1
|
Kizir D, Karaman M, Demir Y, Ceylan H. Effect of tannic acid on doxorubicin-induced cellular stress: Expression levels of heat shock genes in rat spleen. Biotechnol Appl Biochem 2024; 71:1339-1345. [PMID: 38945802 DOI: 10.1002/bab.2633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Doxorubicin (DOX), an anthracycline group antibiotic, has been extensively employed as a potent chemotherapeutic agent for treating solid and hematopoietic tumors in humans. Amid exposure to diverse stress conditions, living organisms swiftly initiate the synthesis of heat shock proteins (HSPs), a set of highly conserved proteins. Tannic acid (TA) has garnered increasing study attention due to its special chemical properties, health benefits, and wide availability. This study's primary aim is to elucidate the impact of DOX and TA on the expression levels of Hsp90aa1, Hspa1a, Hspa4, and Hspa5 in the spleen tissues of rats. Sprague Dawley rats (Rattus norvegicus, male, 9-10 weeks old, 180 ± 20 g) were randomly divided into 4 groups: control, DOX (30 mg/kg cumulative), TA (50 mg/kg), and DOX + TA (5 mg/kg and 50 mg/kg, respectively). Subsequently, spleen tissues were collected from rats, and complementary DNA libraries were generated after the application process. The quantitative real-time PCR method was used to detect and quantify the mRNA expression changes of the Hsp90aa1, Hspa1a, Hspa4, and Hspa5 genes our results showed that the mRNA expressions of the targeted genes were up-regulated in rat spleen tissues exposed to DOX. However, this increase was remarkably suppressed by TA treatment. These findings suggest that TA may serve as a protective agent, mitigating the toxic effects of DOX in the rat spleen.
Collapse
Affiliation(s)
- Duygu Kizir
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Melike Karaman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yeliz Demir
- Nihat Delibalta Göle Vocational High School, Department of Pharmacy Services, Ardahan University, Ardahan, Turkey
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
2
|
Budhram-Mahadeo VS, Solomons MR, Mahadeo-Heads EAO. Linking metabolic dysfunction with cardiovascular diseases: Brn-3b/POU4F2 transcription factor in cardiometabolic tissues in health and disease. Cell Death Dis 2021; 12:267. [PMID: 33712567 PMCID: PMC7955040 DOI: 10.1038/s41419-021-03551-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022]
Abstract
Metabolic and cardiovascular diseases are highly prevalent and chronic conditions that are closely linked by complex molecular and pathological changes. Such adverse effects often arise from changes in the expression of genes that control essential cellular functions, but the factors that drive such effects are not fully understood. Since tissue-specific transcription factors control the expression of multiple genes, which affect cell fate under different conditions, then identifying such regulators can provide valuable insight into the molecular basis of such diseases. This review explores emerging evidence that supports novel and important roles for the POU4F2/Brn-3b transcription factor (TF) in controlling cellular genes that regulate cardiometabolic function. Brn-3b is expressed in insulin-responsive metabolic tissues (e.g. skeletal muscle and adipose tissue) and is important for normal function because constitutive Brn-3b-knockout (KO) mice develop profound metabolic dysfunction (hyperglycaemia; insulin resistance). Brn-3b is highly expressed in the developing hearts, with lower levels in adult hearts. However, Brn-3b is re-expressed in adult cardiomyocytes following haemodynamic stress or injury and is necessary for adaptive cardiac responses, particularly in male hearts, because male Brn-3b KO mice develop adverse remodelling and reduced cardiac function. As a TF, Brn-3b regulates the expression of multiple target genes, including GLUT4, GSK3β, sonic hedgehog (SHH), cyclin D1 and CDK4, which have known functions in controlling metabolic processes but also participate in cardiac responses to stress or injury. Therefore, loss of Brn-3b and the resultant alterations in the expression of such genes could potentially provide the link between metabolic dysfunctions with adverse cardiovascular responses, which is seen in Brn-3b KO mutants. Since the loss of Brn-3b is associated with obesity, type II diabetes (T2DM) and altered cardiac responses to stress, this regulator may provide a new and important link for understanding how pathological changes arise in such endemic diseases.
Collapse
Affiliation(s)
- Vishwanie S Budhram-Mahadeo
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.
| | - Matthew R Solomons
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK
| | - Eeshan A O Mahadeo-Heads
- Molecular Biology Development and Disease, Institute of Cardiovascular Science, University College London, London, UK.,College of Medicine and Health, University of Exeter Medical School, St Luke's Campus, Exeter, UK
| |
Collapse
|
3
|
Small Heat Shock Proteins in Cancers: Functions and Therapeutic Potential for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21186611. [PMID: 32927696 PMCID: PMC7555140 DOI: 10.3390/ijms21186611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that play essential roles in response to cellular stresses and protein homeostasis. Investigations of sHSPs reveal that sHSPs are ubiquitously expressed in numerous types of tumors, and their expression is closely associated with cancer progression. sHSPs have been suggested to control a diverse range of cancer functions, including tumorigenesis, cell growth, apoptosis, metastasis, and chemoresistance, as well as regulation of cancer stem cell properties. Recent advances in the field indicate that some sHSPs have been validated as a powerful target in cancer therapy. In this review, we present and highlight current understanding, recent progress, and future challenges of sHSPs in cancer development and therapy.
Collapse
|
4
|
Maskell LJ, Mahadeo AV, Budhram-Mahadeo VS. POU4F2/Brn-3b transcription factor is associated with survival and drug resistance in human ovarian cancer cells. Oncotarget 2018; 9:36770-36779. [PMID: 30613365 PMCID: PMC6298405 DOI: 10.18632/oncotarget.26371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
The development of drug resistance following treatment with chemotherapeutic agents such as cisplatin (cis) and paclitaxel (pax) contributes to high morbidity and mortality in ovarian cancers. However, the molecular mechanisms underlying such changes are not well understood. In this study, we demonstrate that the Brn-3b transcription factor was increased in different ovarian cancer cells including SKOV3 and A2780 following treatment with cis and pax. Furthermore, sustained increases in Brn-3b were associated with survival in drug resistant cells and correlated with elevated HSP27 expression. In contrast, targeting Brn-3b for reduction using short interfering RNA (siRNA) also resulted in attenuated HSP27 expression. Importantly, blocking Brn-3b expression with siRNA in SKOV3 cells was associated with reduced cell numbers at baseline but also increased cell death after further treatment, indicating sensitization of cells. Similar results were obtained in the metastatic IP1 cell line derived from ascites of mice bearing SKOV3 tumours. These findings suggest that increased Brn-3b may confer resistance to chemotherapeutic drugs in ovarian cancer cells by regulating key target genes such as HSP27 and that targeting Brn-3b may provide a novel mechanism for treatment of drug resistant ovarian cancers.
Collapse
Affiliation(s)
- Lauren J Maskell
- Molecular Biology Development and Disease, University College London, London, UK
| | - Anupam V Mahadeo
- Molecular Biology Development and Disease, University College London, London, UK.,Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
5
|
Maskell LJ, Qamar K, Babakr AA, Hawkins TA, Heads RJ, Budhram-Mahadeo VS. Essential but partially redundant roles for POU4F1/Brn-3a and POU4F2/Brn-3b transcription factors in the developing heart. Cell Death Dis 2017; 8:e2861. [PMID: 28594399 PMCID: PMC5520879 DOI: 10.1038/cddis.2017.185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/15/2023]
Abstract
Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a (POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation, Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a-/- : Brn-3b-/-) mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts.
Collapse
Affiliation(s)
- Lauren J Maskell
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Kashif Qamar
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Aram A Babakr
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| | - Thomas A Hawkins
- Division of Biosciences, Cell and Developmental Biology, UCL, London, UK
| | - Richard J Heads
- Cardiovascular Division, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Vishwanie S Budhram-Mahadeo
- Medical Molecular Biology Unit, Institute of Cardiovascular Science, University College London, UCL Rayne Building, London, UK
| |
Collapse
|
6
|
Shi J, Hua X, Zhu B, Ravichandran S, Wang M, Nguyen C, Brodie SA, Palleschi A, Alloisio M, Pariscenti G, Jones K, Zhou W, Bouk AJ, Boland J, Hicks B, Risch A, Bennett H, Luke BT, Song L, Duan J, Liu P, Kohno T, Chen Q, Meerzaman D, Marconett C, Laird-Offringa I, Mills I, Caporaso NE, Gail MH, Pesatori AC, Consonni D, Bertazzi PA, Chanock SJ, Landi MT. Somatic Genomics and Clinical Features of Lung Adenocarcinoma: A Retrospective Study. PLoS Med 2016; 13:e1002162. [PMID: 27923066 PMCID: PMC5140047 DOI: 10.1371/journal.pmed.1002162] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer and has a high risk of distant metastasis at every disease stage. We aimed to characterize the genomic landscape of LUAD and identify mutation signatures associated with tumor progression. METHODS AND FINDINGS We performed an integrative genomic analysis, incorporating whole exome sequencing (WES), determination of DNA copy number and DNA methylation, and transcriptome sequencing for 101 LUAD samples from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We detected driver genes by testing whether the nonsynonymous mutation rate was significantly higher than the background mutation rate and replicated our findings in public datasets with 724 samples. We performed subclonality analysis for mutations based on mutant allele data and copy number alteration data. We also tested the association between mutation signatures and clinical outcomes, including distant metastasis, survival, and tumor grade. We identified and replicated two novel candidate driver genes, POU class 4 homeobox 2 (POU4F2) (mutated in 9 [8.9%] samples) and ZKSCAN1 (mutated in 6 [5.9%] samples), and characterized their major deleterious mutations. ZKSCAN1 was part of a mutually exclusive gene set that included the RTK/RAS/RAF pathway genes BRAF, EGFR, KRAS, MET, and NF1, indicating an important driver role for this gene. Moreover, we observed strong associations between methylation in specific genomic regions and somatic mutation patterns. In the tumor evolution analysis, four driver genes had a significantly lower fraction of subclonal mutations (FSM), including TP53 (p = 0.007), KEAP1 (p = 0.012), STK11 (p = 0.0076), and EGFR (p = 0.0078), suggesting a tumor initiation role for these genes. Subclonal mutations were significantly enriched in APOBEC-related signatures (p < 2.5×10-50). The total number of somatic mutations (p = 0.0039) and the fraction of transitions (p = 5.5×10-4) were associated with increased risk of distant metastasis. Our study's limitations include a small number of LUAD patients for subgroup analyses and a single-sample design for investigation of subclonality. CONCLUSIONS These data provide a genomic characterization of LUAD pathogenesis and progression. The distinct clonal and subclonal mutation signatures suggest possible diverse carcinogenesis pathways for endogenous and exogenous exposures, and may serve as a foundation for more effective treatments for this lethal disease. LUAD's high heterogeneity emphasizes the need to further study this tumor type and to associate genomic findings with clinical outcomes.
Collapse
Affiliation(s)
- Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xing Hua
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Mingyi Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Cu Nguyen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Seth A. Brodie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Alessandro Palleschi
- Division of Thoracic Surgery, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Alloisio
- Division of Thoracic Surgery, Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Aaron J. Bouk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Joseph Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Adam Risch
- Information Management Services, Inc., Rockville, Maryland, United States of America
| | - Hunter Bennett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Brian T. Luke
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, Department of Psychiatry and Behavioral Sciences, North Shore University Health System Research Institute, University of Chicago Pritzker School of Medicine, Evanston, Illinois, United States of America
| | - Pengyuan Liu
- Department of Physiology & Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Crystal Marconett
- Departments of Surgery and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ite Laird-Offringa
- Departments of Surgery and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ian Mills
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology, Queen’s University, Belfast, United Kingdom
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mitchell H. Gail
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Angela C. Pesatori
- Epidemiology Unit, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Universita’ degli Studi di Milano, Milan, Italy
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Pier Alberto Bertazzi
- Epidemiology Unit, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Universita’ degli Studi di Milano, Milan, Italy
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Bitsi S, Ali H, Maskell L, Ounzain S, Mohamed-Ali V, Budhram-Mahadeo VS. Profound hyperglycemia in knockout mutant mice identifies novel function for POU4F2/Brn-3b in regulating metabolic processes. Am J Physiol Endocrinol Metab 2016; 310:E303-12. [PMID: 26670484 PMCID: PMC4773651 DOI: 10.1152/ajpendo.00211.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022]
Abstract
The POU4F2/Brn-3b transcription factor has been identified as a potentially novel regulator of key metabolic processes. Loss of this protein in Brn-3b knockout (KO) mice causes profound hyperglycemia and insulin resistance (IR), normally associated with type 2 diabetes (T2D), whereas Brn-3b is reduced in tissues taken from obese mice fed on high-fat diets (HFD), which also develop hyperglycemia and IR. Furthermore, studies in C2C12 myocytes show that Brn-3b mRNA and proteins are induced by glucose but inhibited by insulin, suggesting that this protein is itself highly regulated in responsive cells. Analysis of differential gene expression in skeletal muscle from Brn-3b KO mice showed changes in genes that are implicated in T2D such as increased glycogen synthase kinase-3β and reduced GLUT4 glucose transporter. The GLUT4 gene promoter contains multiple Brn-3b binding sites and is directly transactivated by this transcription factor in cotransfection assays, whereas chromatin immunoprecipitation assays confirm that Brn-3b binds to this promoter in vivo. In addition, correlation between GLUT4 and Brn-3b in KO tissues or in C2C12 cells strongly supports a close association between Brn-3b levels and GLUT4 expression. Since Brn-3b is regulated by metabolites and insulin, this may provide a mechanism for controlling key genes that are required for normal metabolic processes in insulin-responsive tissues and its loss may contribute to abnormal glucose uptake.
Collapse
Affiliation(s)
- Stavroula Bitsi
- Medical Molecular Biology Unit, University College London Institute of Child Health, London, United Kingdom
| | - Houda Ali
- Medical Molecular Biology Unit, University College London Institute of Child Health, London, United Kingdom
| | - Lauren Maskell
- Medical Molecular Biology Unit, University College London Institute of Child Health, London, United Kingdom
| | - Samir Ounzain
- Medical Molecular Biology Unit, University College London Institute of Child Health, London, United Kingdom; Experimental Cardiology Unit, University of Lausanne Medical School, Lausanne, Switzerland
| | - Vidya Mohamed-Ali
- Adipokines and Metabolism Research Group, Division of Medicine, University College London, London, United Kingdom; and
| | - Vishwanie S Budhram-Mahadeo
- Medical Molecular Biology Unit, University College London Institute of Child Health, London, United Kingdom;
| |
Collapse
|
8
|
Glatz A, Pilbat AM, Németh GL, Vince-Kontár K, Jósvay K, Hunya Á, Udvardy A, Gombos I, Péter M, Balogh G, Horváth I, Vígh L, Török Z. Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress Chaperones 2016; 21:327-38. [PMID: 26631139 PMCID: PMC4786532 DOI: 10.1007/s12192-015-0662-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022] Open
Abstract
Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast.
Collapse
Affiliation(s)
- Attila Glatz
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ana-Maria Pilbat
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gergely L Németh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | | | - Katalin Jósvay
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ákos Hunya
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Andor Udvardy
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
9
|
Han K, Li J, Zhao H, Liang P, Huang X, Zheng L, Li Y, Yang T, Wang L. Identification of the typical miRNAs and target genes in hepatocellular carcinoma. Mol Med Rep 2014; 10:229-35. [PMID: 24789420 DOI: 10.3892/mmr.2014.2194] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/06/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify miRNAs that were differentially expressed in hepatocellular carcinoma (HCC) by comparing normal and cancer tissue samples and to analyze the correlation of the target genes and HCC. The gene expression profile of GSE31383 was downloaded from the Gene Expression Omnibus database, including 19 samples, 9 normal and 10 from HCC tissue samples. The differentially‑expressed miRNAs were identified with packages in R language and further analyzed using bioinformatics methods. Firstly, the verified targets of miRNAs were integrated in two miRNA databases: miRecords and miRTarBase, and the targets of the differentially‑expressed miRNAs were obtained. The software STRING was then used to construct the interaction network of target genes. Finally, a functional enrichment analysis of the genes in the interaction network was conducted using the software Gestalt. Typical miR‑224 and miR‑214 were identified by comparing normal and cancer samples, each of which obtained 14 and 8 target genes, respectively. The functional enrichment analysis of the targets in the two groups highlighted the intracellular signaling cascade. In conclusion, the featured miRNAs (the upregulated miRNA‑224 and downregulated miRNA‑214) and their target genes are significant in the occurrence and development of HCC, which is likely to be significant for the identification of therapeutic targets and biomarkers to aid in the treatment of HCC.
Collapse
Affiliation(s)
- Keqiang Han
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Hongzhi Zhao
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Ping Liang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Xiaobing Huang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Yuming Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Tonghan Yang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Liang Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
10
|
Arrigo AP, Gibert B. HspB1, HspB5 and HspB4 in Human Cancers: Potent Oncogenic Role of Some of Their Client Proteins. Cancers (Basel) 2014; 6:333-65. [PMID: 24514166 PMCID: PMC3980596 DOI: 10.3390/cancers6010333] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/03/2014] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal unstressed cells as well as in many cancer cells where they are over-expressed. These proteins are characterized by cell physiology dependent changes in their oligomerization and phosphorylation status. These structural changes allow them to interact with many different client proteins that subsequently display modified activity and/or half-life. Nowdays, the protein interactomes of small Hsps are under intense investigations and will represent, when completed, key parameters to elaborate therapeutic strategies aimed at modulating the functions of these chaperones. Here, we have analyzed the potential pro-cancerous roles of several client proteins that have been described so far to interact with HspB1 (Hsp27) and its close members HspB5 (αB-crystallin) and HspB4 (αA-crystallin).
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Lyon 69008, France.
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Lyon 69008, France.
| |
Collapse
|
11
|
Zhang H, Xu Y, Filipovic A, Lit LC, Koo CY, Stebbing J, Giamas G. SILAC-based phosphoproteomics reveals an inhibitory role of KSR1 in p53 transcriptional activity via modulation of DBC1. Br J Cancer 2013; 109:2675-84. [PMID: 24129246 PMCID: PMC3833216 DOI: 10.1038/bjc.2013.628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND We have previously identified kinase suppressor of ras-1 (KSR1) as a potential regulatory gene in breast cancer. KSR1, originally described as a novel protein kinase, has a role in activation of mitogen-activated protein kinases. Emerging evidence has shown that KSR1 may have dual functions as an active kinase as well as a scaffold facilitating multiprotein complex assembly. Although efforts have been made to study the role of KSR1 in certain tumour types, its involvement in breast cancer remains unknown. METHODS A quantitative mass spectrometry analysis using stable isotope labelling of amino acids in cell culture (SILAC) was implemented to identify KSR1-regulated phosphoproteins in breast cancer. In vitro luciferase assays, co-immunoprecipitation as well as western blotting experiments were performed to further study the function of KSR1 in breast cancer. RESULTS Of significance, proteomic analysis reveals that KSR1 overexpression decreases deleted in breast cancer-1 (DBC1) phosphorylation. Furthermore, we show that KSR1 decreases the transcriptional activity of p53 by reducing the phosphorylation of DBC1, which leads to a reduced interaction of DBC1 with sirtuin-1 (SIRT1); this in turn enables SIRT1 to deacetylate p53. CONCLUSION Our findings integrate KSR1 into a network involving DBC1 and SIRT1, which results in the regulation of p53 acetylation and its transcriptional activity.
Collapse
Affiliation(s)
- H Zhang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - Y Xu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - A Filipovic
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - L C Lit
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - C-Y Koo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - J Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | - G Giamas
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| |
Collapse
|
12
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|
13
|
Current World Literature. Curr Opin Obstet Gynecol 2012; 24:49-55. [DOI: 10.1097/gco.0b013e32834f97d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Abstract
Despite many advances in oncology, almost all patients with pancreatic cancer (PC) die of the disease. Molecularly targeted agents are offering hope for their potential role in helping translate the improved activity of combination chemotherapy into improved survival. Heat shock protein 27 (Hsp27) is a chaperone implicated in several pathological processes such as cancer. Further, Hsp27 expression becomes highly upregulated in cancer cells after chemotherapy. Recently, a modified antisense oligonucleotide that is complementary to Hsp27 (OGX-427) has been developed, which inhibits Hsp27 expression and enhances drug efficacy in cancer xenograft models. Phase II clinical trials using OGX-427 in different cancers like breast, ovarian, bladder, prostate and lung are in progress in the United States and Canada. In this study, we demonstrate using TMA of 181 patients that Hsp27 expression and phosphorylation levels increase in moderately differentiated tumors to become uniformly highly expressed in metastatic samples. Using MiaPaCa-2 cells grown both in vitro and xenografted in mice, we demonstrate that OGX-427 inhibits proliferation, induces apoptosis and also enhances gemcitabine chemosensitivity via a mechanism involving the eukaryotic translation initiation factor 4E. Collectively, these findings suggest that the combination of Hsp27 knockdown with OGX-427 and chemotherapeutic agents such as gemcitabine can be a novel strategy to inhibit the progression of pancreas cancer.
Collapse
|