gross motor performance measure (GMPM), gross motor function measure, and Bayley scales of infant development-II (BSID-II) Mental and Motor scales (18). F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET/CT) and diffusion tensor images (DTI) were acquired at baseline and followed up to detect changes in the brain. In total, 96 subjects completed the study. Compared with the EPO (n = 33) and Control (n = 32) groups, the pUCB (n = 31) group had significantly higher scores on the GMPM and BSID-II Mental and Motor scales at 6 months. DTI revealed significant correlations between the GMPM increment and changes in fractional anisotropy in the pUCB group. 18F-FDG-PET/CT showed differential activation and deactivation patterns between the three groups. The incidence of serious adverse events did not differ between groups. In conclusion, UCB treatment ameliorated motor and cognitive dysfunction in children with CP undergoing active rehabilitation, accompanied by structural and metabolic changes in the brain. Stem Cells2013;31:581–591
Collapse
Affiliation(s)
- Kyunghoon Min
- Department of Rehabilitation Medicine, CHA University, Seongnam-si, Gyeonggi-do, Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chondrogenic differentiation of menstrual blood-derived stem cells on nanofibrous scaffolds. Methods Mol Biol 2013; 1058:149-69. [PMID: 23592035 DOI: 10.1007/7651_2013_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cartilage tissue engineering is a promising technology to restore and repair cartilage lesions in the body. In recent years, significant advances have been made using stem cells as a cell source for clinical goals of cartilage tissue engineering. Menstrual blood-derived stem cells (MenSCs) is a novel population of stem cells that demonstrate the potential and differentiate into a wide range of tissues including the chondrogenic lineage. Incorporation of cell culture with extracellular matrix (ECM) like substratum plays an important role in cartilage tissue regeneration by providing attachment sites as well as bioactive signals for cells to grow and differentiate into chondrogenic lineage. The electrospun nanofibers are a class of polymer-based biomaterials that have been extensively utilized in tissue engineering as ECM-like scaffold. This chapter discusses potential of electrospun nanofibers for cell-based cartilage tissue engineering and presents detailed protocols on immunophenotyping characterization and chondrogenic differentiation of MenSCs seeded in poly-ε-caprolactone (PCL) nanofibers. The isolated MenSCs are characterized using flow cytometry, seeded on the nanofibers, imaged using scanning electron microscopy, and subsequently differentiated into chondrogenic lineage in culture medium containing specific growth factors and cytokines. Immunofluorescence and alcian blue staining are used to evaluate the development of seeded MenSCs in PCL nanofibrous scaffold into chondrogenic lineage.
Collapse
|
24
|
Repairing neural injuries using human umbilical cord blood. Mol Neurobiol 2012; 47:938-45. [PMID: 23275174 DOI: 10.1007/s12035-012-8388-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/13/2012] [Indexed: 01/14/2023]
Abstract
Stem cells are promising sources for repairing damaged neurons and glial cells in neural injuries and for replacing dead cells in neurodegenerative diseases. An essential step for stem cell-based therapy is to generate large quantities of stem cells and develop reliable culture conditions to direct efficient differentiation of specific neuronal and glial subtypes. The human umbilical cord and umbilical cord blood (UCB) are rich sources of multiple stem cells, including hematopoietic stem cells, mesenchymal stem cells, unrestricted somatic stem cells, and embryonic-like stem cells. Human UC/UCB-derived cells are able to give rise to multiple cell types of neural lineages. Studies have shown that UCB and UCB-derived cells can survive in injured sites in animal models of ischemic brain damage and spinal cord injuries, and promote survival and prevent cell death of local neurons and glia. Human UCB is easy to harvest and purify. Moreover, unlike embryonic stem cells, the use of human UCB is not limited by ethical quandaries. Therefore, human UCB is an attractive source of stem cells for repairing neural injuries.
Collapse
|
25
|
Koo HH, Ahn HS. Umbilical cord blood transplantation. KOREAN JOURNAL OF PEDIATRICS 2012; 55:219-23. [PMID: 22844315 PMCID: PMC3405153 DOI: 10.3345/kjp.2012.55.7.219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/19/2012] [Indexed: 11/30/2022]
Abstract
Since the first umbilical cord blood transplantation (CBT) in 1998, cord blood (CB) has now become one of the most commonly used sources of hematopoietic stem cells for transplantation. CBT has advantages of easy procurement, no risk to donor, low risk of transmitting infections, immediate availability and immune tolerance allowing successful transplantation despite human leukocyte antigen disparity. Several studies have shown that the number of cells transplanted is the most important factor for engraftment in CBT, and it limits the wide use of CB in adult patients. New strategies for facilitating engraftment and reducing transplantation-related mortality are ongoing in the field of CBT and include the use of a reduced-intensity conditioning regimen, double-unit CBT, ex vivo expansion of CB, and co-transplantation of CB and mesenchymal stem cells. Recently, the results of two international studies with large sample sizes showed that CB is an acceptable alternative source of hematopoietic stem cells for adult recipients who lack human leukocyte antigen-matched adult donors. Along with the intensive researches, development in banking process of CB will amplify the use of CB and offer the chance for cure in more patients.
Collapse
Affiliation(s)
- Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | |
Collapse
|
26
|
Characterization and Chondrogenic Differentiation of Menstrual Blood-Derived Stem Cells on a Nanofibrous Scaffold. Int J Artif Organs 2012; 35:55-66. [DOI: 10.5301/ijao.5000019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2011] [Indexed: 12/25/2022]
Abstract
Introduction The recent identification of menstrual blood-derived stem cells (MenSCs) as a unique population of stem cells has created enormous promise for tissue engineering. In this study, after characterization of MenSCs in comparison with bone marrow-derived stem cells (BMSCs), the potential of MenSCs seeded into electrospun, biodegradable, nanofibrous scaffolds in order to engineer cartilage was evaluated. Methods MenSCs and BMSCs were isolated by discontinuous density gradient centrifugation and plastic adherence. After characterization of MenSCs compared with BMSCs, MenSC differentiation into chondrocytes was investigated on a nanofibrous scaffold with specific growth and differentiation factors. The scaffold was prepared from polycaprolactone (PCL) and its surface was modified by plasma treatment. Results Flow cytometric analysis of expanded cells showed that MenSCs typically express some surface and intracellular markers associated with BMSCs. But marked expression of OCT-4 and the absence of STRO1 distinguished them from mesenchymal stem cells obtained from bone marrow. Based on scanning electron microscope images, the MenSCs were strongly anchored to the highly porous scaffold, which they penetrated and proliferated on. The scaffold contained an extensive cartilage-like extracellular matrix with about 50% greater glycosaminoglycan content than control MenSCs differentiated in a two-dimensional (2D) culture system (p<0.05). Considerable amounts of proteoglycan were produced by the cells differentiated on the scaffold, as demonstrated by Alcian blue staining. Unlike undifferentiated MenSCs, cells differentiated on the scaffold had strong immunoreactivity with monoclonal antibody against collagen type II. Conclusions The evidence presented in this study introduces MenSCs as a suitable stem cell population candidate for cartilage tissue engineering.
Collapse
|
27
|
The Role of Collagen Type I on Hematopoietic and Mesenchymal Stem Cells Expansion and Differentiation. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amr.409.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The three dimensional scaffold of the bone marrow (BM) niches is composed of various elements including extracellular matrix proteins and cell types, such as collagen type I (Col I) and stroma cells. Interaction of stem cells with their microenvironment is important for their regulation. In the marrow, Col I is mostly localized in the endosteal regions. The objective of this work was to investigate the role of Col I in the regulation of Hematopoietic Stem Cells (HSC) and Mesenchymal Stem Cells (MSC) growth. Col I was extracted from rat tail tendons and its purity confirmed. Human BM MSCs and umbilical cord blood (UCB) CD34+cells were used as Stem Cell sources. MSCs were cultured in medium with serum while CB CD34+cells were cultured without serum with cytokines. The impact of increasing concentrations of Col I (0-50 µg mL-1for coating) on the growth of Hematopoietic Progenitor Cells (HPC) and MSCs was investigated by cytometry, microscopy and clonogenic progenitor assays. Only a minority of CD34+cells expressed the Col I receptor α2β1prior to culture, while the opposite was observed when hematopoietic cells were placed in culture. Col I coated surfaces reduced the expansion of hematopoietic cells by 25% compared to control, while expansions of myeloid and MK progenitors were either unchanged or negatively affected by Col I, respectively. The differentiation of HPCs was also affected on Col I as demonstrated by differences in the frequencies of various cell lineages, such as CD34+cells, megakaryocytes (MK), erythrocytes and others. In contrast to HPCs, Col I surfaces increased MSCs proliferation but had little impact on osteoblasts derived from MSCs. Taken together, this study provides new insights into the regulatory activities of Col I on Stem Cells residing in the marrow.
Collapse
|
28
|
Meng FK, Sun HY, Tan XY, Li CR, Zhou JF, Liu WL. Negative regulation of cyclin D3 expression by transcription factor c-Ets1 in umbilical cord hematopoietic cells. Acta Pharmacol Sin 2011; 32:1159-64. [PMID: 21841808 DOI: 10.1038/aps.2011.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIM To investigate the role of transcription factor c-Ets1 in cyclin D3 expression and its effects on the proliferation of umbilical cord hematopoietic cells. METHODS Cyclin D3 promoter deletion constructs were generated and transfected into CD34(+) cells. Dual luciferase reporter assays and TFSEARCH software were used to identify negative regulatory domains and to predict putative transcription factors involved in cyclin D3 downregulation. Expression of c-Ets1 in CD34(+) cells was detected using electrophoretic mobility shift and super shift assays. Point mutants of c-Ets1 binding sites were constructed. The wild-type c-Ets1 and the mutant promoter constructs were co-transfected into CD34(+) cells to determine the promoter activity. The impact of c-Ets1 expression on the proliferation of CD34(+) cells was assessed using MTT assay. RESULTS Nine cyclin D3 promoter deletion constructs were generated. A negative regulatory domain containing c-Ets1 binding sites was identified between -439 bp and -362 bp. Transfection of the promoter deletion constructs containing mutant c-Ets1 binding sites enhanced cyclin D3 promoter activity. However, the opposite results were observed when CD34(+) cells were co-transfected with wildtype c-Ets1 and its promoter deletion constructs. The overexpression of c-Ets1 could suppress cyclin D3 mRNA and protein levels. In addition, it inhibits the proliferation of CD34(+) cells. CONCLUSION c-Ets1 functions as a negative transcription factor, down-regulating the expression of cyclin D3, which leads to inhibition of CD34(+) cell proliferation.
Collapse
|