1
|
Kiyak V, Gevrek F, Demir O, Katar M. Secukinumab Ameliorates Oxidative Damage Induced by Subarachnoid Hemorrhage. World Neurosurg 2024; 190:e158-e164. [PMID: 39154958 DOI: 10.1016/j.wneu.2024.07.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE This study aimed to investigate the histological and biochemical neuroprotective effects of secukinumab (SEC) on brain damage induced by subarachnoid hemorrhage (SAH) in male Wistar Albino rats. METHODS Forty male Wistar Albino rats were randomly divided into 4 groups of equal size: control, SEC, SAH, and SAH + SEC. SAH was induced the SAH and SAH + SEC groups by injecting autologous blood collected from the hearts of the rats into the subarachnoid space via the foramen magnum. SEC was administered intraperitoneally once a week to the SEC and SAH + SEC groups after the surgical procedure. On the 14th day of surgery, the rats were sacrificed and their cerebral tissues were collected for biochemical analysis and histopathological examination. RESULTS SAH led to changes in oxidative stress parameters by increasing malondialdehyde levels and decreasing superoxide dismutase, glutathione, catalase, and glutathione peroxidase levels. Histopathologically, cerebral tissues in the SAH groups showed alterations such as congestion and cell infiltration. Treatment with SEC significantly reduced malondialdehyde levels and increased superoxide dismutase, glutathione, catalase, and glutathione peroxidase levels. SEC also decreased histopathological alterations in brain tissues. CONCLUSIONS This study revealed that SEC (3 mg/kg) therapeutically influenced oxidative and histopathological changes in blood parameters and brain tissues caused by experimental SAH. SEC helps reduce brain damage in rats with SAH and possesses antioxidant and neuroprotective properties. Further advanced studies are needed to prove its potential benefits for humans.
Collapse
Affiliation(s)
- Veysel Kiyak
- Department of Neurosurgery-Tokat, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey.
| | - Fikret Gevrek
- Department of Histology and Embryology-Tokat, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Osman Demir
- Department of Bioistatistic-Tokat, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Muzaffer Katar
- Faculty of Medicine, Department of Biochemistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
2
|
Abdelzaher WY, Ibrahim MA, Hassan M, El-Tahawy NFG, Fawzy MA, Hafez HM. Protective effect of eicosapentaenoic acid against estradiol valerate-induced endometrial hyperplasia via modulation of NF-κB/HIF-1α/VEGF signaling pathway in rats. Chem Biol Interact 2023; 373:110399. [PMID: 36774993 DOI: 10.1016/j.cbi.2023.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
BACKGROUND Early diagnosis and treatment of endometrial hyperplasia (EH) remains mandatory for endometrial cancer (EC) prevention. OBJECTIVE To study the possible protective effect of eicosapentaenoic acid (EPA) in EH - induced by estradiol valerate (EV) in rats. METHODS/MATERIALS Adult female Wistar rats were given EV with or without EPA for 10 days. The uterine changes were evaluated by both physical (weight index) and histopathological methods. The markers of oxidative stress (Uterine malondialdehyde (MDA) and serum total antioxidant capacity (TAC) as well as serum estradiol and progesterone levels, and apoptosis (uterine caspase-3) were determined. Immunohistochemical estimations of nuclear factor kappa B (NF-κB) and vascular endothelial growth factor (VEGF) in addition to hypoxia-inducible factor 1 alpha (HIF-1α) immunoblotting were measured in uterine tissue. KEY FINDINGS EV showed significant increase in uterine weight index that is accompanied with histopatholigical evidences of EH. Such changes were associated with significant alterations in oxidative stress markers, modulation of estradiol and progesterone serum levels, an increase in HIF-1α, NF-κB and VEGF immuno-expressions and a significant decrease in caspase-3. EPA, in either dose, showed significant amelioration in uterine weight index as well as in histopathological changes. Such effect was accompanied with significant improvement in the measured hormonal levels, oxidative stress, apoptosis, and inflammatory parameters. CONCLUSIONS EPA in the used doses provided biochemical and histopathological improvement in EV-induced EH via modulation of NF-κB/HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
| | - Mohamed A Ibrahim
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | - Marwa Hassan
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| | | | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt.
| | - Heba M Hafez
- Pharmacology Department, Faculty of Medicine, Minia University, Minia, 61511, Egypt.
| |
Collapse
|
3
|
Doğan MF, Başak Türkmen N, Taşlıdere A, Şahin Y, Çiftçi O. The protective effects of capsaicin on oxidative damage-induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Drug Chem Toxicol 2021; 45:2463-2470. [PMID: 34308744 DOI: 10.1080/01480545.2021.1957912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The present study aimed to investigate the protective role of capsaicin in a rat model of 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD)-induced toxicity. Exposure to TCDD which is an environmental toxicant causes severe toxic effects in the animal and human tissues. Therefore, the potential protective effect of capsaicin in TCDD-induced organ damage was investigated in rats by measuring thiobarbituric acid reactive substances (TBARS) level, superoxide dismutase (SOD) activity, and glutathione (GSH) level in the heart, liver, and kidney tissues for oxidant/antioxidant balance. Thirty-two healthy adults (250-300 g weight and 3-4 months old) male Wistar albino rats were randomly distributed into four equal groups (n = 8): Control, CAP, TCDD, TCDD + CAP. A dose of 2 μg/kg TCDD or a dose of 25 mg/kg capsaicin were dissolved in corn oil and orally administered to the rats for 30 days. The results indicated that TCDD-induced oxidative stress by increasing the level of TBARS and by decreasing the levels of GSH, and SOD activity in the tissues of rats. However, capsaicin treatment was significantly decreased TBARS levels and was significantly increased GSH level and SOD activity (p < 0.05). In addition, capsaicin (25 mg/kg) significantly attenuated TCDD-induced histopathological alteration associated with oxidative stress in the heart, liver, and kidney tissues (p < 0.05). As capsaicin regulates oxidative imbalance and attenuates histopathological alterations in the rat tissues, it may be preventing agents in TCDD toxicity.
Collapse
Affiliation(s)
- Muhammed Fatih Doğan
- Department of Pharmacology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Neşe Başak Türkmen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, University of Inonu, Malatya, Turkey
| | - Aslı Taşlıdere
- Department of Histology and Embryology, Faculty of Medicine, University of Inonu, Malatya, Turkey
| | - Yasemin Şahin
- Department of Pharmacology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| | - Osman Çiftçi
- Department of Pharmacology, Faculty of Medicine, University of Pamukkale, Denizli, Turkey
| |
Collapse
|
4
|
Shi HH, Wang CC, Ding L, Mao XZ, Xue CH, Yanagita T, Zhang TT, Wang YM. Comparative evaluation of phosphatidylcholine and phosphatidylserine with different fatty acids on nephrotoxicity in vancomycin-induced mice. Biosci Biotechnol Biochem 2021; 85:1873-1884. [PMID: 34196365 DOI: 10.1093/bbb/zbab105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
Phospholipids reportedly alleviate drug-induced acute kidney injury. However, no study has compared the effect of phospholipids with different fatty acids and polar heads on drug-induced nephrotoxicity. In the present study, we aimed to compare the possible nephroprotection afforded by phosphatidylcholine and phosphatidylserine with different fatty acids in a mouse model of vancomycin-induced nephrotoxicity. Pretreatment with phospholipids rich in docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) doubled the survival time when compared with the model group. Moreover, phospholipids rich in DHA/EPA significantly reduced the serum levels of renal function biomarkers and ameliorated kidney pathologies. In terms of alleviating renal damage, no significant differences were observed between different polar heads in DHA-enriched phospholipids, while phosphatidylserine from soybean was better than phosphatidylcholine in mitigating renal injury. Furthermore, DHA/EPA-enriched phospholipids inhibited vancomycin-induced nephrotoxicity mainly by inhibiting apoptosis and oxidative stress. These results provide a scientific basis for phospholipids as potential ingredients to prevent acute kidney injury.
Collapse
Affiliation(s)
- Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Lin Ding
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiang-Zhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, P. R. China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga, Japan
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, P. R. China
| |
Collapse
|
5
|
Lee HS, Suh JY, Kang BC, Lee E. Lipotoxicity dysregulates the immunoproteasome in podocytes and kidneys in type 2 diabetes. Am J Physiol Renal Physiol 2021; 320:F548-F558. [PMID: 33586497 DOI: 10.1152/ajprenal.00509.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Palmitic acid (PA) leads to lipotoxicity in type 2 diabetes and induces oxidative stress in podocytes. Oxidized cellular proteins are degraded by proteasomes. The role of proteasomes in PA- or oxidative stress-induced podocyte injury and pathogenesis of diabetic nephropathy (DN) is unknown. We investigated the effects of PA on expression of 20S and 26S proteasomes, proteasome activator 28 (PA28) regulators, and the immunoproteasome in cultured podocytes and renal cortical tissues of db/db and db/m mice using Western blot analysis. Glomerular areas and glomerular basement membrane (GBM) widths of db/db and db/m mice were examined using morphometry. Short-term incubation of PA or low levels of H2O2 upregulated only the immunoproteasome in cultured podocytes. Long-term exposure of podocytes to PA ultimately downregulated the immunoproteasome as with other proteasomes, whereas oleic acid (OA) or eicosapentaenoic acid (EPA) restored the PA-induced decreased protein levels. In db/db mice, renal cortical immunoproteasome expression with PA28α was significantly decreased compared with db/m mice, and glomerular areas and GBM widths were significantly increased compared with db/m mice. Feeding of an OA-rich olive oil or EPA-rich fish oil protected db/db mice against the reduced renal cortical immunoproteasome expression, glomerular enlargement, and GBM thickening. These results demonstrate that lipotoxicity downregulates the immunoproteasome in podocytes and kidneys in type 2 diabetes and that OA and EPA protected type 2 diabetic mice against decreased renal cortical immunoproteasome expression and the progression of DN. Given this, lipotoxicity-induced podocyte injury with impaired immunoproteasome expression appears to play an important role in the pathogenesis of DN.NEW & NOTEWORTHY In podocytes, PA rapidly induced immunoproteasome expression but ultimately decreased it, while OA and EPA restored the decreased immunoproteasome levels. In the renal cortex of type 2 diabetic mice, immunoproteasome expression was significantly decreased, whereas feeding of OA-rich olive oil or EPA-rich fish oil diets protected them against the reduced immunoproteasome expression and progression of diabetic nephropathy. Thus, lipotoxicity-induced podocyte injury with impaired immunoproteasome expression may be related to the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Hyun Soon Lee
- Renal Pathology Lab, Hankook Kidney and Diabetes Institute, Seoul, Korea
| | - Ji Yeon Suh
- Renal Pathology Lab, Hankook Kidney and Diabetes Institute, Seoul, Korea
| | - Byeong-Choel Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eugene Lee
- Renal Pathology Lab, Hankook Kidney and Diabetes Institute, Seoul, Korea
| |
Collapse
|
6
|
Fu M, Tian Y, Zhang T, Zhan Q, Zhang L, Wang J. Comparative study of DHA-enriched phosphatidylcholine and EPA-enriched phosphatidylcholine on ameliorating high bone turnover via regulation of the osteogenesis-related Wnt/β-catenin pathway in ovariectomized mice. Food Funct 2020; 11:10094-10104. [PMID: 33140795 DOI: 10.1039/d0fo01563f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we compared the effects of marine DHA-enriched phosphatidylcholine (DHA-PC) and EPA-enriched phosphatidylcholine (EPA-PC) on high bone turnover in a model of osteoporosis induced by bilateral ovariectomy in vivo, and further investigated the possible protective mechanisms. Meanwhile, DHA-PC and EPA-PC clearly ameliorated the microstructure of the trabecular bone and accelerated bone mineral apposition rate, additionally increasing bone mineral density and biomechanical properties of the bone. Furthermore, gene and protein expression levels suggest that DHA-PC and EPA-PC inhibited overactive osteogenesis via down-regulation of the expression of the osteogenesis-related Wnt/β-catenin signaling pathway. In conclusion, DHA-PC and EPA-PC reduced excessive osteogenesis via normalization of Wnt/β-catenin expression. These results may contribute to the elucidation of the anti-osteoporotic properties of DHA-PC and EPA-PC and further develop their potential application value as a functional food.
Collapse
Affiliation(s)
- Meng Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | | | | | | | | | | |
Collapse
|
7
|
Madireddy S, Madireddy S. Regulation of Reactive Oxygen Species-Mediated Damage in the Pathogenesis of Schizophrenia. Brain Sci 2020; 10:brainsci10100742. [PMID: 33081261 PMCID: PMC7603028 DOI: 10.3390/brainsci10100742] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The biochemical integrity of the brain is paramount to the function of the central nervous system, and oxidative stress is a key contributor to cerebral biochemical impairment. Oxidative stress, which occurs when an imbalance arises between the production of reactive oxygen species (ROS) and the efficacy of the antioxidant defense mechanism, is believed to play a role in the pathophysiology of various brain disorders. One such disorder, schizophrenia, not only causes lifelong disability but also induces severe emotional distress; however, because of its onset in early adolescence or adulthood and its progressive development, consuming natural antioxidant products may help regulate the pathogenesis of schizophrenia. Therefore, elucidating the functions of ROS and dietary antioxidants in the pathogenesis of schizophrenia could help formulate improved therapeutic strategies for its prevention and treatment. This review focuses specifically on the roles of ROS and oxidative damage in the pathophysiology of schizophrenia, as well as the effects of nutrition, antipsychotic use, cognitive therapies, and quality of life on patients with schizophrenia. By improving our understanding of the effects of various nutrients on schizophrenia, it may become possible to develop nutritional strategies and supplements to treat the disorder, alleviate its symptoms, and facilitate long-term recovery.
Collapse
Affiliation(s)
- Samskruthi Madireddy
- Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
- Correspondence: ; Tel.: +1-408-9214162
| | - Sahithi Madireddy
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;
| |
Collapse
|
8
|
Wiest EF, Walsh-Wilcox MT, Walker MK. Omega-3 Polyunsaturated Fatty Acids Protect Against Cigarette Smoke-Induced Oxidative Stress and Vascular Dysfunction. Toxicol Sci 2018; 156:300-310. [PMID: 28115642 DOI: 10.1093/toxsci/kfw255] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In cigarette smokers endothelial dysfunction, measured by flow-mediated dilation (FMD), precedes cardiovascular disease (CVD) and can be improved by supplementation with n - 3 polyunsaturated fatty acids (PUFAs). We developed a mouse model of cigarette smoke (CS)-induced endothelial dysfunction that resembles impaired FMD observed in human cigarette smokers and investigated the mechanism by which n - 3 PUFAs mediate vasoprotection. We hypothesized that loss of nitric oxide (NO)-dependent vasodilation in CS-exposed mice would be prevented by dietary n - 3 PUFAs via a decrease in oxidative stress. C57BL/6 mice were fed a chow or n - 3 PUFA diet for 8 weeks and then exposed to mainstream CS or filtered air for 5 days, 2 h/day. Mesenteric arterioles were preconstricted with U46619 and dilated by stepwise increases in pressure (0-40 mmHg), resulting in increases in flow, ± inhibitor of NO production or antioxidant, Tempol. Markers of oxidative stress were measured in lung and heart. CS-exposed mice on a chow diet had impaired FMD, resulting from loss of NO-dependent dilation, compared with air exposed mice. Tempol restored FMD by normalizing NO-dependent dilation and increasing NO-independent dilation. CS-exposed mice on the n - 3 PUFA diet had normal FMD, resulting from a significant increase in NO-independent dilation, compared with CS-exposed mice on a chow diet. Furthermore, n - 3 PUFAs decreased two CS-induced markers of oxidative stress, 8-epiprostaglandin-F2α levels and heme oxygenase-1 mRNA, and significantly attenuated CS-induced cytochrome P4501A1 mRNA expression. These data demonstrate that dietary n - 3 PUFAs can protect against CS-induced vascular dysfunction via multiple mechanisms, including increasing NO-independent vasodilation and decreasing oxidative stress.
Collapse
Affiliation(s)
- Elani F Wiest
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131
| | - Mary T Walsh-Wilcox
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131
| | - Mary K Walker
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
9
|
Saoudi M, Hmida IB, Kammoun W, Rebah FB, Jamoussi K, Feki AE. Protective effects of oil of Sardinella pilchardis against subacute chlorpyrifos-induced oxidative stress in female rats. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2018; 73:128-135. [PMID: 28394715 DOI: 10.1080/19338244.2017.1317627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
This study was conducted to evaluate the protective effects of Sardinella pilchardis oil and vitamin E against chlorpyrifos- (CPF-) induced liver, kidney, and brain oxidative damage in female rats. The rats were divided into 6 experimental groups: the control group, the group treated with fish oil, the group that received fish oil for 2 weeks and CPF orally for 7 days, the group treated only with CPF, the group treated with vitamin E for 2 weeks and CPF for 7 days, and the group treated with vitamin E. Oral exposure to CPF induced a significant increase in serum biochemical parameters; hepatic, kidney, and brain LPO; and a decrease in superoxide dismutase, catalase, and glutathione peroxidase activities. Fish oil or vitamin E decreased significantly the mentioned biochemical parameters as compared to rats treated with CPF alone. This study suggests that fish oil has an ameliorative effect for the alleviation of the oxidative damage induced by CPF.
Collapse
Affiliation(s)
- Mongi Saoudi
- a Animal Ecophysiology Laboratory , Sciences Faculty of Sfax , Sfax , Tunisia
| | - Ines Ben Hmida
- a Animal Ecophysiology Laboratory , Sciences Faculty of Sfax , Sfax , Tunisia
| | - Wassim Kammoun
- b Marine Biotechnology and Biodiversity Laboratory , INSTM of Sfax , Sfax , Tunisia
| | - Faouzi Ben Rebah
- c Laboratory of Biochemistry and Enzymatic Engineering of Lipases , National School of Engineers of Sfax, University of Sfax , Sfax , Tunisia
| | - Kamel Jamoussi
- d Biochemistry Laboratory , CHU Hedi Chaker of Sfax , Sfax , Tunisia
| | - Abdelfattah El Feki
- a Animal Ecophysiology Laboratory , Sciences Faculty of Sfax , Sfax , Tunisia
| |
Collapse
|
10
|
Shi H, Zou J, Zhang T, Che H, Gao X, Wang C, Wang Y, Xue C. Protective Effects of DHA-PC against Vancomycin-Induced Nephrotoxicity through the Inhibition of Oxidative Stress and Apoptosis in BALB/c Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:475-484. [PMID: 29254330 DOI: 10.1021/acs.jafc.7b04565] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The clinical use of glycopeptide antibiotic vancomycin is usually accompanied by nephrotoxicity, limiting its application and therapeutic efficiency. The aim of this study was to investigate the protection of DHA-enriched phosphatidylcholine (DHA-PC) against nephrotoxicity using a model of vancomycin-induced male BALB/c mice with renal injury by measuring death curves, histological changes, and renal function indexes. The addition of DHA in DHA and DHA-PC groups were 300 mg/kg per day on the basis of human intake level in our study. Results indicated that DHA-PC could dramatically extend the survival time of mice, while traditional DHA and PC had no significant effects. Moreover, oral administration of DHA-PC exhibited better effects on reducing vancomycin-induced increases of blood urea nitrogen, creatinine, cystatin C, and kidney injury molecule-1 levels than traditional DHA and PC. DHA-PC significantly delayed the development of vancomycin-induced renal injury, including tubular necrosis, hyaline casts, and tubular degeneration. A further mechanistic study revealed that the protective effect of DHA-PC on vancomycin-mediated toxicity might be attributed to its ability to inhibit oxidative stress and inactivate mitogen-activated protein kinase (MAPK) signaling pathways, which was associated with upregulation of Bcl-2 and downregulation of caspase-9, caspase-3, cytochrome-c, p38, and JNK. These findings suggest that DHA-PC may be acted as the dietary supplements or functional foods against vancomycin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Haohao Shi
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Junzhe Zou
- Teaching Center of Fundamental Courses, Ocean University of China , No. 238 Songling Road, Qingdao, Shandong Province 266100, PR China
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hongxia Che
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Xiang Gao
- College of Life Sciences, Qingdao University , No. 308, Ningxia Road, Qingdao, Shandong Province 266071, PR China
| | - Chengcheng Wang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao, Shandong Province 266237, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , No. 5 Yushan Road, Qingdao, Shandong Province 266003, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao, Shandong Province 266237, PR China
| |
Collapse
|
11
|
Priya LB, Baskaran R, Elangovan P, Dhivya V, Huang CY, Padma VV. Tinospora cordifolia extract attenuates cadmium-induced biochemical and histological alterations in the heart of male Wistar rats. Biomed Pharmacother 2017; 87:280-287. [PMID: 28063409 DOI: 10.1016/j.biopha.2016.12.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 01/14/2023] Open
Abstract
Persistence of cadmium (Cd) in the environment causes serious ecological problems. Tinospora cordifolia is a medicinal herb used in Ayurveda for treating various metabolic disorders and toxic conditions. The present study investigates the protective effect of T. cordifolia stem methanolic extract (TCME) on a heavy metal, Cd-induced cardiotoxicity in male Wistar rats. Male albino Wistar rats were divided into four groups (n=6). The animals after treatment for 28days with Cd and TCME were analysed for biochemical and histological changes in the serum and heart tissues. Cd induced lipid peroxidation and protein carbonylation was significantly reduced by TCME. TCME also reduced the histological alterations induced by Cd treatment in the heart tissues with diminished loss of myocardial fibers. Administration of TCME effectively prevented the altered levels of serum marker enzymes (creatine kinase and lactate dehydrogenase), antioxidants, such as superoxide dismutase, catalase, glutathione, glutathione peroxidase and glutathione-S-transferase, and glycoproteins contents such as hexose, hexoseamine, fucose, and sialic acid by Cd intoxication. TCME also offered protection against the change in levels of Na+K+ATPase, Mg2+ATPase and Ca2+ATPase activities against Cd toxicity. The study suggests TCME as a potent cardioprotective agent against Cd induced toxicity.
Collapse
Affiliation(s)
- Lohanathan Bharathi Priya
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Rathinasamy Baskaran
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; DRDO-BU Centre for Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Pitchai Elangovan
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Velumani Dhivya
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Viswanadha Vijaya Padma
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; DRDO-BU Centre for Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
12
|
Wiest EF, Walsh-Wilcox MT, Rothe M, Schunck WH, Walker MK. Dietary Omega-3 Polyunsaturated Fatty Acids Prevent Vascular Dysfunction and Attenuate Cytochrome P4501A1 Expression by 2,3,7,8-Tetrachlorodibenzo-P-Dioxin. Toxicol Sci 2016; 154:43-54. [PMID: 27492226 DOI: 10.1093/toxsci/kfw145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) found in fish protect against cardiovascular morbidity and mortality; however, many individuals avoid fish consumption due to concerns about pollutants. We tested the hypothesis that n-3 PUFAs would prevent vascular dysfunction induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57Bl/6 male mice were fed a chow or n-3 PUFA diet for 10 weeks and were exposed to vehicle or 300 ng/kg/d TCDD during the final 2 weeks on each diet. Aortic vasoconstriction mediated by arachidonic acid (AA) ± SKF525 (P450 inhibitor) or SQ29548 (thromboxane/prostanoid [TP] receptor antagonist) was assessed. RBC fatty acids and expression of n-3 and n-6 PUFA metabolites were analyzed. Cytochrome P4501A1 (CYP1A1), CYP1B1, and aryl hydrocarbon receptor (AHR) expression was measured. TCDD significantly increased AA-mediated vasoconstriction on a chow diet by increasing the contribution of P450s and TP receptor to the constriction response. In contrast, the n-3 PUFA diet prevented the TCDD-induced increase in AA vasoconstriction and normalized the contribution of P450s and TP receptor. Although TCDD increased the levels of AA vasoconstrictors on the chow diet, this increase was prevent by the n-3 PUFA diet. Additionally, the n-3 PUFA diet significantly increased the levels of n-3 PUFA-derived vasodilators and TCDD increased these levels further. Interestingly, the n-3 PUFA diet significantly attenuated CYP1A1 induction by TCDD without a significant effect on AHR expression. These data suggest that n-3 PUFAs can prevent TCDD-induced vascular dysfunction by decreasing vasoconstrictors, increasing vasodilators, and attenuating CYP1A1 induction, which has been shown previously to contribute to TCDD-induced vascular dysfunction.
Collapse
Affiliation(s)
- Elani F Wiest
- *Department of Pharmaceutical Sciences, University of New Mexico, New Mexico, 87131
| | - Mary T Walsh-Wilcox
- *Department of Pharmaceutical Sciences, University of New Mexico, New Mexico, 87131
| | | | | | - Mary K Walker
- *Department of Pharmaceutical Sciences, University of New Mexico, New Mexico, 87131
| |
Collapse
|
13
|
Ferain A, Bonnineau C, Neefs I, Rees JF, Larondelle Y, Schamphelaere KACD, Debier C. The fatty acid profile of rainbow trout liver cells modulates their tolerance to methylmercury and cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:171-181. [PMID: 27288598 DOI: 10.1016/j.aquatox.2016.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 05/12/2016] [Accepted: 05/22/2016] [Indexed: 06/06/2023]
Abstract
The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly protected the RTL-W1 cells against both methylmercury and cadmium; (iv) DHA enrichment significantly protected the cells against cadmium but not methylmercury; (v) AA and LA enrichment had no impact on the cell tolerance to both methylmercury and cadmium; (vi) the abundance of 20:3n-6, a metabolite of the n-6 biotransformation pathway, in phospholipids was negatively correlated to the cell tolerance to both methylmercury and cadmium. Overall, our results highlighted the importance of the fatty acid supply on the tolerance of fish liver cells to methylmercury and cadmium.
Collapse
Affiliation(s)
- Aline Ferain
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium.
| | - Chloé Bonnineau
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium; Irstea, UR MALY, Centre de Lyon-Villeurbanne, rue de la Doua 5/32108, F-69616 Villeurbanne, France
| | - Ineke Neefs
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Jean François Rees
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, J. Plateaustraat 22, B-9000 Ghent, Belgium
| | - Cathy Debier
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Du JL, Cao LP, Liu YJ, Jia R, Yin GJ. A Study of 2,3,7,8-Tetrachlorodibenzo-p-dioxin Induced Liver Injury in Jian Carp (Cyprinus carpio var. Jian) Using Precision-Cut Liver Slices. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:55-61. [PMID: 26508429 DOI: 10.1007/s00128-015-1683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to establish a model for the study of liver injury induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Jian carp using precision-cut liver slices (PCLS). PCLS were treated with TCDD at concentrations of 0, 0.05, 0.1, 0.3, and 0.6 μg/L for 6 h, followed by collection of the culture supernatant and PCLS for analysis. Several biochemical indices were analyzed, including glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA). Expression of mRNA was also estimated for cytochrome P4501A (CYP1A), aryl hydrocarbon receptor2 (AhR2), and aryl hydrocarbon receptor nuclear translocator2 (ARNT2). Results showed that some significant effects (p < 0.05) in MDA, GSH-Px and PCLS viability were observed at a TCDD concentration as low as 0.05 µg/L, and the observed effects increased with exposure concentration. Following exposure to TCDD for 6 h at a concentration of 0.3 μg/L, significant increases (p < 0.01) in the content of GPT, GOT, MDA, and LDH were observed, while SOD activity, GSH-Px activity, and PCLS viability were decreased (p < 0.01 or p < 0.05). Exposure to 0.3 μg/L TCDD also resulted in increased expression of mRNA for CYP1A, AhR2, and ARNT2. Overall, these results provide evidence of TCDD-induced liver injury and oxidative stress in Jian carp. These results also support the use of PCLS as an in vitro model for the evaluation of hepatotoxicity in Jian carp.
Collapse
Affiliation(s)
- Jin-Liang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Li-Ping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Ying-Juan Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Guo-Jun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| |
Collapse
|
15
|
Liu MH, Lin AH, Lu SH, Peng RY, Lee TS, Kou YR. Eicosapentaenoic acid attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Front Physiol 2014; 5:440. [PMID: 25452730 PMCID: PMC4231989 DOI: 10.3389/fphys.2014.00440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/27/2014] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking causes chronic lung inflammation that is mainly regulated by redox-sensitive pathways. Our previous studies have demonstrated that cigarette smoke (CS) activates reactive oxygen species (ROS)-sensitive mitogen-activated protein kinases (MAPKs)/nuclear factor-κB (NF-κB) signaling resulting in induction of lung inflammation. Eicosapentaenoic acid (EPA), a major type of omega-3 polyunsaturated fatty acid, is present in significant amounts in marine-based fish and fish oil. EPA has been shown to possess antioxidant and anti-inflammatory properties in vitro and in vivo. However, whether EPA has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model, we show that subchronic CS exposure for 4 weeks caused pulmonary inflammatory infiltration (total cell count in bronchoalveolar lavage fluid (BALF), 11.0-fold increase), increased lung vascular permeability (protein level in BALF, 3.1-fold increase), elevated levels of chemokines (11.4–38.2-fold increase) and malondialdehyde (an oxidative stress biomarker; 2.0-fold increase) in the lungs, as well as lung inflammation; all of these CS-induced events were suppressed by daily supplementation with EPA. Using human bronchial epithelial cells, we further show that CS extract (CSE) sequentially activated NADPH oxidase (NADPH oxidase activity, 1.9-fold increase), increased intracellular levels of ROS (3.0-fold increase), activated both MAPKs and NF-κB, and induced interleukin-8 (IL-8; 8.2-fold increase); all these CSE-induced events were inhibited by pretreatment with EPA. Our findings suggest a novel role for EPA in alleviating the oxidative stress and lung inflammation induced by subchronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro via its antioxidant function and by inhibiting MAPKs/NF-κB signaling.
Collapse
Affiliation(s)
- Meng-Han Liu
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - An-Hsuan Lin
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - Shing-Hwa Lu
- Department of Urology, Taipei City Hospital, Zhong-Xiao Branch Taipei, Taiwan
| | - Ruo-Yun Peng
- Hsin Sheng Junior College of Medical Care and Management Longtan Township, Taiwan
| | - Tzong-Shyuan Lee
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| | - Yu Ru Kou
- Department of Physiology, School of Medicine, National Yang-Ming University Taipei, Taiwan
| |
Collapse
|
16
|
Okusaga OO. Accelerated aging in schizophrenia patients: the potential role of oxidative stress. Aging Dis 2014; 5:256-62. [PMID: 25110609 DOI: 10.14336/ad.2014.0500256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 12/31/2022] Open
Abstract
Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.
Collapse
Affiliation(s)
- Olaoluwa O Okusaga
- Department of Psychiatry and Behavioral Sciences, the University of Texas Health Science Center at Houston, Texas, USA
| |
Collapse
|