1
|
L'Honoré T, Mégevand L, Hermet S, M'colo ZA, Farcy E, Bertin L, Cadière A, Lignot JH, Sucré E. A multi-scale integrative approach to study the impact of a common pesticide, the dimethoate, on a mangrove fiddler crab Tubuca urvillei. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64656-64674. [PMID: 39546245 DOI: 10.1007/s11356-024-35489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
At land-sea interface, mangroves are likely to be exposed to pesticides due to agricultural run-offs. In Mayotte Island (Comoros archipelago, Mozambique Channel), dimethoate (DMT) is found in high concentrations in tomatoes, but no data confirm its presence in mangroves. We aimed at screening the presence of DMT in three mangroves of Mayotte at different levels (highest point above crops, village, upstream mangrove, downstream mangrove) and assessing the impact of DMT coupled with reduced salinity on mangrove crab physiology. To do so, we performed 24-h exposures at sublethal concentrations (10 and 100 µg L-1) corresponding to 100 × and 1000 × the environmental standard (no data exist on environmental concentrations), in seawater (SW) and diluted SW (dSW). We exposed male fiddler crab Tubuca urvillei, one of the most common fiddler crabs living in mangrove areas regularly flooded and exposed to agricultural run-offs. Different physiological endpoints were considered: behaviour, acetylcholinesterase (AChE) activity, muscle energy metabolism, DNA oxidative damage and osmoregulatory capacity using hemolymph samples, posterior gills and claw muscle. We confirmed the presence of DMT in one mangrove and the effect of pesticide exposure at the different endpoints. Changes in behavioural and physiological parameters highlighted in this study could warn us of recent pesticide use upstream and help us understand past or future community-level changes in mangrove ecosystems affected by pesticide inputs.
Collapse
Affiliation(s)
- Thibaut L'Honoré
- Université de Mayotte, 8 Rue de L'Université, BP 53, 97660, Dembeni, Mayotte, France.
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France.
| | - Laura Mégevand
- Université de Mayotte, 8 Rue de L'Université, BP 53, 97660, Dembeni, Mayotte, France
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sophie Hermet
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Zaïnabou Ali M'colo
- Université de Mayotte, 8 Rue de L'Université, BP 53, 97660, Dembeni, Mayotte, France
| | - Emilie Farcy
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Léandre Bertin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Axelle Cadière
- Univ. Nimes, UPR CHROME, Rue du Dr G. Salan, 30021, Nimes Cedex 1, France
| | | | - Elliott Sucré
- Université de Mayotte, 8 Rue de L'Université, BP 53, 97660, Dembeni, Mayotte, France
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
2
|
Wang YC, Chang YW, Yang F, Gong WR, Hu J, Du YZ. A potential trade-off between reproduction and enhancement of thermotolerance in Liriomyza trifolii populations driven by thermal acclimation. J Therm Biol 2024; 125:103988. [PMID: 39366146 DOI: 10.1016/j.jtherbio.2024.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
The invasive pest, Liriomyza trifolii, poses a significant threat to ornamental and vegetable plants. It spreads rapidly and causes large-scale outbreaks with pronounced thermotolerance. In this study, we developed L. trifolii strains adapted to high temperatures (strains designated 35 and 40); these were generated from a susceptible strain (designated S) by long-term thermal acclimation to 35 °C and 40 °C, respectively. Age-stage, two-sex life tables, thermal preferences, critical thermal limits, knockdown behaviors, eclosion and survival rates as well as expression of genes encoding heat shock proteins (Hsps) were compared for the three strains. Our findings indicated that the thermotolerance of L. trifolii was enhanced after long-term thermal acclimation, which suggested an adaptive plastic response to thermal stress. A trade-off between reproduction and thermotolerance was observed under thermal stress, potentially improving survival of the population and fostering adaptionary changes. Acclimation at 35 °C improved reproductive performance and population density of L. trifolii, particularly by enhancing the fecundity of female adults and accelerating the speed of development. Although the 40 strain exhibited the highest developmental speed and greater thermotolerance, it incurred a larger reproductive cost. This study provides a theoretical framework for monitoring and controlling leafminers and understanding their evolutionary adaptation to environmental changes.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China
| | - Ya-Wen Chang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China.
| | - Fei Yang
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, 210036, China
| | - Jie Hu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, 210036, China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225000, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
3
|
Meza-Buendia AK, Aparicio-Trejo OE, Díaz F, Pedraza-Chaverri J, Álvarez-Delgado C, Rosas C. Climate change consequences on the systemic heart of female Octopus maya: oxidative phosphorylation assessment and the antioxidant system. Biol Open 2024; 13:bio060103. [PMID: 38752595 PMCID: PMC11155352 DOI: 10.1242/bio.060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/05/2024] [Indexed: 06/09/2024] Open
Abstract
There is evidence that indicates that temperature modulates the reproduction of the tropical species Octopus maya, through the over- or under-expression of many genes in the brain. If the oxygen supply to the brain depends on the circulatory system, how temperature affects different tissues will begin in the heart, responsible for pumping the oxygen to tissues. The present study examines the impact of heat stress on the mitochondrial function of the systemic heart of adult O. maya. The mitochondrial metabolism and antioxidant defense system were measured in the systemic heart tissue of female organisms acclimated to different temperatures (24, 26, and 30°C). The results show that acclimation temperature affects respiratory State 3 and State 4o (oligomycin-induced) with higher values observed in females acclimated at 26°C. The antioxidant defense system is also affected by acclimation temperature with significant differences observed in superoxide dismutase, glutathione S-transferase activities, and glutathione levels. The results suggest that high temperatures (30°C) could exert physical limitations on the circulatory system through the heart pumping, affecting nutrient and oxygen transport to other tissues, including the brain, which exerts control over the reproductive system. The role of the cardiovascular system in supporting aerobic metabolism in octopus females is discussed.
Collapse
Affiliation(s)
- Ana Karen Meza-Buendia
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860Ensenada, Baja California, México
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología “Ignacio Chávez”, 14080 Ciudad de México, México
| | - Fernando Díaz
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860Ensenada, Baja California, México
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Carolina Álvarez-Delgado
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, 22860 Ensenada, Baja California, México
| | - Carlos Rosas
- Laboratorio de Ecofisiología Aplicada, Unidad Multidisciplinaria de Docencia e Investigación, de Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, 97356 Puerto de Abrigo, Sisal, Yucatán, México
| |
Collapse
|
4
|
Dressler TL, Han Lee V, Klose K, Eliason EJ. Thermal tolerance and vulnerability to warming differ between populations of wild Oncorhynchus mykiss near the species' southern range limit. Sci Rep 2023; 13:14538. [PMID: 37666931 PMCID: PMC10477306 DOI: 10.1038/s41598-023-41173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Fish habitat temperatures are increasing due to human impacts including climate change. For broadly distributed species, thermal tolerance can vary at the population level, making it challenging to predict which populations are most vulnerable to warming. Populations inhabiting warm range boundaries may be more resilient to these changes due to adaptation or acclimatization to warmer temperatures, or they may be more vulnerable as temperatures may already approach their physiological limits. We tested functional and critical thermal tolerance of two populations of wild Oncorhynchus mykiss near the species' southern range limit and, as predicted, found population-specific responses to temperature. Specifically, the population inhabiting the warmer stream, Piru Creek, had higher critical thermal maxima and higher functional thermal tolerance compared to the population from the cooler stream, Arroyo Seco. Arroyo Seco O. mykiss are more likely to experience a limitation of aerobic scope with warming. Piru Creek O. mykiss, however, had higher resting metabolic rates and prolonged exercise recovery, meaning that they could be more vulnerable to warming if prey or dissolved oxygen become limited. Temperature varies widely between streams near the O. mykiss southern range limit and populations will likely have unique responses to warming based on their thermal tolerances and metabolic requirements.
Collapse
Affiliation(s)
- T L Dressler
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - V Han Lee
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - K Klose
- U.S. Forest Service, Los Padres National Forest, 1980 Old Mission Drive, Solvang, CA, 93463, USA
| | - E J Eliason
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
5
|
Dwane C, Rezende EL, Tills O, Galindo J, Rolán-Alvarez E, Rundle S, Truebano M. Thermodynamic effects drive countergradient responses in the thermal performance of Littorina saxatilis across latitude. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160877. [PMID: 36521622 DOI: 10.1016/j.scitotenv.2022.160877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Thermal performance curves (TPCs) provide a powerful framework to assess the evolution of thermal sensitivity in populations exposed to divergent selection regimes across latitude. However, there is a lack of consensus regarding the extent to which physiological adjustments that compensate for latitudinal temperature variation (metabolic cold adaptation; MCA) may alter the shape of TPCs, including potential repercussion on upper thermal limits. To address this, we compared TPCs for cardiac activity in latitudinally-separated populations of the intertidal periwinkle Littorina saxatilis. We applied a non-linear TPC modelling approach to explore how different metrics governing the shape of TPCs varied systematically in response to local adaptation and thermal acclimation. Both critical upper limits, and the temperatures at which cardiac performance was maximised, were higher in the northernmost (cold-adapted) population and displayed a countergradient latitudinal trend which was most pronounced following acclimation to low temperatures. We interpret this response as a knock-on consequence of increased standard metabolic rate in high latitude populations, indicating that physiological compensation associated with MCA may indirectly influence variation in upper thermal limits across latitude. Our study highlights the danger of assuming that variation in any one aspect of the TPC is adaptive without appropriate mechanistic and ecological context.
Collapse
Affiliation(s)
- Christopher Dwane
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | - Enrico L Rezende
- Departamento de Ecología, Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Juan Galindo
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Bioquímica, Genética e Inmunología, 36310 Vigo, Spain
| | - Emilio Rolán-Alvarez
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Bioquímica, Genética e Inmunología, 36310 Vigo, Spain
| | - Simon Rundle
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
6
|
Mincarelli LF, Chapman EC, Rotchell JM, Turner AP, Wollenberg Valero KC. Sex and gametogenesis stage are strong drivers of gene expression in Mytilus edulis exposed to environmentally relevant plasticiser levels and pH 7.7. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23437-23449. [PMID: 36322353 PMCID: PMC9938808 DOI: 10.1007/s11356-022-23801-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution and changes in oceanic pH are both pressing environmental issues. Little emphasis, however, has been placed on the influence of sex and gametogenesis stage when investigating the effects of such stressors. Here, we examined histology and molecular biomarkers of blue mussels Mytilus edulis exposed for 7 days to a pH 7.7 scenario (- 0.4 units) in combination with environmentally relevant concentrations (0, 0.5 and 50 µg/L) of the endocrine disrupting plasticiser di-2-ethylhexyl phthalate (DEHP). Through a factorial design, we investigated the gametogenesis cycle and sex-related expression of genes involved in pH homeostasis, stress response and oestrogen receptor-like pathways after the exposure to the two environmental stressors. As expected, we found sex-related differences in the proportion of developing, mature and spawning gonads in histological sections. Male gonads also showed higher levels of the acid-base regulator CA2, but females had a higher expression of stress response-related genes (i.e. sod, cat, hsp70). We found a significant effect of DEHP on stress response-related gene expression that was dependent on the gametogenesis stage, but there was only a trend towards downregulation of CA2 in response to pH 7.7. In addition, differences in gene expression between males and females were most pronounced in experimental conditions containing DEHP and/or acidified pH but never the control, indicating that it is important to consider sex and gametogenesis stage when studying the response of mussels to diverse stressors.
Collapse
Affiliation(s)
| | - Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
| | | |
Collapse
|
7
|
Full-Length Transcriptome Comparison Provides Novel Insights into the Molecular Basis of Adaptation to Different Ecological Niches of the Deep-Sea Hydrothermal Vent in Alvinocaridid Shrimps. DIVERSITY 2022. [DOI: 10.3390/d14050371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The deep-sea hydrothermal vent ecosystem is one of the extreme chemoautotrophic environments. Shinkaicaris leurokolos Kikuchi and Hashimoto, 2000, and Alvinocaris longirostris Kikuchi and Ohta, 1995, are typically co-distributed and closely related alvinocaridid shrimps in hydrothermal vent areas with different ecological niches, providing an excellent model for studying the adaptive evolution mechanism of animals in the extreme deep-sea hydrothermal vent environment. The shrimp S. leurokolos lives in close proximity to the chimney vent discharging high-temperature fluid, while A. longirostris inhabits the peripheral areas of hydrothermal vents. In this study, full-length transcriptomes of S. leurokolos and A. longirostris were generated using a combination of single-molecule real-time (SMRT) and Illumina RNA-seq technology. Expression analyses of the transcriptomes showed that among the top 30% of highly expressed genes of each species, more genes related to sulfide and heavy metal metabolism (sulfide: quinone oxidoreductase, SQR; persulfide dioxygenase, ETHE1; thiosulfate sulfurtransferase, TST, and ferritin, FRI) were specifically highly expressed in S. leurokolos, while genes involved in maintaining epibiotic bacteria or pathogen resistance (beta-1,3-glucan-binding protein, BGBP; endochitinase, CHIT; acidic mammalian chitinase, CHIA, and anti-lipopolysaccharide factors, ALPS) were highly expressed in A. longirostris. Gene family expansion analysis revealed that genes related to anti-oxidant metabolism (cytosolic manganese superoxide dismutase, SODM; glutathione S-transferase, GST, and glutathione peroxidase, GPX) and heat stress (heat shock cognate 70 kDa protein, HSP70 and heat shock 70 kDa protein cognate 4, HSP7D) underwent significant expansion in S. leurokolos, while CHIA and CHIT involved in pathogen resistance significantly expanded in A. longirostris. Finally, 66 positively selected genes (PSGs) were identified in the vent shrimp S. leurokolos. Most of the PSGs were involved in DNA repair, antioxidation, immune defense, and heat stress response, suggesting their function in the adaptive evolution of species inhabiting the extreme vent microhabitat. This study provides abundant genetic resources for deep-sea invertebrates, and is expected to lay the foundation for deep decipherment of the adaptive evolution mechanism of shrimps in a deep-sea chemosynthetic ecosystem based on further whole-genome comparison.
Collapse
|
8
|
Missionário M, Fernandes JF, Travesso M, Freitas E, Calado R, Madeira D. Sex-specific thermal tolerance limits in the ditch shrimp Palaemon varians: Eco-evolutionary implications under a warming ocean. J Therm Biol 2022; 103:103151. [PMID: 35027201 DOI: 10.1016/j.jtherbio.2021.103151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
As global temperatures continue to rise due to global change, marine heatwaves are also becoming more frequent and intense, impacting marine biodiversity patterns worldwide. Organisms inhabiting shallow water environments, such as the commercially relevant ditch shrimp Palaemon varians, are expected to be the most affected by rising temperatures. Thus, addressing species' thermal ecology and climate extinction-risk is crucial to foster climate-smart conservation strategies for shallow water ecosystems. Here, we estimated sex-specific upper thermal tolerance limits for P. varians via the Critical Thermal Maximum method (CTmax), using loss of equilibrium as endpoint. We further calculated thermal safety margins for males and females and tested for correlations between upper thermal limits and shrimps' body size. To determine sex-biased variation in P. varians' traits (CTmax, weight and length), we compared trait variation between females and males through the coefficient of variation ratio (lnCVR). Females displayed an average CTmax value 1.8% lower than males (CTmaxfemales = 37.0 °C vs CTmaxmales = 37.7 °C). This finding may be related to the larger body size exhibited by females (156% heavier and 39% larger than males), as both length and weight had a significant effect on CTmax. The high energetic investment of females in offspring may also contribute to the differences recorded in thermal tolerance. Overall, organisms with a smaller body-size displayed a greater tolerance to elevated temperature, thus suggesting that smaller individuals may be positively selected in warmer environments. This selection may result in a reduction of size-at-maturity and shifts in sex ratio, given the sexual dimorphism in body size of shrimps. The thermal safety margin of P. varians was narrow (∼2.2 °C for males and ∼1.5 °C for females), revealing the vulnerability of this species to ocean warming and heatwaves.
Collapse
Affiliation(s)
- Madalena Missionário
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Joana Filipa Fernandes
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Margarida Travesso
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Eduardo Freitas
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| |
Collapse
|
9
|
Mincarelli LF, Rotchell JM, Chapman EC, Turner AP, Wollenberg Valero KC. Consequences of combined exposure to thermal stress and the plasticiser DEHP in Mytilus spp. differ by sex. MARINE POLLUTION BULLETIN 2021; 170:112624. [PMID: 34146859 DOI: 10.1016/j.marpolbul.2021.112624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Little is known about the combined effect of environmental factors and contaminants on commercially important marine species, and whether this effect differs by sex. In this study, blue mussels were exposed for seven days to both single and combined stressors (i.e., +3 °C elevated temperature and two environmentally relevant concentrations of the plastic softener DEHP, 0.5 and 50 μg/l) in a factorial design. Males were observed to be more sensitive to high temperature, demonstrated by the significant increase in out-of-season spawning gonads and higher gene expression of the antioxidant catalase and the estrogen receptor genes. On the other hand, while the gametogenesis cycle in females was more resilient than in males, DEHP exposure altered the estrogen-related receptor gene expression. We show that the combined stressors DEHP and increased temperature, in environmentally relevant magnitudes, have different consequences in male and female mussels, with the potential to impact the timing and breeding season success in Mytilus spp.
Collapse
Affiliation(s)
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, NG8 1BB, United Kingdom
| | | |
Collapse
|
10
|
Auer SK, Agreda E, Chen AH, Irshad M, Solowey J. Late-stage pregnancy reduces upper thermal tolerance in a live-bearing fish. J Therm Biol 2021; 99:103022. [PMID: 34420649 DOI: 10.1016/j.jtherbio.2021.103022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/23/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Upper thermal limits are considered a key determinant of a population's ability to persist in the face of extreme heat events. However, these limits differ considerably among individuals within a population, and the mechanisms underlying this differential sensitivity are not well understood. Upper thermal tolerance in aquatic ectotherms is thought to be determined by a mismatch between oxygen supply and the increased metabolic demands associated with warmer waters. As such, tolerance is expected to decline during reproduction given the heightened oxygen demand for gamete production and maintenance. Among live-bearing species, upper thermal tolerance of reproductive adults may decline even further after fertilization due to the cost of meeting the increasing oxygen demands of developing embryos. We examined the upper thermal tolerance of live-bearing female Trinidadian guppies at different stages of reproduction and found that critical thermal maximum was similar during the egg yolking and early embryos stage but then declined by almost 0.5 °C during late pregnancy when oxygen demands are the greatest. These results are consistent with the hypothesis that oxygen limitation sets thermal limits and show that reproduction is associated with a decline in upper thermal tolerance.
Collapse
|
11
|
Samanta P, Im H, Shim T, Na J, Jung J. Linking multiple biomarker responses in Daphnia magna under thermal stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114432. [PMID: 32247115 DOI: 10.1016/j.envpol.2020.114432] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Temperature is an important abiotic variable that greatly influences the performance of aquatic ectotherms, especially under current anthropogenic global warming and thermal discharges. The aim of the present study was to evaluate thermal stress (20 °C vs 28 °C) in Daphnia magna over 21 d, focusing on the linkage among molecular and biochemical biomarker responses. Thermal stress significantly increased the levels of reactive oxygen species (ROS) and lipid peroxidation, especially in the 3-d short-term exposure treatment. This change in the ROS level was also correlated with mitochondrial membrane damage. These findings suggest that oxidative stress is the major pathway for thermally-induced toxicity of D. magna. Additionally, the expression levels of genes related to hypoxia (Hb), development (Vtg1), and sex determination (Dsx1-α, Dsx1-β, and Dsx2) were greatly increased by elevated temperature in a time-dependent manner. The cellular energy allocation was markedly decreased at the elevated temperature in the 3-d exposure treatment, mainly due to carbohydrates consumption for survival (oxidative stress defense). The present study showed that linking multiples biomarker responses are crucial for understanding the underlying mechanism of thermal stress on D. magna.
Collapse
Affiliation(s)
- Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, West Bengal, India
| | - Hyungjoon Im
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taeyong Shim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Kovacevic A, Latombe G, Chown SL. Rate dynamics of ectotherm responses to thermal stress. Proc Biol Sci 2020; 286:20190174. [PMID: 31039720 DOI: 10.1098/rspb.2019.0174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Critical thermal limits (CTLs) show much variation associated with the experimental rate of temperature change used in their estimation. Understanding the full range of variation in rate effects on CTLs and their underlying basis is thus essential if methodological noise is not to overwhelm or bias the ecological signal. We consider the effects of rate variation from multiple intraspecific assessments and provide a comprehensive empirical analysis of the rate effects on both the critical thermal maximum (CTmax) and critical thermal minimum (CTmin) for 47 species of ectotherms, exploring which of the available theoretical models best explains this variation. We find substantial interspecific variation in rate effects, which takes four different forms (increase, decline, no change, mixed), with phylogenetic signal in effects on CTmax, but not CTmin. Exponential and zero exponential failure rate models best explain the rate effects on CTmax. The majority of the empirical rate variation in CTmin could not be explained by the failure rate models. Our work demonstrates that rate effects cannot be ignored in comparative analyses, and suggests that incorporation of the failure rate models into such analyses is a useful further avenue for exploration of the fundamental basis and implications of such variation.
Collapse
Affiliation(s)
- Aleksandra Kovacevic
- 1 School of Biological Sciences, Monash University , Melbourne, Victoria 3800 , Australia
| | - Guillaume Latombe
- 2 Department of Mathematical Sciences, Centre for Invasion Biology, Stellenbosch University , Stellenbosch 7602 , South Africa
| | - Steven L Chown
- 1 School of Biological Sciences, Monash University , Melbourne, Victoria 3800 , Australia
| |
Collapse
|
13
|
Madeira D, Mendonça V, Madeira C, Gaiteiro C, Vinagre C, Diniz MS. Molecular assessment of wild populations in the marine realm: Importance of taxonomic, seasonal and habitat patterns in environmental monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:250-263. [PMID: 30447573 DOI: 10.1016/j.scitotenv.2018.11.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Scientists are currently faced with the challenge of assessing the effects of anthropogenic stressors on aquatic ecosystems. Cellular stress response (CSR) biomarkers are ubiquitous and phylogenetically conserved among metazoans and have been successfully applied in environmental monitoring but they can also vary according to natural biotic and abiotic factors. The reported variability may thus limit the wide application of biomarkers in monitoring, imposing the need to identify variability levels in the field. Our aim was to carry out a comprehensive in situ assessment of the CSR (heat shock protein 70 kDa, ubiquitin, antioxidant enzymes) and oxidative damage (lipid peroxidation) in wild populations across marine taxa by collecting fish, crustaceans, mollusks and cnidarians during two different seasons (spring and summer) and two habitat types (coast and estuary). CSR end-point patterns were different between taxa with mollusks having higher biomarker levels, followed by the cnidarians, while fish and crustaceans showed lower biomarker levels. The PCA showed clear clusters related to mobility/sessile traits with sessile organisms showing greater levels (>2-fold) of CSR proteins and oxidative damage. Mean intraspecific variability in the CSR measured by the coefficient of variation (% CV) (including data from all seasons and sites) was elevated (35-94%). Overall, there was a seasonal differentiation in biomarker patterns across taxonomic groups, especially evident in fish and cnidarians. A differentiation in biomarker patterns between habitat types was also observed and associated with phenotypic plasticity or local adaptation. Overall, specimens collected in the estuary had lower biomarker levels when compared to specimens collected in the coast. This work highlights the importance of assessing baseline biomarker levels across taxa, seasons and habitats prior to applying biomarker analyses in environmental monitoring. Selecting bioindicator species, defining sampling strategies, and identifying confounding factors are crucial preliminary steps that ensure the success of biomarkers as powerful tools in biomonitoring.
Collapse
Affiliation(s)
- Diana Madeira
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Vanessa Mendonça
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Carolina Madeira
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology of Porto (CI-IPOP), 4200-072 Porto, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mário S Diniz
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal.
| |
Collapse
|
14
|
Grilo TF, Lopes AR, Sampaio E, Rosa R, Cardoso PG. Sex differences in oxidative stress responses of tropical topshells (Trochus histrio) to increased temperature and high pCO 2. MARINE POLLUTION BULLETIN 2018; 131:252-259. [PMID: 29886945 DOI: 10.1016/j.marpolbul.2018.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/12/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Given scarcity of knowledge on gender ecophysiological responses of tropical marine organisms to global climate change, the major aim of this research was to investigate potential sex differences in oxidative status of topshell Trochus histrio, after a combined exposure to increased temperature and pCO2. Lipid peroxidation, heat-shock response and antioxidant enzymatic activities were evaluated. Lipid peroxidation varied differently between sexes, with males undergoing cellular damage under high pCO2, which was elevated temperature-counteracted. Heat shock response was thermo- and sex-regulated, with males exhibiting significantly higher heat shock proteins production than females. Catalase activity increased with temperature and was exacerbated in combination with hypercapnia, being highest in females, while glutathione S-transferases activity peaked in males. These results clearly support the existence of distinct physiological strategies to cope oxidative stress between sexes, apparently more efficient in females, and also reinforce for the need of encompassing sex as meaningful variable in future biomarker studies.
Collapse
Affiliation(s)
- Tiago F Grilo
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal.
| | - Ana R Lopes
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Eduardo Sampaio
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Patrícia G Cardoso
- MARE - Marine and Environmental Sciences Centre, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
15
|
Brown A, Thatje S, Morris JP, Oliphant A, Morgan EA, Hauton C, Jones DOB, Pond DW. Metabolic costs imposed by hydrostatic pressure constrain bathymetric range in the lithodid crab Lithodes maja. ACTA ACUST UNITED AC 2018; 220:3916-3926. [PMID: 29093188 DOI: 10.1242/jeb.158543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/05/2017] [Indexed: 01/16/2023]
Abstract
The changing climate is shifting the distributions of marine species, yet the potential for shifts in depth distributions is virtually unexplored. Hydrostatic pressure is proposed to contribute to a physiological bottleneck constraining depth range extension in shallow-water taxa. However, bathymetric limitation by hydrostatic pressure remains undemonstrated, and the mechanism limiting hyperbaric tolerance remains hypothetical. Here, we assess the effects of hydrostatic pressure in the lithodid crab Lithodes maja (bathymetric range 4-790 m depth, approximately equivalent to 0.1 to 7.9 MPa hydrostatic pressure). Heart rate decreased with increasing hydrostatic pressure, and was significantly lower at ≥10.0 MPa than at 0.1 MPa. Oxygen consumption increased with increasing hydrostatic pressure to 12.5 MPa, before decreasing as hydrostatic pressure increased to 20.0 MPa; oxygen consumption was significantly higher at 7.5-17.5 MPa than at 0.1 MPa. Increases in expression of genes associated with neurotransmission, metabolism and stress were observed between 7.5 and 12.5 MPa. We suggest that hyperbaric tolerance in Lmaja may be oxygen-limited by hyperbaric effects on heart rate and metabolic rate, but that Lmaja's bathymetric range is limited by metabolic costs imposed by the effects of high hydrostatic pressure. These results advocate including hydrostatic pressure in a complex model of environmental tolerance, where energy limitation constrains biogeographic range, and facilitate the incorporation of hydrostatic pressure into the broader metabolic framework for ecology and evolution. Such an approach is crucial for accurately projecting biogeographic responses to changing climate, and for understanding the ecology and evolution of life at depth.
Collapse
Affiliation(s)
- Alastair Brown
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - Sven Thatje
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - James P Morris
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - Andrew Oliphant
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - Elizabeth A Morgan
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - Chris Hauton
- University of Southampton, Ocean and Earth Science, European Way, Southampton SO14 3ZH, UK
| | - Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - David W Pond
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
| |
Collapse
|
16
|
Bedulina D, Meyer MF, Gurkov A, Kondratjeva E, Baduev B, Gusdorf R, Timofeyev MA. Intersexual differences of heat shock response between two amphipods ( Eulimnogammarus verrucosus and Eulimnogammarus cyaneus) in Lake Baikal. PeerJ 2017; 5:e2864. [PMID: 28243524 PMCID: PMC5322754 DOI: 10.7717/peerj.2864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022] Open
Abstract
Acute temperature fluctuations are common in surface waters, and aquatic organisms may manifest physiological responses to punctuated temperature spikes long before behavioral responses. Ectotherms, especially cryophilic stenotherms such as those endemic to Lake Baikal (Siberia), may demonstrate specialized physiological responses to acute temperature increases because their proteomes have evolved to function most efficiently at lower temperatures (e.g., <10 °C). Therefore, our study questioned the nature and degree of variation in physiological response to acute thermal stress in two congenerous, endemic Baikal amphipod species, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus. We hypothesized that because interspecific and intersexual thermosensitivity varies significantly among ectotherms, there would be divergent intersexual and interspecific strategies to withstand acute thermal stress, manifested in different protein compositions and concentrations. We exposed individuals to the species’ respective LT50 for one hour followed by a three-hour recovery period. We then performed 1D-PAGE, Western blotting, 2D-PAGE, and Mass Spectrometry techniques and assessed relative intersexual and interspecific changes in proteomic composition and heat shock protein 70 level. Our results demonstrate that females tend to be more sensitive to an acute thermal stimulus than males, most likely because females allocate significant energy to reproduction and less to heat shock response, evidenced by females’ significantly lower LT50time. Lower level of Hsp70 was found in females of the thermosensitive E. verrucosus compared to males of this species. No intersexual differences were found in Hsp70 level in thermotolerant E. cyaneus. Higher levels of hemocyanin subunits and arginine kinase were found in E. cyaneus females after heat shock and recovery compared to males, which was not found for E. verrucosus, suggesting interspecific mechanisms for E. cyaneus’s higher thermotolerance. These differing responses between species and sexes of Baikal amphipods may reflect more general strategies for maintaining homeostatic conditions during acute thermal stress. As mean surface water temperatures increase worldwide, the net efficiency and efficacy of these strategies could give rise to long term changes in physiology, behavior, and interactions with other species, potentially precipitating population and community level alterations.
Collapse
Affiliation(s)
- Daria Bedulina
- Institute of Biology, Irkutsk State University , Irkutsk , Russia
| | - Michael F Meyer
- School of the Environment, Washington State University , Pullman , WA , USA
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, Irkutsk, Russia; Baikal Research Centre, Irkutsk, Russia
| | | | - Boris Baduev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia; Baikal Research Centre, Irkutsk, Russia
| | - Roman Gusdorf
- University of Notre Dame , Notre Dame , United States
| | | |
Collapse
|
17
|
Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp Biochem Physiol A Mol Integr Physiol 2017; 203:348-358. [DOI: 10.1016/j.cbpa.2016.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/26/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022]
|
18
|
Heat Shock Proteins in Aquaculture Disease Immunology and Stress Response of Crustaceans. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
19
|
Axenov-Gribanov D, Bedulina D, Shatilina Z, Jakob L, Vereshchagina K, Lubyaga Y, Gurkov A, Shchapova E, Luckenbach T, Lucassen M, Sartoris FJ, Pörtner HO, Timofeyev M. Thermal Preference Ranges Correlate with Stable Signals of Universal Stress Markers in Lake Baikal Endemic and Holarctic Amphipods. PLoS One 2016; 11:e0164226. [PMID: 27706227 PMCID: PMC5051968 DOI: 10.1371/journal.pone.0164226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/21/2016] [Indexed: 01/24/2023] Open
Abstract
Temperature is the most pervasive abiotic environmental factor for aquatic organisms. Fluctuations in temperature range lead to changes in metabolic performance. Here, we aimed to identify whether surpassing the thermal preference zones is correlated with shifts in universal cellular stress markers of protein integrity, responses to oxidative stress and lactate content, as indicators of anaerobic metabolism. Exposure of the Lake Baikal endemic amphipod species Eulimnogammarus verrucosus (Gerstfeldt, 1858), Ommatogammarus flavus (Dybowski, 1874) and of the Holarctic amphipod Gammarus lacustris Sars 1863 (Amphipoda, Crustacea) to increasing temperatures resulted in elevated heat shock protein 70 (Hsp70) and lactate content, elevated antioxidant enzyme activities (i.e., catalase and peroxidase), and reduced lactate dehydrogenase and glutathione S-transferase activities. Thus, the zone of stability (absence of any significant changes) of the studied molecular and biochemical markers correlated with the behaviorally preferred temperatures. We conclude that the thermal behavioral responses of the studied amphipods are directly related to metabolic processes at the cellular level. Thus, the determined thermal ranges may possibly correspond to the thermal optima. This relationship between species-specific behavioral reactions and stress response metabolism may have significant ecological consequences that result in a thermal zone-specific distribution (i.e., depths, feed spectrum, etc.) of species. As a consequence, by separating species with different temperature preferences, interspecific competition is reduced, which, in turn, increases a species' Darwinian fitness in its environment.
Collapse
Affiliation(s)
- Denis Axenov-Gribanov
- Institute of Biology at Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Daria Bedulina
- Institute of Biology at Irkutsk State University, Irkutsk, Russia
| | - Zhanna Shatilina
- Institute of Biology at Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Lena Jakob
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- University of Bremen, Bremen, Germany
| | | | - Yulia Lubyaga
- Institute of Biology at Irkutsk State University, Irkutsk, Russia
| | - Anton Gurkov
- Institute of Biology at Irkutsk State University, Irkutsk, Russia
| | | | - Till Luckenbach
- Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Magnus Lucassen
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Franz Josef Sartoris
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hans-Otto Pörtner
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- University of Bremen, Bremen, Germany
| | - Maxim Timofeyev
- Institute of Biology at Irkutsk State University, Irkutsk, Russia
| |
Collapse
|
20
|
Madeira D, Araújo JE, Vitorino R, Capelo JL, Vinagre C, Diniz MS. Ocean warming alters cellular metabolism and induces mortality in fish early life stages: A proteomic approach. ENVIRONMENTAL RESEARCH 2016; 148:164-176. [PMID: 27062348 DOI: 10.1016/j.envres.2016.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Climate change has pervasive effects on marine ecosystems, altering biodiversity patterns, abundance and distribution of species, biological interactions, phenology, and organisms' physiology, performance and fitness. Fish early life stages have narrow thermal windows and are thus more vulnerable to further changes in water temperature. The aim of this study was to address the sensitivity and underlying molecular changes of larvae of a key fisheries species, the sea bream Sparus aurata, towards ocean warming. Larvae were exposed to three temperatures: 18°C (control), 24°C (warm) and 30°C (heat wave) for seven days. At the end of the assay, i) survival curves were plotted for each temperature treatment and ii) entire larvae were collected for proteomic analysis via 2D gel electrophoresis, image analysis and mass spectrometry. Survival decreased with increasing temperature, with no larvae surviving at 30°C. Therefore, proteomic analysis was only carried out for 18°C and 24°C. Larvae up-regulated protein folding and degradation, cytoskeletal re-organization, transcriptional regulation and the growth hormone while mostly down-regulating cargo transporting and porphyrin metabolism upon exposure to heat stress. No changes were detected in proteins related to energetic metabolism suggesting that larval fish may not have the energetic plasticity needed to sustain cellular protection in the long-term. These results indicate that despite proteome modulation, S. aurata larvae do not seem able to fully acclimate to higher temperatures as shown by the low survival rates. Consequently, elevated temperatures seem to have bottleneck effects during fish early life stages, and future ocean warming can potentially compromise recruitment's success of key fisheries species.
Collapse
Affiliation(s)
- D Madeira
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - J E Araújo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - R Vitorino
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - J L Capelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - C Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M S Diniz
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
21
|
Exposure to solar radiation drives organismal vulnerability to climate: Evidence from an intertidal limpet. J Therm Biol 2016; 57:92-100. [DOI: 10.1016/j.jtherbio.2016.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 11/23/2022]
|
22
|
Fusi M, Cannicci S, Daffonchio D, Mostert B, Pörtner HO, Giomi F. The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface. Sci Rep 2016; 6:19158. [PMID: 26758742 PMCID: PMC4725839 DOI: 10.1038/srep19158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022] Open
Abstract
The principle of oxygen and capacity limitation of thermal tolerance in ectotherms suggests that the long-term upper limits of an organism's thermal niche are equivalent to the upper limits of the organism's functional capacity for oxygen provision to tissues. Air-breathing ectotherms show wider thermal tolerances, since they can take advantage of the higher availability of oxygen in air than in water. Bimodal species move from aquatic to aerial media and switch between habitats in response to environmental variations such as cyclical or anomalous temperature fluctuations. Here we tested the prediction that bimodal species cope better with thermal stress than truly aquatic species using the crab Pachygrapsus marmoratus as a model species. When in water, oxygen consumption rates of P. marmoratus acutely rise during warming. Beyond a temperature threshold of 23 °C the crab's aerobic metabolism in air remains lower than in water. In parallel, the haemolymph oxygen partial pressure of submerged animals progressive decreases during warming, while it remains low but constant during emersion. Our results demonstrate the ability of a bimodal breathing ectotherm to extend its thermal tolerance during air-breathing, suggesting that there are temperature-related physiological benefits during the evolution of the bimodal life style.
Collapse
Affiliation(s)
- Marco Fusi
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Stefano Cannicci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
- The Swire Institute of Marine Science and the School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center, Thuwal, 23955-6900, Saudi Arabia
| | - Bruce Mostert
- Department of Zoology and Entomology, Rhodes University, Grahamstown, Africa
| | - Hans-Otto Pörtner
- Department Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Folco Giomi
- Department Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
23
|
Jia R, Han C, Lei JL, Liu BL, Huang B, Huo HH, Yin ST. Effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:1-9. [PMID: 26476021 DOI: 10.1016/j.aquatox.2015.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Nitrite (NO2(-)) is commonly present as contaminant in aquatic environment and toxic to aquatic organisms. In the present study, we investigated the effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus). Fish were exposed to various concentrations of nitrite (0, 0.02, 0.08, 0.4 and 0.8mM) for 96 h. Fish blood and gills were collected to assay haematological parameters, oxidative stress and expression of genes after 0, 24, 48 and 96 h of exposure. In blood, the data showed that the levels of methemoglobin (MetHb), triglyceride (TG), potassium (K(+)), cortisol, heat shock protein 70 (HSP70) and glucose significantly increased in treatments with higher concentrations of nitrite (0.4 and/or 0.8mM) after 48 and 96 h, while the levels of haemoglobin (Hb) and sodium (Na(+)) significantly decreased in these treatments. In gills, nitrite (0.4 and/or 0.8mM) apparently reduced the levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione (GSH), increased the formation of malondialdehyde (MDA), up-regulated the mRNA levels of c-jun amino-terminal kinase (JUK1), p53, caspase-3, caspase-7 and caspase-9 after 48 and 96 h of exposure. The results suggested caspase-dependent and JUK signaling pathways played important roles in nitrite-induced apoptosis in fish. Further, this study provides new insights into how nitrite affects the physiological responses and apoptosis in a marine fish.
Collapse
Affiliation(s)
- Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Cen Han
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Ji-Lin Lei
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Bao-Liang Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Bin Huang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Huan-Huan Huo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Shu-Ting Yin
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
24
|
Vinagre C, Leal I, Mendonça V, Flores AAV. Effect of warming rate on the critical thermal maxima of crabs, shrimp and fish. J Therm Biol 2014; 47:19-25. [PMID: 25526650 DOI: 10.1016/j.jtherbio.2014.10.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
Abstract
The threat of global warming has prompted numerous recent studies on the thermal tolerance of marine species. A widely used method to determine the upper thermal limit has been the Critical Thermal Maximum (CTMax), a dynamic method, meaning that temperature is increased gradually until a critical point is reached. This method presents several advantages over static methods, however, there is one main issue that hinders interpretation and comparison of CTMax results: the rate at which the temperature is increased. This rate varies widely among published protocols. The aim of the present work was to determine the effect of warming rate on CTMax values, using different animal groups. The influence of the thermal niche occupied by each species (intertidal vs subtidal) and habitat (intertidal vs subtidal) was also investigated. CTMax were estimated at three different rates: 1°Cmin(-1), 1°C30min(-1) and 1°Ch(-1), in two species of crab, Eurypanopeus abbreviatus and Menippe nodifrons, shrimp Palaemon northropi and Hippolyte obliquimanus and fish Bathygobius soporator and Parablennius marmoreus. While there were significant differences in the effect of warming rates for some species, for other species warming rate produced no significant differences (H. obliquimanus and B. soporator). While in some species slower warming rates lead to lower CTMax values (P. northropi and P. marmoreus) in other species the opposite occurred (E. abbreviatus and M. nodifrons). Biological group has a significant effect with crabs' CTMax increasing at slower warming rates, which did not happen for shrimp and fish. Subtidal species presented lower CTMax, at all warming rates tested. This study highlights the importance of estimating CTMax values at realistic rates that species encounter in their environment and thus have an ecological value.
Collapse
Affiliation(s)
- Catarina Vinagre
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal.
| | - Inês Leal
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal
| | - Vanessa Mendonça
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Augusto A V Flores
- Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manoel Hipólito do Rego, km 131.5, São Sebastião, SP, Brazil
| |
Collapse
|
25
|
Madeira D, Narciso L, Diniz MS, Vinagre C. Synergy of environmental variables alters the thermal window and heat shock response: an experimental test with the crab Pachygrapsus marmoratus. MARINE ENVIRONMENTAL RESEARCH 2014; 98:21-28. [PMID: 24836643 DOI: 10.1016/j.marenvres.2014.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
The intertidal zone is an extremely variable habitat, imposing stressful conditions on its inhabiting communities. Tolerance towards extremes of temperature, salinity and pH are crucial in these habitats. Despite the vast literature on stress tolerance, few studies have focused on the synergistic effects of several variables on thermal tolerance and HSP70 (heat shock protein 70 kDa) levels. In this work, the crabs were exposed to three experimental conditions 1) thermal ramp at standard pH (8) and saline conditions (35‰) (named T), 2) thermal ramp at standard pH (8) and hyposaline conditions (15‰) (named T plus HypoS), and 3) thermal ramp at lower pH (7) and standard saline conditions (35‰) (named T plus A). Two physiological parameters (Critical Thermal Maximum - CTMax, and osmolality) and a stress biomarker (HSP70) were chosen for this analysis. These parameters were measured in all of the aforementioned conditions. CTMax for each set of conditions was reached by exposing the organisms to a rate of temperature increase of 1 °C h(-1) until loss of equilibrium. Haemolymph samples were taken every 2 °C to quantify HSP70 and osmolality. Results showed that CTMax did not differ between crabs solely exposed to T stress and crabs exposed to T plus HypoS stress. However, HSP70 production was impaired in T plus HypoS stress. When crabs were exposed to T plus A stress, they showed a significantly higher CTMax, suggesting that short-term exposure to acidified conditions may alter the thermal window of this species. Nevertheless, in T plus A conditions HSP70 production was impaired as well. Regarding osmolality it decreased according to temperature increase in all tested stress conditions. This study showed that the heat stress response is altered by the synergistic effect of variables. Physiological end-points (i.e. CTMax) may vary and the expression of stress proteins such as HSP70 may be impaired.
Collapse
Affiliation(s)
- Diana Madeira
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luís Narciso
- Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Mário Sousa Diniz
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Catarina Vinagre
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
26
|
Matozzo V, Boscolo A, Marin MG. Seasonal and gender-related differences in morphometric features and cellular and biochemical parameters of Carcinus aestuarii from the Lagoon of Venice. MARINE ENVIRONMENTAL RESEARCH 2013; 89:21-28. [PMID: 23726430 DOI: 10.1016/j.marenvres.2013.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
In this study, the seasonal variations in the morphometric features and in the cellular and biochemical parameters of the haemolymph were investigated in both male and female crabs (Carcinus aestuarii). Crabs were seasonally (November 2010-August 2011) collected from the Lagoon of Venice, and the moult stage, weight, width and length of the carapace, and width and length of the bigger chela were evaluated. In addition, the total haemocyte count (THC), haemocyte diameter and volume, haemolymph glucose and total protein levels, and haemolymph phenoloxidase (PO) and N-acetyl-β-glucosaminidase (NAG) activities were measured. The results demonstrated that the collected crabs were all in the intermoult stage and that the males were bigger than the females. A two-way ANOVA revealed a significant effect of season on the THC and the haemocyte volume and a significant influence of gender on the haemocyte diameter. Season and gender significantly affected the haemolymph glucose concentration, whereas haemolymph protein levels were dependent only on the season. In addition, both season and gender significantly influenced the PO and NAG activities in the haemolymph. Overall, the results demonstrated that crab morphometric features as well as haemolymph cellular and biochemical parameters varied markedly as a function of both season and gender.
Collapse
Affiliation(s)
- Valerio Matozzo
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | | | | |
Collapse
|