1
|
Javed A, Johnson OT, Balana AT, Volk RF, Langen A, Ahn BS, Zaro BW, Gestwicki JE, Pratt MR. O-GlcNAc modification of HSP27 alters its protein interactions and promotes refolding of proteins through the BAG3/HSP70 co-chaperone. Protein Sci 2024; 33:e5173. [PMID: 39291732 PMCID: PMC11409196 DOI: 10.1002/pro.5173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Almost all types of cellular stress induce post-translational O-GlcNAc modifications of proteins, and this increase promotes cell survival. We previously demonstrated that O-GlcNAc on certain small heat shock proteins (sHSPs), including HSP27, directly increases their chaperone activity as one potential protective mechanism. Here, we furthered our use of synthetic proteins to prepare biotinylated sHSPs and show that O-GlcNAc modification of HSP27 also changes how it interacts within the sHSP system and the broader HSP network. Specifically, we show that O-GlcNAc modified HSP27 binds more strongly to the co-chaperone protein BAG3, which then promotes refolding of a model substrate by HSP70. We use proteomics to identify other potential HSP27 interactions that are changed by O-GlcNAc, including one that we confirm with another sHSP, αB-crystallin. These findings add additional evidence for O-GlcNAc as a switch for regulating protein-protein interactions and for modifications of chaperones as one mechanism by which O-GlcNAc protects against protein aggregation.
Collapse
Affiliation(s)
- Afraah Javed
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Oleta T. Johnson
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aaron T. Balana
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Regan F. Volk
- Department of Pharmaceutical Chemistry and Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Andreas Langen
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Benjamin S. Ahn
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Balyn W. Zaro
- Department of Pharmaceutical Chemistry and Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative DiseaseUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Matthew R. Pratt
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Hammel F, Payne NC, Marando VM, Mazitschek R, Walker S. Identification of a Polypeptide Inhibitor of O-GlcNAc Transferase with Picomolar Affinity. J Am Chem Soc 2024; 146:26320-26330. [PMID: 39276112 PMCID: PMC11440498 DOI: 10.1021/jacs.4c08656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that binds thousands of different proteins, including substrates that it glycosylates and nonsubstrate interactors that regulate its biology. OGT also has one proteolytic substrate, the transcriptional coregulator host cell factor 1 (HCF-1), which it cleaves in a process initiated by glutamate side chain glycosylation at a series of central repeats. Although HCF-1 is OGT's most prominent binding partner, its affinity for the enzyme has not been quantified. Here, we report a time-resolved Förster resonance energy transfer assay to measure ligand binding to OGT and show that an HCF-1-derived polypeptide (HCF3R) binds with picomolar affinity to the enzyme (KD ≤ 85 pM). This high affinity is driven in large part by conserved asparagines in OGT's tetratricopeptide repeat domain, which form bidentate contacts to the HCF-1 peptide backbone; replacing any one of these asparagines with alanine reduces binding by more than 5 orders of magnitude. Because the HCF-1 polypeptide binds so tightly to OGT, we tested its ability to inhibit enzymatic function. We found that HCF3R potently inhibits OGT both in vitro and in cells and used this finding to develop a genetically encoded, inducible OGT inhibitor that can be degraded with a small molecule, allowing for reversible and tunable inhibition of OGT.
Collapse
Affiliation(s)
- Forrest
A. Hammel
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - N. Connor Payne
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Victoria M. Marando
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ralph Mazitschek
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- T.H.
Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Broad
Institute of MIT and Harvard University, Cambridge, Massachusetts 02142, United States
| | - Suzanne Walker
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Huang ZN, Lee SY, Chen JM, Huang ZT, Her LS. Oleuropein enhances proteasomal activity and reduces mutant huntingtin-induced cytotoxicity. Front Pharmacol 2024; 15:1459909. [PMID: 39351099 PMCID: PMC11440197 DOI: 10.3389/fphar.2024.1459909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Huntington's disease (HD) is a hereditary neurodegenerative disorder that primarily affects the striatum, a brain region responsible for movement control. The disease is characterized by the mutant huntingtin (mHtt) proteins with an extended polyQ stretch, which are prone to aggregation. These mHtt aggregates accumulate in neurons and are the primary cause of the neuropathology associated with HD. To date, no effective cure for HD has been developed. Methods The immortalized STHdh Q111/Q111 striatal cell line, the mHtt-transfected wild-type STHdh Q7/Q7 striatal cell line, and N2a cells were used as Huntington's disease cell models. Flow cytometry was used to assess cellular reactive oxygen species and transfection efficiency. The CCK-8 assay was used to measure cell viability, while fluorescence microscopy was used to quantify aggregates. Immunoblotting analyses were used to evaluate the effects on protein expression. Results Polyphenols are natural antioxidants that offer neuroprotection in neurological disorders. In this study, we provide evidence that oleuropein, the primary polyphenol in olive leaves and olive oil, enhances cell viability in HD cell models, including. STHdh Q7/Q7 STHdh Q7/Q7 striatal cells, N2a cells ectopically expressing the truncated mHtt, and STHdh Q111/Q111 striatal cells expressing the full-length mHtt. Oleuropein effectively reduced both soluble and aggregated forms of mHtt protein in these HD model cells. Notably, the reduction of mHtt aggregates associated with oleuropein was linked to increased proteasome activity rather than changes in autophagic flux. Oleuropein seems to modulate proteasome activity through an unidentified pathway, as it did not affect the 20S proteasome catalytic β subunits, the proteasome regulator PA28γ, or multiple MAPK pathways. Discussion We demonstrated that oleuropein enhances the degradation of mHtt by increasing proteasomal protease activities and alleviates mHtt-induced cytotoxicity. Hence, we propose that oleuropein and potentially other polyphenols hold promise as a candidate for alleviating Huntington's disease.
Collapse
Affiliation(s)
- Zih-Ning Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Yi Lee
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jie-Mao Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Zih-Ting Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Lu-Shiun Her
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Umapathi P, Aggarwal A, Zahra F, Narayanan B, Zachara NE. The multifaceted role of intracellular glycosylation in cytoprotection and heart disease. J Biol Chem 2024; 300:107296. [PMID: 38641064 PMCID: PMC11126959 DOI: 10.1016/j.jbc.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
The modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked β-N-actylglucosamine (O-GlcNAc) is an essential posttranslational modification that is common in metozoans. O-GlcNAc is cycled on and off proteins in response to environmental and physiological stimuli impacting protein function, which, in turn, tunes pathways that include transcription, translation, proteostasis, signal transduction, and metabolism. One class of stimulus that induces rapid and dynamic changes to O-GlcNAc is cellular injury, resulting from environmental stress (for instance, heat shock), hypoxia/reoxygenation injury, ischemia reperfusion injury (heart attack, stroke, trauma hemorrhage), and sepsis. Acute elevation of O-GlcNAc before or after injury reduces apoptosis and necrosis, suggesting that injury-induced changes in O-GlcNAcylation regulate cell fate decisions. However, prolonged elevation or reduction in O-GlcNAc leads to a maladaptive response and is associated with pathologies such as hypertrophy and heart failure. In this review, we discuss the impact of O-GlcNAc in both acute and prolonged models of injury with a focus on the heart and biological mechanisms that underpin cell survival.
Collapse
Affiliation(s)
- Priya Umapathi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Akanksha Aggarwal
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fiddia Zahra
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bhargavi Narayanan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Arapis F, Rempelou D, Havaki S, Arvanitis D, Tzelepis K, Zibis A, Samara AA, Sotiriou S. Expression of the O-Linked N-Acetylglucosamine-containing Epitope H (O-GlcNAcH) in Human Uterine Cervical Mucosa. In Vivo 2024; 38:1112-1118. [PMID: 38688609 PMCID: PMC11059899 DOI: 10.21873/invivo.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM Epitope H contains an O-linked N-acetylglucosamine (O-GlcNAcH) residue in a specific conformation or environment, recognized by a site-specific monoclonal mouse IgM antibody H. O-GlcNAcH occurs in several normal and pathological cells and in several polypeptides, including keratin-8 and vimentin, on the latter in cells under stress. MATERIALS AND METHODS In this work, we studied the distribution of O-GlcNAcH on cells of endocervical mucosa in 60 specimens of endocervical curettings, 10 of which contained 15 inflamed polyps. RESULTS In our results, expression of O-GlcNAcH was weak in the mucosa with <5% mucin-secreting cells and up to 30% of the polyps staining positively. All non-ciliated, non-mucin-secreting cells, normal and hyperplastic 'reserve' cells, as well as the cells of immature squamous metaplasia, showed strong diffuse cytoplasmic staining for O-GlcNAcH. In mature squamous epithelium, fewer than 5% of basal cells and all the intermediate and superficial cells showed cytoplasmic staining for O-GlcNAcH, whereas parabasal cells were negative. All ciliated cells showed patchy or diffuse cytoplasmic staining. Nuclear staining for O-GlcNAcH was weak with fewer than 5% of hyperplastic 'reserve' and ciliated cells staining positively. Moreover, mucosal fibroblasts were negative, whereas all stromal cells of the polyps showed strong cytoplasmic staining for O-GlcNAcH. CONCLUSION O-GlcNAcH is: a) differentially expressed among the cellular elements of mucosa and polyps, b) upregulated in mucin-secreting cells of polyps, c) induced in stromal cells of inflamed polyps, and d) can be used as a marker to differentiate between 'reserve' (positive) and parabasal (negative) cells, which have similar morphology using conventional cytological stains.
Collapse
Affiliation(s)
- Fotios Arapis
- Department of Anatomy, University of Thessaly, Medical School, Larissa, Greece
- General Hospital of Sparta, Sparta, Greece
| | | | - Sophia Havaki
- Laboratory of Histology-Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Arvanitis
- Department of Anatomy, University of Thessaly, Medical School, Larissa, Greece
| | | | - Aristeidis Zibis
- Department of Anatomy, University of Thessaly, Medical School, Larissa, Greece
| | - Athina A Samara
- Department of Histology-Embryology, University of Thessaly, Medical School, Larissa, Greece
| | - Sotirios Sotiriou
- Department of Histology-Embryology, University of Thessaly, Medical School, Larissa, Greece
| |
Collapse
|
6
|
Bulangalire N, Claeyssen C, Agbulut O, Cieniewski-Bernard C. Impact of MG132 induced-proteotoxic stress on αB-crystallin and desmin phosphorylation and O-GlcNAcylation and their partition towards cytoskeleton. Biochimie 2024:S0300-9084(24)00079-8. [PMID: 38636798 DOI: 10.1016/j.biochi.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Small Heat Shock Proteins are considered as the first line of defense when proteostasis fails. Among them, αB-crystallin is expressed in striated muscles in which it interacts with desmin intermediate filaments to stabilize them, maintaining cytoskeleton's integrity and muscular functionalities. Desmin is a key actor for muscle health; its targeting by αB-crystallin is thus crucial, especially in stress conditions. αB-crystallin is phosphorylated and O-GlcNAcylated. Its phosphorylation increases consecutively to various stresses, correlated with its recruitment for cytoskeleton's safeguarding. However, phosphorylation as unique signal for cytoskeleton translocation remains controversial; indeed, O-GlcNAcylation was also proposed to be involved. Thus, there are still some gaps for a deeper comprehension of how αB-crystallin functions are finely regulated by post-translational modifications. Furthermore, desmin also bears both post-translational modifications; while desmin phosphorylation is closely linked to desmin intermediates filaments turnover, it is unclear whereas its O-GlcNAcylation could impact its proper function. In the herein paper, we aim at identifying whether phosphorylation and/or O-GlcNAcylation are involved in αB-crystallin targeting towards cytoskeleton in proteotoxic stress induced by proteasome inhibition in C2C12 myotubes. We demonstrated that proteotoxicity led to αB-crystallin's phosphorylation and O-GlcNAcylation patterns changes, both presenting a dynamic interplay depending on protein subfraction. Importantly, both post-translational modifications showed a spatio-temporal variation correlated with αB-crystallin translocation towards cytoskeleton. In contrast, we did not detect any change of desmin phosphorylation and O-GlcNAcylation. All together, these data strongly support that αB-crystallin phosphorylation/O-GlcNAcylation interplay rather than changes on desmin is a key regulator for its cytoskeleton translocation, preserving it towards stress.
Collapse
Affiliation(s)
- Nathan Bulangalire
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France; CHU Lille, Université de Lille, F-59000, Lille, France; Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Charlotte Claeyssen
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France.
| |
Collapse
|
7
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
8
|
Narayanan B, Sinha P, Henry R, Reeves RA, Paolocci N, Kohr MJ, Zachara NE. Cardioprotective O-GlcNAc signaling is elevated in murine female hearts via enhanced O-GlcNAc transferase activity. J Biol Chem 2023; 299:105447. [PMID: 37949223 PMCID: PMC10711226 DOI: 10.1016/j.jbc.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The post-translational modification of intracellular proteins by O-linked β-GlcNAc (O-GlcNAc) has emerged as a critical regulator of cardiac function. Enhanced O-GlcNAcylation activates cytoprotective pathways in cardiac models of ischemia-reperfusion (I/R) injury; however, the mechanisms underpinning O-GlcNAc cycling in response to I/R injury have not been comprehensively assessed. The cycling of O-GlcNAc is regulated by the collective efforts of two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which catalyze the addition and hydrolysis of O-GlcNAc, respectively. It has previously been shown that baseline heart physiology and pathophysiology are impacted by sex. Here, we hypothesized that sex differences in molecular signaling may target protein O-GlcNAcylation both basally and in ischemic hearts. To address this question, we subjected male and female WT murine hearts to ex vivo ischemia or I/R injury. We assessed hearts for protein O-GlcNAcylation, abundance of OGT, OGA, and glutamine:fructose-6-phosphate aminotransferase (GFAT2), activity of OGT and OGA, and UDP-GlcNAc levels. Our data demonstrate elevated O-GlcNAcylation in female hearts both basally and during ischemia. We show that OGT activity was enhanced in female hearts in all treatments, suggesting a mechanism for these observations. Furthermore, we found that ischemia led to reduced O-GlcNAcylation and OGT-specific activity. Our findings provide a foundation for understanding molecular mechanisms that regulate O-GlcNAcylation in the heart and highlight the importance of sex as a significant factor when assessing key regulatory events that control O-GlcNAc cycling. These data suggest the intriguing possibility that elevated O-GlcNAcylation in females contributes to reduced ischemic susceptibility.
Collapse
Affiliation(s)
- Bhargavi Narayanan
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Prithvi Sinha
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Roger Henry
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell A Reeves
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Mark J Kohr
- The Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Natasha E Zachara
- The Department of Biological Chemistry at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Department of Oncology at the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Pratt MR, Vocadlo DJ. Understanding and exploiting the roles of O-GlcNAc in neurodegenerative diseases. J Biol Chem 2023; 299:105411. [PMID: 37918804 PMCID: PMC10687168 DOI: 10.1016/j.jbc.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
O-GlcNAc is a common modification found on nuclear and cytoplasmic proteins. Determining the catalytic mechanism of the enzyme O-GlcNAcase (OGA), which removes O-GlcNAc from proteins, enabled the creation of potent and selective inhibitors of this regulatory enzyme. Such inhibitors have served as important tools in helping to uncover the cellular and organismal physiological roles of this modification. In addition, OGA inhibitors have been important for defining the augmentation of O-GlcNAc as a promising disease-modifying approach to combat several neurodegenerative diseases including both Alzheimer's disease and Parkinson's disease. These studies have led to development and optimization of OGA inhibitors for clinical application. These compounds have been shown to be well tolerated in early clinical studies and are steadily advancing into the clinic. Despite these advances, the mechanisms by which O-GlcNAc protects against these various types of neurodegeneration are a topic of continuing interest since improved insight may enable the creation of more targeted strategies to modulate O-GlcNAc for therapeutic benefit. Relevant pathways on which O-GlcNAc has been found to exert beneficial effects include autophagy, necroptosis, and processing of the amyloid precursor protein. More recently, the development and application of chemical methods enabling the synthesis of homogenous proteins have clarified the biochemical effects of O-GlcNAc on protein aggregation and uncovered new roles for O-GlcNAc in heat shock response. Here, we discuss the features of O-GlcNAc in neurodegenerative diseases, the application of inhibitors to identify the roles of this modification, and the biochemical effects of O-GlcNAc on proteins and pathways associated with neurodegeneration.
Collapse
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry and Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
10
|
Costa TJ, Wilson EW, Fontes MT, Pernomian L, Tostes RC, Wenceslau CF, McCarthy CG. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Lond) 2023; 137:1683-1697. [PMID: 37986614 DOI: 10.1042/cs20220309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
O-Linked attachment of β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiago J Costa
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Emily W Wilson
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
| | - Milene T Fontes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| |
Collapse
|
11
|
Chen Z, Dean M. Endometrial Glucose Metabolism During Early Pregnancy. REPRODUCTION AND FERTILITY 2023; 4:RAF-23-0016. [PMID: 37934727 PMCID: PMC10762551 DOI: 10.1530/raf-23-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023] Open
Abstract
Approximately 50% of human pregnancies humans fail, most before or during implantation. One factor contributing to pregnancy loss is abnormal glucose metabolism in the endometrium. Glucose contributes to preimplantation embryo development, uterine receptivity, and attachment of the embryo. Across multiple species, the epithelium stores glucose as the macromolecule glycogen at estrus. This reserve is mobilized during the preimplantation period. Glucose from circulation or glycogenolysis can be secreted into the uterine lumen for use by the embryo or metabolized via glycolysis, producing ATP for the cell. The resulting pyruvate could be converted to lactate, another important nutrient for the embryo. Fructose is an important nutrient for early embryos, and the epithelium and placenta can convert glucose to fructose via the polyol pathway. The epithelium also uses glucose to glycosylate proteins, which regulates embryo attachment. In some species, decidualization of the stroma is critical to successful implantation. Formation of the decidua requires increased glucose metabolism via the pentose phosphate pathway and glycolysis. After decidualization, the cells switch to aerobic glycolysis to produce ATP. Paradoxically, the decidua also stores large amounts of glucose as glycogen. Too little glucose or an inability to take up glucose impairs embryo development and decidualization. Conversely, too much glucose inhibits these same processes. This likely contributes to the reduced pregnancy rates associated with conditions like obesity and diabetes. Collectively, precise control of glucose metabolism is important for several endometrial processes required to establish a successful pregnancy. The factors regulating these metabolic processes remain poorly understood.
Collapse
Affiliation(s)
- Ziting Chen
- Department of Animal Science, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Dean
- Department of Animal Science, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Cueto-Ureña C, Ramírez-Expósito MJ, Mayas MD, Carrera-González MP, Godoy-Hurtado A, Martínez-Martos JM. Glutathione Peroxidase gpx1 to gpx8 Genes Expression in Experimental Brain Tumors Reveals Gender-Dependent Patterns. Genes (Basel) 2023; 14:1674. [PMID: 37761814 PMCID: PMC10530768 DOI: 10.3390/genes14091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Extensive research efforts in the field of brain tumor studies have led to the reclassification of tumors by the World Health Organization (WHO) and the identification of various molecular subtypes, aimed at enhancing diagnosis and treatment strategies. However, the quest for biomarkers that can provide a deeper understanding of tumor development mechanisms, particularly in the case of gliomas, remains imperative due to their persistently incurable nature. Oxidative stress has been widely recognized as a key mechanism contributing to the formation and progression of malignant tumors, with imbalances in antioxidant defense systems being one of the underlying causes for the excess production of reactive oxygen species (ROS) implicated in tumor initiation. In this study, we investigated the gene expression patterns of the eight known isoforms of glutathione peroxidase (GPx) in brain tissue obtained from male and female control rats, as well as rats with transplacental ethyl nitrosourea (ENU)-induced brain tumors. Employing the delta-delta Ct method for RT-PCR, we observed minimal expression levels of gpx2, gpx5, gpx6, and gpx7 in the brain tissue from the healthy control animals, while gpx3 and gpx8 exhibited moderate expression levels. Notably, gpx1 and gpx4 displayed the highest expression levels. Gender differences were not observed in the expression profiles of these isoforms in the control animals. Conversely, the tumor tissue exhibited elevated relative expression levels in all isoforms, except for gpx4, which remained unchanged, and gpx5, which exhibited alterations solely in female animals. Moreover, except for gpx1, which displayed no gender differences, the relative expression values of gpx2, gpx3, gpx6, gpx7, and gpx8 were significantly higher in the male animals compared to their female counterparts. Hence, the analysis of glutathione peroxidase isoforms may serve as a valuable approach for discerning the behavior of brain tumors in clinical settings.
Collapse
Affiliation(s)
- Cristina Cueto-Ureña
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.D.M.); (M.P.C.-G.)
| | - María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.D.M.); (M.P.C.-G.)
| | - María Dolores Mayas
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.D.M.); (M.P.C.-G.)
| | - María Pilar Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.D.M.); (M.P.C.-G.)
| | | | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Experimental and Health Sciences, University of Jaén, 23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.D.M.); (M.P.C.-G.)
| |
Collapse
|
13
|
Wang B, Moon SP, Cutolo G, Javed A, Ahn BS, Ryu AH, Pratt MR. HSP27 Inhibitory Activity against Caspase-3 Cleavage and Activation by Caspase-9 Is Enhanced by Chaperone O-GlcNAc Modification in Vitro. ACS Chem Biol 2023; 18:1698-1704. [PMID: 37450938 PMCID: PMC10442853 DOI: 10.1021/acschembio.3c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
One of the O-GlcNAc modifications is the protection of cells against a variety of stressors that result in cell death. Previous experiments have focused on the overall ability of O-GlcNAc to prevent protein aggregation under stress as well as its ability to affect stress-response signaling pathways. Less attention has been paid to the potential role for O-GlcNAc in the direct inhibition of a major cell-death pathway, apoptosis. Apoptosis involves the sequential activation of caspase proteases, including the transfer of cell-stress information from initiator caspase-9 to effector caspase-3. Cells have multiple mechanisms to slow the apoptotic cascade, including heat shock protein HSP27, which can directly inhibit the activation of caspase-3 by caspase-9. We have previously shown that O-GlcNAc modification increases the chaperone activity of HSP27 against amyloid aggregation, raising the question as to whether this modification may play important roles in other facets of HSP27 biology. Here, we use protein chemistry to generate different versions of O-GlcNAc modified HSP27 and demonstrate that the modification enhances this antiapoptotic function of the chaperone, at least in an in vitro context. These results provide additional molecular insight into how O-GlcNAc functions as a mediator of cellular stress with important implications for human diseases like cancer and neurodegeneration.
Collapse
Affiliation(s)
- Binyou Wang
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Stuart P. Moon
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Giuliano Cutolo
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Afraah Javed
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Benjamin S. Ahn
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Andrew H. Ryu
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Matthew R. Pratt
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Das J, Kumar R, Shah V, Raghavendra KP, Sharma AK. Identification and functional characterisation of N-acetylglucosamine kinase from Helicoverpa armigera divulge its potential role in growth and development via UDP-GlcNAc salvage pathway. Int J Biol Macromol 2023; 242:124674. [PMID: 37137348 DOI: 10.1016/j.ijbiomac.2023.124674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
N-acetylglucosamine kinase (NAGK), a major enzyme of sugar-kinase/Hsp70/actin superfamily, catalyses the conversion of N-acetylglucosamine to GlcNAc-6-phosphate, the first step leading to the salvage synthesis of uridine diphosphate N-acetylglucosamine. Here, we present the first report on identification, cloning, recombinant expression and functional characterisation of NAGK from Helicoverpa armigera (HaNAGK). The purified soluble HaNAGK exhibited a molecular mass of ~39 kDa with monomeric conformation. It catalysed the sequential transformation of GlcNAc into UDP-GlcNAc, indicating its role as the initiator of UDP-GlcNAc salvage pathway. HaNAGK exhibited ubiquitous expressions across all the developmental stages and major tissues of H. armigera. The gene was significantly upregulated (80 %; p < 0.01) by the moulting hormone 20-hydroxyecdysone and significantly downregulated (89 %; p < 0.001) by the chitin synthesis inhibitor novaluron, indicating its involvement in ecdysis and chitin metabolism. Furthermore, RNAi of HaNAGK caused poor weight gain, deformed insect bodies, aberrant metamorphosis and pronounced wing abnormalities in >55 % of surviving adults, while recording 7.79 ± 1.52 % and 24.25 ± 7.21 % mortality during larval and pupal stages, respectively. Altogether, the present findings suggest that HaNAGK plays a crucial role in the growth and development of H. armigera and thus, could be considered as a compelling gene of interest while formulating novel pest management strategies.
Collapse
Affiliation(s)
- Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Vivek Shah
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - K P Raghavendra
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
15
|
Roy S, Vivoli Vega M, Ames JR, Britten N, Kent A, Evans K, Isupov MN, Harmer NJ. The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding. J Biol Chem 2023; 299:103033. [PMID: 36806680 PMCID: PMC10031466 DOI: 10.1016/j.jbc.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.
Collapse
Affiliation(s)
| | | | | | | | - Amy Kent
- Living Systems Institute, Exeter, UK
| | - Kim Evans
- Living Systems Institute, Exeter, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, Exeter, UK
| | | |
Collapse
|
16
|
Feng Z, Wang T, Sun Y, Chen S, Hao H, Du W, Zou H, Yu D, Zhu H, Pang Y. Sulforaphane suppresses paraquat-induced oxidative damage in bovine in vitro-matured oocytes through Nrf2 transduction pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114747. [PMID: 36907095 DOI: 10.1016/j.ecoenv.2023.114747] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Sulforaphane (SFN), a bioactive phytocompound extracted from cruciferous plants, has received increasing attention due to its vital cytoprotective role in eliminating oxidative free radical through activation of nuclear factor erythroid 2-related factor (Nrf2)-mediated signal transduction pathway. This study aims at a better insight into the protective benefit of SFN in attenuating paraquat (PQ)-caused impairment in bovine in vitro-matured oocytes and the possible mechanisms involved therein. Results showed that addition of 1 μM SFN during oocyte maturation obtained higher proportions of matured oocytes and in vitro-fertilized embryos. SFN application attenuated the toxicological effects of PQ on bovine oocytes, as manifested by enhanced extending capability of cumulus cell and increased extrusion proportion of first polar body. Following incubation with SFN, oocytes exposed to PQ exhibited reduced intracellular ROS and lipid accumulation levels, and elevated T-SOD and GSH contents. SFN also effectively inhibited PQ-mediated increase in BAX and CASPASE-3 protein expressions. Besides, SFN promoted the transcription of NRF2 and its downstream antioxidative-related genes GCLC, GCLM, HO-1, NQO-1, and TXN1 in a PQ-exposed environment, indicating that SFN prevents PQ-caused cytotoxicity through activation of Nrf2 signal transduction pathway. The mechanisms underlying the role of SFN against PQ-induced injury included the inhibition of TXNIP protein and restoration of the global O-GlcNAc level. Collectively, these findings provide novel evidence for the protective role of SFN in alleviating PQ-caused injury, and suggest that SFN application may be an efficacious intervention strategy against PQ cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tengfei Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Reproductive Medicine Center, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang Province 313000, China
| | - Yawen Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Siying Chen
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Yu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
17
|
Astragalus Polysaccharide Promotes Doxorubicin-Induced Apoptosis by Reducing O-GlcNAcylation in Hepatocellular Carcinoma. Cells 2023; 12:cells12060866. [PMID: 36980207 PMCID: PMC10047337 DOI: 10.3390/cells12060866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
The toxicity and side effects of chemotherapeutic drugs remain a crucial obstacle to the clinical treatment of hepatocellular carcinoma (HCC). Identifying combination therapy from Chinese herbs to enhance the sensitivity of tumors to chemotherapeutic drugs is of particular interest. Astragalus polysaccharide (APS), one of the natural active components in Astragalus membranaceus, has been reported to exhibit anti-tumor properties in diverse cancer cell lines. The aim of this study was to determine the effect of APS on Doxorubicin (Dox)-induced apoptosis in HCC and the underlying mechanism. The results showed that APS dose-dependently promoted Dox-induced apoptosis and enhanced endoplasmic reticulum (ER) stress. Additionally, APS decreased the mRNA level and protein stability of O-GlcNAc transferase (OGT), and increased the O-GlcNAcase (OGA) expression. Furthermore, OGT lentiviral transfection or PugNAc (OGA inhibitor) treatment reversed the ER stress and apoptosis induced by the combination of Dox and APS. A xenograft tumor mouse model confirmed that the combination of APS and Dox showed an advantage in inhibiting tumor growth in vivo. These findings suggested that APS promoted Dox-induced apoptosis in HCC cells through reducing the O-GlcNAcylation, which led to the exacerbation of ER stress and activation of apoptotic pathways.
Collapse
|
18
|
Papanicolaou KN, Jung J, Ashok D, Zhang W, Modaressanavi A, Avila E, Foster DB, Zachara NE, O'Rourke B. Inhibiting O-GlcNAcylation impacts p38 and Erk1/2 signaling and perturbs cardiomyocyte hypertrophy. J Biol Chem 2023; 299:102907. [PMID: 36642184 PMCID: PMC9988579 DOI: 10.1016/j.jbc.2023.102907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The dynamic cycling of O-linked GlcNAc (O-GlcNAc) on and off Ser/Thr residues of intracellular proteins, termed O-GlcNAcylation, is mediated by the conserved enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase. O-GlcNAc cycling is important in homeostatic and stress responses, and its perturbation sensitizes the heart to ischemic and other injuries. Despite considerable progress, many molecular pathways impacted by O-GlcNAcylation in the heart remain unclear. The mitogen-activated protein kinase (MAPK) pathway is a central signaling cascade that coordinates developmental, physiological, and pathological responses in the heart. The developmental or adaptive arm of MAPK signaling is primarily mediated by Erk kinases, while the pathophysiologic arm is mediated by p38 and Jnk kinases. Here, we examine whether O-GlcNAcylation affects MAPK signaling in cardiac myocytes, focusing on Erk1/2 and p38 in basal and hypertrophic conditions induced by phenylephrine. Using metabolic labeling of glycans coupled with alkyne-azide "click" chemistry, we found that Erk1/2 and p38 are O-GlcNAcylated. Supporting the regulation of p38 by O-GlcNAcylation, the OGT inhibitor, OSMI-1, triggers the phosphorylation of p38, an event that involves the NOX2-Ask1-MKK3/6 signaling axis and also the noncanonical activator Tab1. Additionally, OGT inhibition blocks the phenylephrine-induced phosphorylation of Erk1/2. Consistent with perturbed MAPK signaling, OSMI-1-treated cardiomyocytes have a blunted hypertrophic response to phenylephrine, decreased expression of cTnT (key component of the contractile apparatus), and increased expression of maladaptive natriuretic factors Anp and Bnp. Collectively, these studies highlight new roles for O-GlcNAcylation in maintaining a balanced activity of Erk1/2 and p38 MAPKs during hypertrophic growth responses in cardiomyocytes.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Jessica Jung
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deepthi Ashok
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenxi Zhang
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Modaressanavi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eddie Avila
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
19
|
Liu Y, Hu Y, Li S. Protein O-GlcNAcylation in Metabolic Modulation of Skeletal Muscle: A Bright but Long Way to Go. Metabolites 2022; 12:888. [PMID: 36295790 PMCID: PMC9610910 DOI: 10.3390/metabo12100888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 09/07/2024] Open
Abstract
O-GlcNAcylation is an atypical, dynamic and reversible O-glycosylation that is critical and abundant in metazoan. O-GlcNAcylation coordinates and receives various signaling inputs such as nutrients and stresses, thus spatiotemporally regulating the activity, stability, localization and interaction of target proteins to participate in cellular physiological functions. Our review discusses in depth the involvement of O-GlcNAcylation in the precise regulation of skeletal muscle metabolism, such as glucose homeostasis, insulin sensitivity, tricarboxylic acid cycle and mitochondrial biogenesis. The complex interaction and precise modulation of O-GlcNAcylation in these nutritional pathways of skeletal muscle also provide emerging mechanical information on how nutrients affect health, exercise and disease. Meanwhile, we explored the potential role of O-GlcNAcylation in skeletal muscle pathology and focused on its benefits in maintaining proteostasis under atrophy. In general, these understandings of O-GlcNAcylation are conducive to providing new insights into skeletal muscle (patho) physiology.
Collapse
Affiliation(s)
| | | | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
20
|
Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol (Lausanne) 2022; 13:943576. [PMID: 36111295 PMCID: PMC9468787 DOI: 10.3389/fendo.2022.943576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although traditionally considered a glucose metabolism-associated modification, the O-linked β-N-Acetylglucosamine (O-GlcNAc) regulatory system interacts extensively with lipids and is required to maintain lipid homeostasis. The enzymes of O-GlcNAc cycling have molecular properties consistent with those expected of broad-spectrum environmental sensors. By direct protein-protein interactions and catalytic modification, O-GlcNAc cycling enzymes may provide both acute and long-term adaptation to stress and other environmental stimuli such as nutrient availability. Depending on the cell type, hyperlipidemia potentiates or depresses O-GlcNAc levels, sometimes biphasically, through a diversity of unique mechanisms that target UDP-GlcNAc synthesis and the availability, activity and substrate selectivity of the glycosylation enzymes, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA). At the same time, OGT activity in multiple tissues has been implicated in the homeostatic regulation of systemic lipid uptake, storage and release. Hyperlipidemic patterns of O-GlcNAcylation in these cells are consistent with both transient physiological adaptation and feedback uninhibited obesogenic and metabolic dysregulation. In this review, we summarize the numerous interconnections between lipid and O-GlcNAc metabolism. These links provide insights into how the O-GlcNAc regulatory system may contribute to lipid-associated diseases including obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Amber Lockridge
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Disruption of O-GlcNAcylation Homeostasis Induced Ovarian Granulosa Cell Injury in Bovine. Int J Mol Sci 2022; 23:ijms23147815. [PMID: 35887161 PMCID: PMC9324263 DOI: 10.3390/ijms23147815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification is a ubiquitous, reversible, and highly dynamic post-translational modification, which takes charge of almost all biological processes examined. However, little information is available regarding the molecular regulation of O-GlcNAcylation in granulosa cell function and glucose metabolism. This study focused on the impact of disrupted O-GlcNAc cycling on the proliferation and apoptosis of bovine granulosa cells, and further aimed to determine how this influenced glucose metabolism. Pharmacological inhibition of OGT with benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside (BADGP) led to decreased cellular O-GlcNAc levels, as well as OGT and OGA protein expressions, whereas increasing O-GlcNAc levels with the OGA inhibitor, O-(2-acetamido-2-deoxy-D-gluco-pyranosylidene) (PUGNAc), resulted in elevated OGA protein expression and decreased OGT protein expression in granulosa cells. Dysregulated O-GlcNAc cycling reduced cell viability, downregulated the proliferation-related genes of CDC42 and PCNA transcripts, upregulated the pro-apoptotic genes of BAX and CASPASE-3 mRNA and the ratio of BAX/BCL-2, and increased the apoptotic rate. Glycolytic enzyme activities of hexokinase and pyruvate kinase, metabolite contents of pyruvate and lactate, mitochondrial membrane potential, ATP levels, and intermediate metabolic enzyme activities of succinate dehydrogenase and malate dehydrogenase involved in the tricarboxylic acid cycle, were significantly impaired in response to altered O-GlcNAc levels. Moreover, inhibition of OGT significantly increased the expression level of thioredoxin-interacting protein (TXNIP), but repression of OGA had no effect. Collectively, our results suggest that perturbation of O-GlcNAc cycling has a profound effect on granulosa cell function and glucose metabolism.
Collapse
|
22
|
Pasha M, Kirschenman R, Wooldridge A, Spaans F, Cooke CLM, Davidge ST. The Effect of Tauroursodeoxycholic Acid (TUDCA) Treatment on Pregnancy Outcomes and Vascular Function in a Rat Model of Advanced Maternal Age. Antioxidants (Basel) 2022; 11:1275. [PMID: 35883766 PMCID: PMC9312116 DOI: 10.3390/antiox11071275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Advanced maternal age (≥35 years) increases the risk of vascular complications in pregnancy that can result in fetal growth restriction and preeclampsia. Endoplasmic reticulum (ER) stress has been linked to adverse pregnancy outcomes in these complicated pregnancies. However, the role of ER stress in advanced maternal age is not known. We hypothesize that increased ER stress contributes to altered vascular function and poor pregnancy outcomes, and that treatment with the ER-stress inhibitor TUDCA will improve pregnancy outcomes. First, young and aged non-pregnant/pregnant rats were used to assess ER stress markers in mesenteric arteries; mesenteric artery phospho-eIF2α and CHOP expression were increased in aged dams compared to young dams. In a second study, young and aged control and TUDCA-treated dams were studied on gestational day (GD) 20 (term = 22 days). TUDCA treatment was provided via the drinking water throughout pregnancy (GD0-GD20; calculated dose of 150 mg/kg/day TUDCA). ER stress markers were quantified in mesenteric arteries, blood pressure was measured, pregnancy outcomes were recorded, mesenteric and main uterine arteries were isolated and vascular function was assessed by wire myography. Aged dams had increased phospho-eIF2α and CHOP expression, reduced fetal weight, reduced litter size, and impaired uterine artery relaxation. In the aged dams, TUDCA treatment reduced phospho-eIF2α and CHOP expression, reduced blood pressure, improved fetal body weight, and tended to improve uterine artery function compared to control-treated aged dams. In conclusion, our data illustrate the role of ER stress, as well as TUDCA as a potential therapeutic that may benefit pregnancy outcomes in advanced maternal age.
Collapse
Affiliation(s)
- Mazhar Pasha
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Amy Wooldridge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Christy-Lynn M. Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Sandra T. Davidge
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; (R.K.); (A.W.); (F.S.); (C.-L.M.C.)
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| |
Collapse
|
23
|
Liu Y, Hu YJ, Fan WX, Quan X, Xu B, Li SZ. O-GlcNAcylation: The Underestimated Emerging Regulators of Skeletal Muscle Physiology. Cells 2022; 11:1789. [PMID: 35681484 PMCID: PMC9180116 DOI: 10.3390/cells11111789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
O-GlcNAcylation is a highly dynamic, reversible and atypical glycosylation that regulates the activity, biological function, stability, sublocation and interaction of target proteins. O-GlcNAcylation receives and coordinates different signal inputs as an intracellular integrator similar to the nutrient sensor and stress receptor, which target multiple substrates with spatio-temporal analysis specifically to maintain cellular homeostasis and normal physiological functions. Our review gives a brief description of O-GlcNAcylation and its only two processing enzymes and HBP flux, which will help to better understand its physiological characteristics of sensing nutrition and environmental cues. This nutritional and stress-sensitive properties of O-GlcNAcylation allow it to participate in the precise regulation of skeletal muscle metabolism. This review discusses the mechanism of O-GlcNAcylation to alleviate metabolic disorders and the controversy about the insulin resistance of skeletal muscle. The level of global O-GlcNAcylation is precisely controlled and maintained in the "optimal zone", and its abnormal changes is a potential factor in the pathogenesis of cancer, neurodegeneration, diabetes and diabetic complications. Although the essential role of O-GlcNAcylation in skeletal muscle physiology has been widely studied and recognized, it still is underestimated and overlooked. This review highlights the latest progress and potential mechanisms of O-GlcNAcylation in the regulation of skeletal muscle contraction and structural properties.
Collapse
Affiliation(s)
| | | | | | | | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (Y.-J.H.); (W.-X.F.); (X.Q.)
| |
Collapse
|
24
|
Ferreira WAS, Vitiello GAF, da Silva Medina T, de Oliveira EHC. Comprehensive analysis of epigenetics regulation, prognostic and the correlation with immune infiltrates of GPX7 in adult gliomas. Sci Rep 2022; 12:6442. [PMID: 35440701 PMCID: PMC9018725 DOI: 10.1038/s41598-022-10114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Gliomas are the most commonly occurring malignant brain tumor characterized by an immunosuppressive microenvironment accompanied by profound epigenetic changes, thus influencing the prognosis. Glutathione peroxidase 7 (GPX7) is essential for regulating reactive oxygen species homeostasis under oxidative stress. However, little is known about the function of GPX7 in gliomas. In this study, we hypothesized that GPX7 methylation status could influence biological functions and local immune responses that ultimately impact prognosis in adult gliomas. We conducted an integrated bioinformatics analysis mining GPX7 DNA methylation status, transcriptional and survival data of glioma patients. We discovered that GPX7 was remarkably increased in glioma tissues and cell lines, and was associated with poor prognosis. This upregulation was significantly linked to clinicopathological and molecular features, besides being expressed in a cell cycle-dependent manner. Our results consistently demonstrated that upregulation of GPX7 is tightly modulated by epigenetic processes, which also impacted the overall survival of patients with low-grade gliomas (LGG). Based on the analysis of biological functions, we found that GPX7 might be involved in immune mechanisms involving both innate and adaptive immunity, type I interferon production and regulation of synaptic transmission in LGG, whereas in GBM, it is mainly related to metabolic regulation of mitochondrial dynamics. We also found that GPX7 strongly correlates with immune cell infiltration and diverse immune cell markers, suggesting its role in tumor-specific immune response and in regulating the migration of immune cell types to the tumor microenvironment. Combining these multiple data, we provided the first evidence regarding the epigenetic-mediated regulatory mechanisms underlying GPX7 activation in gliomas. Furthermore, our study brings key insights into the significant effect of GPX7 in modulating both immune molecules and in immune cell infiltration in the microenvironment of gliomas, which might impact the patient outcome, opening up future opportunities to regulate the local immune response.
Collapse
Affiliation(s)
- Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil.
| | | | - Tiago da Silva Medina
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil
- Institute of Exact and Natural Sciences, Faculty of Natural Sciences, Federal University of Pará (UFPA), Belém, Brazil
| |
Collapse
|
25
|
Discovery of a New Drug-Like Series of OGT Inhibitors by Virtual Screening. Molecules 2022; 27:molecules27061996. [PMID: 35335358 PMCID: PMC8950328 DOI: 10.3390/molecules27061996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an essential post-translational modification installed by the enzyme O-β-N-acetyl-d-glucosaminyl transferase (OGT). Modulating this enzyme would be extremely valuable to better understand its role in the development of serious human pathologies, such as diabetes and cancer. However, the limited availability of potent and selective inhibitors hinders the validation of this potential therapeutic target. To explore new chemotypes that target the active site of OGT, we performed virtual screening of a large library of commercially available compounds with drug-like properties. We purchased samples of the most promising virtual hits and used enzyme assays to identify authentic leads. Structure-activity relationships of the best identified OGT inhibitor were explored by generating a small library of derivatives. Our best hit displays a novel uridine mimetic scaffold and inhibited the recombinant enzyme with an IC50 value of 7 µM. The current hit represents an excellent starting point for designing and developing a new set of OGT inhibitors that may prove useful for exploring the biology of OGT.
Collapse
|
26
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
27
|
Wong YK, Wang J, Lim TK, Lin Q, Yap CT, Shen HM. O-GlcNAcylation promotes fatty acid synthase activity under nutritional stress as a pro-survival mechanism in cancer cells. Proteomics 2022; 22:e2100175. [PMID: 35083852 DOI: 10.1002/pmic.202100175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022]
Abstract
Protein O-GlcNAcylation is a specific form of protein glycosylation that targets a wide range of proteins with important functions. O-GlcNAcylation is known to be deregulated in cancer and has been linked to multiple aspects of cancer pathology. Despite its ubiquity and importance, the current understanding of the role of O-GlcNAcylation in the stress response remains limited. In this study, we performed a quantitative chemical proteomics-based open study of the O-GlcNAcome in HeLa cells, and identified 163 differentially-glycosylated proteins under starvation, involving multiple metabolic pathways. Among them, fatty acid metabolism was found to be targeted and subsequent analysis confirmed that fatty acid synthase (FASN) is O-GlcNAcylated. O-GlcNAcylation led to enhanced de novo fatty acid synthesis activity, and fatty acids contributed to the cytoprotective effects of O-GlcNAcylation under starvation. Moreover, dual inhibition of O-GlcNAcylation and FASN displayed a strong synergistic effect in vitro in inducing cell death in cancer cells. Together, the results from this study provide novel insights into the role of O-GlcNAcylation in the nutritional stress response and suggest the potential of combining inhibition of O-GlcNAcylation and fatty acid synthesis in cancer therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yin-Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Jigang Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Celestial T Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.,Cancer Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.,National University Cancer Institute, National University Health System, Singapore, 119074, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.,Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
28
|
Gut microbiota: A potential therapeutic target for management of diabetic retinopathy? Life Sci 2021; 286:120060. [PMID: 34666038 DOI: 10.1016/j.lfs.2021.120060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is one of the main complications of Diabetes Mellitus (DM), drastically impacting individuals of working age over the years, being one of the main causes of blindness in the world. The existing therapies for its treatment consist of measures that aim only to alleviate the existing clinical signs, associated with the microvasculature. These treatments are limited only to the advanced stages and not to the preclinical ones. In response to a treatment with little resolution and limited for many patients with DM, investigations of alternative therapies that make possible the improvement of the glycemic parameters and the quality of life of subjects with DR, become extremely necessary. Recent evidence has shown that deregulation of the microbiota (dysbiosis) can lead to low-grade, local and systemic inflammation, directly impacting the development of DM and its microvascular complications, including DR, in an axis called the intestine-retina. In this regard, the present review seeks to comprehensively describe the biochemical pathways involved in DR as well as the association of the modulation of these mechanisms by the intestinal microbiota, since direct changes in the microbiota can have a drastic impact on various physiological processes. Finally, emphasize the strong potential for modulation of the gut-retina axis, as therapeutic and prophylactic target for the treatment of DR.
Collapse
|
29
|
Weng Y, Wang Z, Fukuhara Y, Tanai A, Ikegame M, Yamada D, Takarada T, Izawa T, Hayano S, Yoshida K, Kamioka H, Okamura H. O-GlcNAcylation drives calcium signaling toward osteoblast differentiation: A bioinformatics-oriented study. Biofactors 2021; 47:992-1015. [PMID: 34418170 DOI: 10.1002/biof.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to reveal the possible mechanisms by which O-linked-N-acetylglucosaminylation (O-GlcNAcylation) regulates osteoblast differentiation using a series of bioinformatics-oriented experiments. To examine the influence of O-GlcNAcylation levels on osteoblast differentiation, osteoblastic MC3T3-E1 cells were treated with O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) inhibitors. Correlations between the levels of O-GlcNAcylation and the expression of osteogenic markers as well as OGT were evaluated by qPCR and western blotting. The O-GlcNAcylated proteins assumed to correlate with Runx2 expression were retrieved from several public databases and used for further bioinformatics analysis. Following the findings of the bioinformatics analysis, intracellular calcium ([Ca2+ ]i ) was monitored in the cells treated with OGT and OGA inhibitors using a confocal laser-scanning microscope (CLS). The interaction effect between O-GlcNAcylation and [Ca2+ ]i on osteogenic marker expression was determined using stable OGT knockdown MC3T3-E1 cells. O-GlcNAcylation was positively associated with osteoblast differentiation. The time-course profile of global O-GlcNAcylated proteins showed a distinctive pattern with different molecular weights during osteoblast differentiation. The expression pattern of several O-GlcNAcylated proteins was significantly similar to that of Runx2 expression. Bioinformatic analysis of the retrieved Runx2-related-O-GlcNAcylated-proteins revealed the importance of [Ca2+ ]i . CLS showed that alteration of O-GlcNAcylation rapidly changed [Ca2+ ]i in MC3T3-E1 cells. O-GlcNAcylation and [Ca2+ ]i showed an interaction effect on the expression of osteogenic markers. OGT knockdown disrupted the [Ca2+ ]i -induced expression changes of osteogenic markers. O-GlcNAcylation interacts with [Ca2+ ]i and elicits osteoblast differentiation by regulating the expression of osteogenic markers.
Collapse
Affiliation(s)
- Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoko Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Airi Tanai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Izawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Hayano
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
30
|
Jobava R, Mao Y, Guan BJ, Hu D, Krokowski D, Chen CW, Shu XE, Chukwurah E, Wu J, Gao Z, Zagore LL, Merrick WC, Trifunovic A, Hsieh AC, Valadkhan S, Zhang Y, Qi X, Jankowsky E, Topisirovic I, Licatalosi DD, Qian SB, Hatzoglou M. Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress. Mol Cell 2021; 81:4191-4208.e8. [PMID: 34686314 PMCID: PMC8559772 DOI: 10.1016/j.molcel.2021.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.
Collapse
Affiliation(s)
- Raul Jobava
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, CWRU, Cleveland, OH 44106, USA
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA; Department of Molecular Biology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin 20-033, Poland
| | - Chien-Wen Chen
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Evelyn Chukwurah
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Jing Wu
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA
| | - Leah L Zagore
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA
| | | | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, CWRU, Cleveland, OH 44106, USA
| | - Youwei Zhang
- Department of Pharmacology, CWRU, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, CWRU, Cleveland, OH 44106, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology, Departments of Biochemistry and Experimental Medicine and Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, QC H3T 1E2, Canada
| | - Donny D Licatalosi
- Department of Biochemistry, CWRU, Cleveland, OH 44106, USA; Center for RNA Science and Therapeutics, CWRU, Cleveland, OH 44106, USA.
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH 44106, USA.
| |
Collapse
|
31
|
Nosella ML, Tereshchenko M, Pritišanac I, Chong PA, Toretsky JA, Lee HO, Forman-Kay JD. O-Linked- N-Acetylglucosaminylation of the RNA-Binding Protein EWS N-Terminal Low Complexity Region Reduces Phase Separation and Enhances Condensate Dynamics. J Am Chem Soc 2021; 143:11520-11534. [PMID: 34304571 DOI: 10.1021/jacs.1c04194] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many membraneless organelles are thought to be biomolecular condensates formed by phase separation of proteins and other biopolymers. Post-translational modifications (PTMs) can impact protein phase separation behavior, although for many PTMs this aspect of their function is unknown. O-linked β-D-N-acetylglucosaminylation (O-GlcNAcylation) is an abundant form of intracellular glycosylation whose roles in regulating biomolecular condensate assembly and dynamics have not been delineated. Using an in vitro approach, we found that O-GlcNAcylation reduces the phase separation propensity of the EWS N-terminal low complexity region (LCRN) under different conditions, including in the presence of the arginine- and glycine-rich RNA-binding domains (RBD). O-GlcNAcylation enhances fluorescence recovery after photobleaching (FRAP) within EWS LCRN condensates and causes the droplets to exhibit more liquid-like relaxation following fusion. Following extended incubation times, EWS LCRN+RBD condensates exhibit diminished FRAP, indicating a loss of fluidity, while condensates containing the O-GlcNAcylated LCRN do not. In HeLa cells, EWS is less O-GlcNAcylated following OGT knockdown, which correlates with its increased accumulation in a filter retardation assay. Relative to the human proteome, O-GlcNAcylated proteins are enriched with regions that are predicted to phase separate, suggesting a general role of O-GlcNAcylation in regulation of biomolecular condensates.
Collapse
Affiliation(s)
- Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Iva Pritišanac
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - P Andrew Chong
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, D.C. 20057, United States
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
32
|
Bell R, Vendruscolo M. Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Front Neurol 2021; 12:661117. [PMID: 34335440 PMCID: PMC8319954 DOI: 10.3389/fneur.2021.661117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is characterised by the presence in brain tissue of aberrant inclusions known as Lewy bodies and Lewy neurites, which are deposits composed by α-synuclein and a variety of other cellular components, including in particular lipid membranes. The dysregulation of the balance between lipid homeostasis and α-synuclein homeostasis is therefore likely to be closely involved in the onset and progression of Parkinson's disease and related synucleinopathies. As our understanding of this balance is increasing, we describe recent advances in the characterisation of the role of post-translational modifications in modulating the interactions of α-synuclein with lipid membranes. We then discuss the impact of these advances on the development of novel diagnostic and therapeutic tools for synucleinopathies.
Collapse
Affiliation(s)
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
The Hexosamine Biosynthetic Pathway as a Therapeutic Target after Cartilage Trauma: Modification of Chondrocyte Survival and Metabolism by Glucosamine Derivatives and PUGNAc in an Ex Vivo Model. Int J Mol Sci 2021; 22:ijms22147247. [PMID: 34298867 PMCID: PMC8305151 DOI: 10.3390/ijms22147247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) is essential for the production of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the building block of glycosaminoglycans, thus playing a crucial role in cartilage anabolism. Although O-GlcNAcylation represents a protective regulatory mechanism in cellular processes, it has been associated with degenerative diseases, including osteoarthritis (OA). The present study focuses on HBP-related processes as potential therapeutic targets after cartilage trauma. Human cartilage explants were traumatized and treated with GlcNAc or glucosamine sulfate (GS); PUGNAc, an inhibitor of O-GlcNAcase; or azaserine (AZA), an inhibitor of GFAT-1. After 7 days, cell viability and gene expression analysis of anabolic and catabolic markers, as well as HBP-related enzymes, were performed. Moreover, expression of catabolic enzymes and type II collagen (COL2) biosynthesis were determined. Proteoglycan content was assessed after 14 days. Cartilage trauma led to a dysbalanced expression of different HBP-related enzymes, comparable to the situation in highly degenerated tissue. While GlcNAc and PUGNAc resulted in significant cell protection after trauma, only PUGNAc increased COL2 biosynthesis. Moreover, PUGNAc and both glucosamine derivatives had anti-catabolic effects. In contrast, AZA increased catabolic processes. Overall, “fueling” the HBP by means of glucosamine derivatives or inhibition of deglycosylation turned out as cells and chondroprotectives after cartilage trauma.
Collapse
|
34
|
Nikolaou MA, Drosos Y, Havaki S, Arvanitis D, Sotiriou S, Vassiou K, Zibis A, Arvanitis LD. The O-Linked N-Acetylglucosamine Containing Epitope H (O-GlcNAcH) is Upregulated in the Trophoblastic and Downregulated in the Fibroblastic Cells in Missed Miscarriage Human Chorionic Villi With Simple Hydropic Degeneration. Int J Gynecol Pathol 2021; 40:324-332. [PMID: 32897971 DOI: 10.1097/pgp.0000000000000693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epitope H contains an O-linked N-acetylglucosamine (O-GlcNAcH) residue in a specific conformation and/or environment recognized by the mouse monoclonal antibody H. O-GlcNAcH is present in several types of cells and in several polypeptides, including cytokeratin 8 and vimentin, on the latter in cells under stress. In the present work, we examined the expression of the O-GlcNAcH in 60 cases of endometrial curettings from missed miscarriage cases containing normal and simple hydropic degenerated chorionic villi in each case, using monoclonal antibody H and indirect immunoperoxidase and Western blot immunoblot. In all cases examined the expression of the O-GlcNAcH was cytoplasmic as follows: (1) syncytiotrophoblastic cells showed very low expression in chorionic villi (CV) with nonhydropic degeneration (NHD) and high expression in hydropic degenerated (HD) CV; (2) cytotrophoblastic cells showed low expression in CV with NHD and high expression in HD CV; (3) fibroblastic cells showed high expression in CV with NHD and very low expression in HD CV; (4) histiocytes showed very low expression in both types of CV; (5) endothelial cells showed high expression in both types of CV. An immunoblot of CV from one case of a legal abortion from a normal first-trimester pregnancy showed 5 polypeptides with 118.5, 106.3, 85, 53, and 36.7 kD bearing the epitope H and the 53 kD corresponded to cytokeratin 8. The expression of the O-GlcNAcH is upregulated in the trophoblastic cells and downregulated in the fibroblastic cells in the HD CV in comparison to the NHD CV.
Collapse
|
35
|
Disruption of O-Linked N-Acetylglucosamine Signaling in Placenta Induces Insulin Sensitivity in Female Offspring. Int J Mol Sci 2021; 22:ijms22136918. [PMID: 34203166 PMCID: PMC8267851 DOI: 10.3390/ijms22136918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Placental dysfunction can lead to fetal growth restriction which is associated with perinatal morbidity and mortality. Fetal growth restriction increases the risk of obesity and diabetes later in life. Placental O-GlcNAc transferase (OGT) has been identified as a marker and a mediator of placental insufficiency in the setting of prenatal stress, however, its role in the fetal programming of metabolism and glucose homeostasis remains unknown. We aim to determine the long-term metabolic outcomes of offspring with a reduction in placental OGT. Mice with a partial reduction and a full knockout of placenta-specific OGT were generated utilizing the Cre-Lox system. Glucose homeostasis and metabolic parameters were assessed on a normal chow and a high-fat diet in both male and female adult offspring. A reduction in placental OGT did not demonstrate differences in the metabolic parameters or glucose homeostasis compared to the controls on a standard chow. The high-fat diet provided a metabolic challenge that revealed a decrease in body weight gain (p = 0.02) and an improved insulin tolerance (p = 0.03) for offspring with a partially reduced placental OGT but not when OGT was fully knocked out. Changes in body weight were not associated with changes in energy homeostasis. Offspring with a partial reduction in placental OGT demonstrated increased hepatic Akt phosphorylation in response to insulin treatment (p = 0.02). A partial reduction in placental OGT was protective from weight gain and insulin intolerance when faced with the metabolic challenge of a high-fat diet. This appears to be, in part, due to increased hepatic insulin signaling. The findings of this study contribute to the greater understanding of fetal metabolic programming and the effect of placental OGT on peripheral insulin sensitivity and provides a target for future investigation and clinical applications.
Collapse
|
36
|
Chen Y, Bei J, Liu M, Huang J, Xie L, Huang W, Cai M, Guo Y, Lin L, Zhu K. Sublethal heat stress-induced O-GlcNAcylation coordinates the Warburg effect to promote hepatocellular carcinoma recurrence and metastasis after thermal ablation. Cancer Lett 2021; 518:23-34. [PMID: 34126196 DOI: 10.1016/j.canlet.2021.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/15/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023]
Abstract
The malignant transformation of residual hepatocellular carcinoma (HCC) cells after thermal ablation is considered as the main factor promoting postoperative HCC progression, which greatly limits the improvement of long-term survival, and at present there is no effective targeted therapeutic strategies. The Warburg effect is a metabolic feature correlated highly with malignant transformation (e.g. epithelial-to-mesenchymal transition [EMT]). Here, we showed that sublethal heat stress triggered a stronger Warburg effect of HCC cells, which contributed to the thermotolerance and invasion of HCC cells. Sublethal heat stress-induced O-GlcNAcylation was involved in this process. Such enhanced Warburg effect in HCC cells may be eliminated through O-GlcNAcylation inhibition, resulting in impaired thermotolerance and EMT, and thereby preventing tumor recurrence and metastasis of HCC-bearing mice after insufficient thermal ablation. Finally, we present evidence that sublethal heat stress-induced O-GlcNAcylation regulates the Warburg effect in HCC cells by promoting hypoxia-inducible factor 1α (HIF-1α) stability. In conclusion, the present study suggests that O-GlcNAcylation coordinates the Warburg effect to promote HCC progression after thermal ablation, which may serve as a novel potential target for controlling postoperative HCC recurrence and metastasis.
Collapse
Affiliation(s)
- Ye Chen
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Jiaxin Bei
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Mingyu Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Lulu Xie
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China.
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China.
| |
Collapse
|
37
|
Khoder-Agha F, Kietzmann T. The glyco-redox interplay: Principles and consequences on the role of reactive oxygen species during protein glycosylation. Redox Biol 2021; 42:101888. [PMID: 33602616 PMCID: PMC8113034 DOI: 10.1016/j.redox.2021.101888] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) carry out prime physiological roles as intracellular signaling agents, yet pathologically high concentrations of ROS cause irreversible damage to biomolecules, alter cellular programs and contribute to various diseases. While decades of intensive research have identified redox-related patterns and signaling pathways, very few addressed how the glycosylation machinery senses and responds to oxidative stress. A common trait among ROS and glycans residing on glycoconjugates is that they are both highly dynamic, as they are quickly fine-tuned in response to stressors such as inflammation, cancer and infectious diseases. On this account, the delicate balance of the redox potential, which is tightly regulated by dozens of enzymes including NOXs, and the mitochondrial electron transport chain as well as the fluidity of glycan biosynthesis resulting from the cooperation of glycosyltransferases, glycosidases, and nucleotide sugar transporters, is paramount to cell survival. Here, we review the broad spectrum of the interplay between redox changes and glycosylation with respect to their principle consequences on human physiology.
Collapse
Affiliation(s)
- Fawzi Khoder-Agha
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu, Finland.
| |
Collapse
|
38
|
Zhang X, Alshakhshir N, Zhao L. Glycolytic Metabolism, Brain Resilience, and Alzheimer's Disease. Front Neurosci 2021; 15:662242. [PMID: 33994936 PMCID: PMC8113697 DOI: 10.3389/fnins.2021.662242] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia. Despite decades of research, the etiology and pathogenesis of AD are not well understood. Brain glucose hypometabolism has long been recognized as a prominent anomaly that occurs in the preclinical stage of AD. Recent studies suggest that glycolytic metabolism, the cytoplasmic pathway of the breakdown of glucose, may play a critical role in the development of AD. Glycolysis is essential for a variety of neural activities in the brain, including energy production, synaptic transmission, and redox homeostasis. Decreased glycolytic flux has been shown to correlate with the severity of amyloid and tau pathology in both preclinical and clinical AD patients. Moreover, increased glucose accumulation found in the brains of AD patients supports the hypothesis that glycolytic deficit may be a contributor to the development of this phenotype. Brain hyperglycemia also provides a plausible explanation for the well-documented link between AD and diabetes. Humans possess three primary variants of the apolipoprotein E (ApoE) gene - ApoE∗ϵ2, ApoE∗ϵ3, and ApoE∗ϵ4 - that confer differential susceptibility to AD. Recent findings indicate that neuronal glycolysis is significantly affected by human ApoE isoforms and glycolytic robustness may serve as a major mechanism that renders an ApoE2-bearing brain more resistant against the neurodegenerative risks for AD. In addition to AD, glycolytic dysfunction has been observed in other neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, strengthening the concept of glycolytic dysfunction as a common pathway leading to neurodegeneration. Taken together, these advances highlight a promising translational opportunity that involves targeting glycolysis to bolster brain metabolic resilience and by such to alter the course of brain aging or disease development to prevent or reduce the risks for not only AD but also other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Nadine Alshakhshir
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
39
|
Martinez M, Renuse S, Kreimer S, O'Meally R, Natov P, Madugundu AK, Nirujogi RS, Tahir R, Cole R, Pandey A, Zachara NE. Quantitative Proteomics Reveals that the OGT Interactome Is Remodeled in Response to Oxidative Stress. Mol Cell Proteomics 2021; 20:100069. [PMID: 33716169 PMCID: PMC8079276 DOI: 10.1016/j.mcpro.2021.100069] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/26/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The dynamic modification of specific serine and threonine residues of intracellular proteins by O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) mitigates injury and promotes cytoprotection in a variety of stress models. The O-GlcNAc transferase (OGT) and the O-GlcNAcase are the sole enzymes that add and remove O-GlcNAc, respectively, from thousands of substrates. It remains unclear how just two enzymes can be specifically controlled to affect glycosylation of target proteins and signaling pathways both basally and in response to stress. Several lines of evidence suggest that protein interactors regulate these responses by affecting OGT and O-GlcNAcase activity, localization, and substrate specificity. To provide insight into the mechanisms by which OGT function is controlled, we have used quantitative proteomics to define OGT's basal and stress-induced interactomes. OGT and its interaction partners were immunoprecipitated from OGT WT, null, and hydrogen peroxide-treated cell lysates that had been isotopically labeled with light, medium, and heavy lysine and arginine (stable isotopic labeling of amino acids in cell culture). In total, more than 130 proteins were found to interact with OGT, many of which change their association upon hydrogen peroxide stress. These proteins include the major OGT cleavage and glycosylation substrate, host cell factor 1, which demonstrated a time-dependent dissociation after stress. To validate less well-characterized interactors, such as glyceraldehyde 3-phosphate dehydrogenase and histone deacetylase 1, we turned to parallel reaction monitoring, which recapitulated our discovery-based stable isotopic labeling of amino acids in cell culture approach. Although the majority of proteins identified are novel OGT interactors, 64% of them are previously characterized glycosylation targets that contain varied domain architecture and function. Together these data demonstrate that OGT interacts with unique and specific interactors in a stress-responsive manner.
Collapse
Affiliation(s)
- Marissa Martinez
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at Foghorn Therapeutics, Cambridge, Massachusetts, United States
| | - Santosh Renuse
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States; Currently at the Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Simion Kreimer
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Currently at the Advanced Clinical Biosystems Institute, Smidt Heart institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Robert O'Meally
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter Natov
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anil K Madugundu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Raja Sekhar Nirujogi
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Raiha Tahir
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at Ginkgo Bioworks, Massachusetts, United States
| | - Robert Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; The Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Currently at the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States; Currently at the Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
| |
Collapse
|
40
|
Liu Y, Yao RZ, Lian S, Liu P, Hu YJ, Shi HZ, Lv HM, Yang YY, Xu B, Li SZ. O-GlcNAcylation: the "stress and nutrition receptor" in cell stress response. Cell Stress Chaperones 2021; 26:297-309. [PMID: 33159661 PMCID: PMC7925768 DOI: 10.1007/s12192-020-01177-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an atypical, reversible, and dynamic glycosylation that plays a critical role in maintaining the normal physiological functions of cells by regulating various biological processes such as signal transduction, proteasome activity, apoptosis, autophagy, transcription, and translation. It can also respond to environmental changes and physiological signals to play the role of "stress receptor" and "nutrition sensor" in a variety of stress responses and biological processes. Even, a homeostatic disorder of O-GlcNAcylation may cause many diseases. Therefore, O-GlcNAcylation and its regulatory role in stress response are reviewed in this paper.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Rui-Zhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, People's Republic of China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ya-Jie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Zhao Shi
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hong-Ming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu-Ying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Shi-Ze Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
41
|
Lee BE, Kim HY, Kim HJ, Jeong H, Kim BG, Lee HE, Lee J, Kim HB, Lee SE, Yang YR, Yi EC, Hanover JA, Myung K, Suh PG, Kwon T, Kim JI. O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease. Brain 2021; 143:3699-3716. [PMID: 33300544 PMCID: PMC7805798 DOI: 10.1093/brain/awaa320] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The dopamine system in the midbrain is essential for volitional movement, action selection, and reward-related learning. Despite its versatile roles, it contains only a small set of neurons in the brainstem. These dopamine neurons are especially susceptible to Parkinson’s disease and prematurely degenerate in the course of disease progression, while the discovery of new therapeutic interventions has been disappointingly unsuccessful. Here, we show that O-GlcNAcylation, an essential post-translational modification in various types of cells, is critical for the physiological function and survival of dopamine neurons. Bidirectional modulation of O-GlcNAcylation importantly regulates dopamine neurons at the molecular, synaptic, cellular, and behavioural levels. Remarkably, genetic and pharmacological upregulation of O-GlcNAcylation mitigates neurodegeneration, synaptic impairments, and motor deficits in an animal model of Parkinson’s disease. These findings provide insights into the functional importance of O-GlcNAcylation in the dopamine system, which may be utilized to protect dopamine neurons against Parkinson’s disease pathology.
Collapse
Affiliation(s)
- Byeong Eun Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hye Yun Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Jin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeongsun Jeong
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Ha-Eun Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jieun Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Han Byeol Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine and College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine and College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney (NIDDK), National Institute of Health (NIH), Bethesda, Maryland, USA
| | - Kyungjae Myung
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae-Ick Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
42
|
Xu YR, Lei CQ. TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses. Front Immunol 2021; 11:608976. [PMID: 33469458 PMCID: PMC7813674 DOI: 10.3389/fimmu.2020.608976] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.
Collapse
Affiliation(s)
- Yan-Ran Xu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cao-Qi Lei
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Buday K, Conrad M. Emerging roles for non-selenium containing ER-resident glutathione peroxidases in cell signaling and disease. Biol Chem 2020; 402:271-287. [PMID: 33055310 DOI: 10.1515/hsz-2020-0286] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Maintenance of cellular redox control is pivotal for normal cellular functions and cell fate decisions including cell death. Among the key cellular redox systems in mammals, the glutathione peroxidase (GPX) family of proteins is the largest conferring multifaceted functions and affecting virtually all cellular processes. The endoplasmic reticulum (ER)-resident GPXs, designated as GPX7 and GPX8, are the most recently added members of this family of enzymes. Recent studies have provided exciting insights how both enzymes support critical processes of the ER including oxidative protein folding, maintenance of ER redox control by eliminating H2O2, and preventing palmitic acid-induced lipotoxicity. Consequently, numerous pathological conditions, such as neurodegeneration, cancer and metabolic diseases have been linked with altered GPX7 and GPX8 expression. Studies in mice have demonstrated that loss of GPX7 leads to increased differentiation of preadipocytes, increased tumorigenesis and shortened lifespan. By contrast, GPX8 deficiency in mice results in enhanced caspase-4/11 activation and increased endotoxic shock in colitis model. With the increasing recognition that both types of enzymes are dysregulated in various tumor entities in man, we deem a review of the emerging roles played by GPX7 and GPX8 in health and disease development timely and appropriate.
Collapse
Affiliation(s)
- Katalin Buday
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany.,National Research Medical University, Laboratory of Experimental Oncology, Ostrovityanova 1, 117997Moscow, Russia
| |
Collapse
|
44
|
Hsieh YL, Su FY, Tsai LK, Huang CC, Ko YL, Su LW, Chen KY, Shih HM, Hu CM, Lee WH. NPGPx-Mediated Adaptation to Oxidative Stress Protects Motor Neurons from Degeneration in Aging by Directly Modulating O-GlcNAcase. Cell Rep 2020; 29:2134-2143.e7. [PMID: 31747588 DOI: 10.1016/j.celrep.2019.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/10/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease, usually occurs in middle-aged people. However, the molecular basis of age-related cumulative stress in ALS pathogenesis remains elusive. Here, we found that mice deficient in NPGPx (GPx7), an oxidative stress sensor, develop ALS-like phenotypes, including paralysis, muscle denervation, and motor neurons loss. Unlike normal spinal motor neurons that exhibit elevated O-GlcNAcylation against age-dependent oxidative stress, NPGPx-deficient spinal motor neurons fail to boost O-GlcNAcylation and exacerbate ROS accumulation, leading to cell death. Mechanistically, stress-activated NPGPx inhibits O-GlcNAcase (OGA) through disulfide bonding to fine-tune global O-GlcNAcylation. Pharmacological inhibition of OGA rescues spinal motor neuron loss in aged NPGPx-deficient mice. Furthermore, expression of NPGPx in ALS patients is significantly lower than in unaffected adults. These results suggest that NPGPx modulates O-GlcNAcylation by inhibiting OGA to cope with age-dependent oxidative stress and protect motor neurons from degeneration, providing a potential therapeutic axis for ALS.
Collapse
Affiliation(s)
- Yung-Lin Hsieh
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Fang-Yi Su
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | - Yi-Ling Ko
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Li-Wen Su
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kai-Yun Chen
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Drug Development Center, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
45
|
Affiliation(s)
- Hayden Wilkinson
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Tavassoly O, Yue J, Vocadlo DJ. Pharmacological inhibition and knockdown of O-GlcNAcase reduces cellular internalization of α-synuclein preformed fibrils. FEBS J 2020; 288:452-470. [PMID: 32365408 DOI: 10.1111/febs.15349] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/25/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
The pathological hallmark of Parkinson's disease (PD) is Lewy bodies that form within the brain from aggregated forms of α-synuclein (α-syn). These toxic α-syn aggregates are transferred from cell to cell by release of fibrils from dying neurons into the extracellular environment, followed by their subsequent uptake by neighboring cells. This process leads to spreading of the pathology throughout the brain in a prion-like manner. Identifying new pathways that hinder the internalization of such α-syn fibrils is of high interest for their downstream potential exploitation as a way to create disease-modifying therapeutics for PD. Here, we show that Thiamet-G, a highly selective pharmacological agent that inhibits the glycoside hydrolase O-GlcNAcase (OGA), blunts the cellular uptake of α-syn fibrils. This effect correlates with increased nucleocytoplasmic levels of O-linked N-acetylglucosamine (O-GlcNAc)-modified proteins, and genetic knockdown of OGA expression closely phenocopies both these effects. These reductions in the uptake of α-syn fibrils caused by inhibition of OGA are both concentration- and time-dependent and are observed in multiple cell lines including mouse primary cortical neurons. Moreover, treatment of cells with the OGT inhibitor, 5SGlcNHex, increases the level of uptake of α-syn PFFs, further supporting O-GlcNAcylation of proteins driving these effects. Notably, this effect is mediated through an unknown mechanism that does not involve well-characterized endocytotic pathways. These data suggest one mechanism by which OGA inhibitors might exert their protective effects in prion-like neuropathologies and support exploration of OGA inhibitors as a potential disease-modifying approach to treat PD.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Jefferey Yue
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
47
|
Abstract
Diabetes mellitus predisposes affected individuals to a significant spectrum of cardiovascular complications, one of the most debilitating in terms of prognosis is heart failure. Indeed, the increasing global prevalence of diabetes mellitus and an aging population has given rise to an epidemic of diabetes mellitus-induced heart failure. Despite the significant research attention this phenomenon, termed diabetic cardiomyopathy, has received over several decades, understanding of the full spectrum of potential contributing mechanisms, and their relative contribution to this heart failure phenotype in the specific context of diabetes mellitus, has not yet been fully resolved. Key recent preclinical discoveries that comprise the current state-of-the-art understanding of the basic mechanisms of the complex phenotype, that is, the diabetic heart, form the basis of this review. Abnormalities in each of cardiac metabolism, physiological and pathophysiological signaling, and the mitochondrial compartment, in addition to oxidative stress, inflammation, myocardial cell death pathways, and neurohumoral mechanisms, are addressed. Further, the interactions between each of these contributing mechanisms and how they align to the functional, morphological, and structural impairments that characterize the diabetic heart are considered in light of the clinical context: from the disease burden, its current management in the clinic, and where the knowledge gaps remain. The need for continued interrogation of these mechanisms (both known and those yet to be identified) is essential to not only decipher the how and why of diabetes mellitus-induced heart failure but also to facilitate improved inroads into the clinical management of this pervasive clinical challenge.
Collapse
Affiliation(s)
- Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville, Victoria 3052, Australia
| | - E. Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| |
Collapse
|
48
|
Ravindran Menon D, Hammerlindl H, Torrano J, Schaider H, Fujita M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics 2020; 10:6261-6277. [PMID: 32483452 PMCID: PMC7255038 DOI: 10.7150/thno.42523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in the treatment of cancers, acquired drug resistance remains a major challenge in cancer management. While earlier studies suggest Darwinian factors driving acquired drug resistance, recent studies point to a more dynamic process involving phenotypic plasticity and tumor heterogeneity in the evolution of acquired drug resistance. Chronic stress after drug treatment induces intrinsic cellular reprogramming and cancer stemness through a slow-cycling persister state, which subsequently drives cancer progression. Both epigenetic and metabolic mechanisms play an important role in this dynamic process. In this review, we discuss how epigenetic and metabolic reprogramming leads to stress-induced phenotypic plasticity and acquired drug resistance, and how the two reprogramming mechanisms crosstalk with each other.
Collapse
|
49
|
Alteen MG, Gros C, Meek RW, Cardoso DA, Busmann JA, Sangouard G, Deen MC, Tan H, Shen DL, Russell CC, Davies GJ, Robinson PJ, McCluskey A, Vocadlo DJ. A Direct Fluorescent Activity Assay for Glycosyltransferases Enables Convenient High‐Throughput Screening: Application to
O
‐GlcNAc Transferase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew G. Alteen
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Christina Gros
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Richard W. Meek
- York Structural Biology Laboratory Department of Chemistry University of York York YO10 5DD UK
| | - David A. Cardoso
- Children's Medical Research Institute The University of Sydney Sydney NSW 2145 Australia
| | - Jil A. Busmann
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Gontran Sangouard
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Matthew C. Deen
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Hong‐Yee Tan
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - David L. Shen
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Cecilia C. Russell
- Chemistry, School of Environmental and Life Sciences The University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - Gideon J. Davies
- York Structural Biology Laboratory Department of Chemistry University of York York YO10 5DD UK
| | - Phillip J. Robinson
- Children's Medical Research Institute The University of Sydney Sydney NSW 2145 Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences The University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - David J. Vocadlo
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| |
Collapse
|
50
|
Alteen MG, Gros C, Meek RW, Cardoso DA, Busmann JA, Sangouard G, Deen MC, Tan H, Shen DL, Russell CC, Davies GJ, Robinson PJ, McCluskey A, Vocadlo DJ. A Direct Fluorescent Activity Assay for Glycosyltransferases Enables Convenient High‐Throughput Screening: Application toO‐GlcNAc Transferase. Angew Chem Int Ed Engl 2020; 59:9601-9609. [DOI: 10.1002/anie.202000621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Matthew G. Alteen
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Christina Gros
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Richard W. Meek
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of York York YO10 5DD UK
| | - David A. Cardoso
- Children's Medical Research InstituteThe University of Sydney Sydney NSW 2145 Australia
| | - Jil A. Busmann
- Department of Molecular Biology and BiochemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Gontran Sangouard
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Matthew C. Deen
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Hong‐Yee Tan
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - David L. Shen
- Department of Molecular Biology and BiochemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Cecilia C. Russell
- Chemistry, School of Environmental and Life SciencesThe University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - Gideon J. Davies
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of York York YO10 5DD UK
| | - Phillip J. Robinson
- Children's Medical Research InstituteThe University of Sydney Sydney NSW 2145 Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life SciencesThe University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - David J. Vocadlo
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
- Department of Molecular Biology and BiochemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| |
Collapse
|