1
|
Fu L, You Y, Zeng Y, Ran Q, Zhou Y, Long R, Yang H, Chen J, Loor JJ, Wang G, Zhang L, Dong X. Varying the ratio of Lys: Met through enhancing methionine supplementation improved milk secretion ability through regulating the mRNA expression in bovine mammary epithelial cells under heat stress. Front Vet Sci 2024; 11:1393372. [PMID: 38983772 PMCID: PMC11231434 DOI: 10.3389/fvets.2024.1393372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction The ratio of lysine (Lys) to methionine (Met) with 3.0: 1 is confirmed as the "ideal" profile for milk protein synthesis, but whether this ratio is suitable for milk protein synthesis under HS needs to be further studied. Methods To evaluate the molecular mechanism by which HS and Lys to Met ratios affect mammary cell functional capacity, an immortalized bovine mammary epithelial cell line (MAC-T) is incubated with 5 doses of Met while maintaining a constant concentration of Lys. The MAC-T cells was treated for 6 h as follow: Lys: Met 3.0: 1 (control 37°C and IPAA 42°C) or treatments under HS (42°C) with different ratios of Lys: Met at 2.0: 1 (LM20), 2.5: 1 (LM25), 3.5: 1 (LM35) and 4.0: 1 (LM40). RNA sequencing was used to assess transcriptome-wide alterations in mRNA abundance. Results The significant difference between control and other groups was observed base on PCA analysis. A total of 2048 differentially expressed genes (DEGs) were identified in the IPAA group relative to the control group. Similarly, 226, 306, 148, 157 DEGs were detected in the LM20, LM25, LM35 and LM40 groups, respectively, relative to the IPAA group. The relative mRNA abundance of HSPA1A was upregulated and anti-apoptotic genes (BCL2L1 and BCL2) was down-regulated in the IPAA group, compared to the control group (p < 0.05). Compared with the IPAA group, the relative mRNA abundance of anti-apoptotic genes and casein genes (CSN1S2 and CSN2) was up-regulated in the LM25 group (p < 0.05). The DEGs between LM25 and IPAA groups were associated with the negative regulation of transcription RNA polymerase II promoter in response to stress (GO: 0051085, DEGs of BAG3, DNAJB1, HSPA1A) as well as the mTOR signaling pathway (ko04150, DEGs of ATP6V1C2, WNT11, WNT3A, and WNT9A). Several DEGs involved in amino acids metabolism (AFMID, HYKK, NOS3, RIMKLB) and glycolysis/gluconeogenesis (AFMID and MGAT5B) were up-regulated while DEGs involved in lipolysis and beta-oxidation catabolic processes (ALOX12 and ALOX12B) were down-regulated. Conclusion These results suggested that increasing Met supply (Lys: Met at 2.5: 1) may help mammary gland cells resist HS-induced cell damage, while possibly maintaining lactation capacity through regulation of gene expression.
Collapse
Affiliation(s)
- Lin Fu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yinjie You
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yu Zeng
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Qifan Ran
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Yan Zhou
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Rui Long
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Heng Yang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Juncai Chen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
2
|
Yang X, Weng Q, Li X, Lu K, Wang L, Song K, Zhang C, Rahimnejad S. High water temperature raised the requirements of methionine for spotted seabass (Lateolabrax maculatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:23-40. [PMID: 36322361 DOI: 10.1007/s10695-022-01136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the effects of dietary methionine level and rearing water temperature on growth, antioxidant capacity, methionine metabolism, and hepatocyte autophagy in spotted seabass (Lateolabrax maculatus). A factorial design was used with six methionine levels [0.64, 0.85, 1.11, 1.33, 1.58, and 1.76%] and two temperatures [moderate temperature (MT): 27 ℃, and high temperature (HT): 33 ℃]. The results revealed the significant effects of both dietary methionine level and water temperature on weight gain (WG) and feed efficiency (FE), and their interaction effect was found on WG (P < 0.05). In both water temperatures tested, fish WG increased with increasing methionine level up to 1.11% and decreased thereafter. The groups of fish reared at MT exhibited dramatically higher WG and FE than those kept at HT while an opposite trend was observed for feed intake. Liver antioxidant indices including reduced glutathione and malondialdehyde (MDA) concentrations, and catalase and superoxide dismutase (SOD) activities remarkably increased in the HT group compared to the MT group. Moreover, the lowest MDA concentration and the highest SOD activity were recorded at methionine levels between 1.11% and 0.85%, respectively, regardless of water temperatures. Expression of methionine metabolism-related key enzyme genes (mat2b, cbs, ms, and bhmt) in the liver was increased at moderate methionine levels, and higher expression levels were detected at MT compared to HT with the exception of ms gene relative expression. Relative expression of hepatocyte autophagy-related genes (pink1, atg5, mul1, foxo3) and hsp70 was upregulated by increasing methionine level up to a certain level and decreased thereafter and increasing water temperature led to significantly enhanced expression of hsp70. In summary, HT induced heat stress and reduced fish growth, and an appropriate dietary methionine level improved the antioxidant capacity and stress resistance of fish. A second-order polynomial regression analysis based on the WG suggested that the optimal dietary methionine level for maximum growth of spotted seabass is 1.22% of the diet at 27 ℃ and 1.26% of the diet at 33 ℃, then 1.37 g and 1.68 g dietary methionine intake is required for 100 g weight gain at 27 ℃ or 33 ℃, respectively.
Collapse
Affiliation(s)
- Xin Yang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Qinjiang Weng
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China.
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, People's Republic of China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
3
|
Jo JH, Jalil GN, Kim WS, Moon JO, Lee SD, Kwon CH, Lee HG. Effects of Rumen-Protected L-Tryptophan Supplementation on Productivity, Physiological Indicators, Blood Profiles, and Heat Shock Protein Gene Expression in Lactating Holstein Cows under Heat Stress Conditions. Int J Mol Sci 2024; 25:1217. [PMID: 38279240 PMCID: PMC10816680 DOI: 10.3390/ijms25021217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
In this study, we examined the effects of rumen-protected L-tryptophan supplementation on the productivity and physiological metabolic indicators in lactating Holstein cows under heat stress conditions. The study involved eight early lactating Holstein cows (days in milk = 40 ± 9 days; milk yield 30 ± 1.5 kg/day; parity 1.09 ± 0.05, p < 0.05), four cows per experiment, with environmentally controlled chambers. In each experiment, two distinct heat stress conditions were created: a low-temperature and low-humidity (LTLH) condition at 25 °C with 35-50% humidity and a high-temperature and high-humidity (HTHH) condition at 31 °C with 80-95% humidity. During the adaptation phase, the cows were subjected to LTLH and HTHH conditions for 3 days. This was followed by a 4-day heat stress phase and then by a 7-day phase of heat stress, which were complemented by supplementation with rumen-protected L-tryptophan (ACT). The findings revealed that supplementation with ACT increased dry matter intake as well as milk yield and protein and decreased water intake, heart rate, and rectal temperature in the HTHH group (p < 0.05). For plateletcrit (PCT, p = 0.0600), the eosinophil percentage (EOS, p = 0.0880) showed a tendency to be lower, while the monocyte (MONO) and large unstained cells (LUC) amounts were increased in both groups (p < 0.05). Albumin and glucose levels were lower in the HTHH group (p < 0.05). The gene expressions of heat shock proteins 70 and 90 in the peripheral blood mononuclear cells were higher in the ACT group (HTHH, p < 0.05). These results suggest that ACT supplementation improved productivity, physiological indicators, blood characteristics, and gene expression in the peripheral blood mononuclear cells of early lactating Holstein cows under heat-stress conditions. In particular, ACT supplementation objectively relieved stress in these animals, suggesting that L-tryptophan has potential as a viable solution for combating heat-stress-induced effects on the cattle in dairy farming.
Collapse
Affiliation(s)
- Jang-Hoon Jo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| | - Ghassemi Nejad Jalil
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| | - Won-Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Jun-Ok Moon
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Republic of Korea;
| | - Sung-Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Chan-Ho Kwon
- Department of Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea;
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| |
Collapse
|
4
|
Khan MZ, Huang B, Kou X, Chen Y, Liang H, Ullah Q, Khan IM, Khan A, Chai W, Wang C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vitamins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front Immunol 2024; 14:1290044. [PMID: 38259482 PMCID: PMC10800369 DOI: 10.3389/fimmu.2023.1290044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Mastitis, the inflammatory condition of mammary glands, has been closely associated with immune suppression and imbalances between antioxidants and free radicals in cattle. During the periparturient period, dairy cows experience negative energy balance (NEB) due to metabolic stress, leading to elevated oxidative stress and compromised immunity. The resulting abnormal regulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with increased non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) are the key factors associated with suppressed immunity thereby increases susceptibility of dairy cattle to infections, including mastitis. Metabolic diseases such as ketosis and hypocalcemia indirectly contribute to mastitis vulnerability, exacerbated by compromised immune function and exposure to physical injuries. Oxidative stress, arising from disrupted balance between ROS generation and antioxidant availability during pregnancy and calving, further contributes to mastitis susceptibility. Metabolic stress, marked by excessive lipid mobilization, exacerbates immune depression and oxidative stress. These factors collectively compromise animal health, productive efficiency, and udder health during periparturient phases. Numerous studies have investigated nutrition-based strategies to counter these challenges. Specifically, amino acids, trace minerals, and vitamins have emerged as crucial contributors to udder health. This review comprehensively examines their roles in promoting udder health during the periparturient phase. Trace minerals like copper, selenium, and calcium, as well as vitamins; have demonstrated significant impacts on immune regulation and antioxidant defense. Vitamin B12 and vitamin E have shown promise in improving metabolic function and reducing oxidative stress followed by enhanced immunity. Additionally, amino acids play a pivotal role in maintaining cellular oxidative balance through their involvement in vital biosynthesis pathways. In conclusion, addressing periparturient mastitis requires a holistic understanding of the interplay between metabolic stress, immune regulation, and oxidative balance. The supplementation of essential amino acids, trace minerals, and vitamins emerges as a promising avenue to enhance udder health and overall productivity during this critical phase. This comprehensive review underscores the potential of nutritional interventions in mitigating periparturient bovine mastitis and lays the foundation for future research in this domain.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | | | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Xu J, Wang XL, Zeng HF, Han ZY. Methionine alleviates heat stress-induced ferroptosis in bovine mammary epithelial cells through the Nrf2 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114889. [PMID: 37079940 DOI: 10.1016/j.ecoenv.2023.114889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Heat stress (HS) triggers mammary gland degradation, accompanied by apoptosis and autophagy in bovine mammary epithelial cells, negatively affecting milk performance and mammary gland health. Ferroptosis is iron-mediated regulated cell death caused by over production of lipid peroxides, however, the relationship between ferroptosis and HS in bovine mammary epithelial cells has not been clarified. Methionine (Met) plays a notable role in alleviating HS affecting the mammary glands in dairy cows, but the underlying mechanisms require further exploration. Therefore, we evaluated the regulatory effect and mechanism of Met in alleviating HS-induced ferroptosis by using bovine mammary epithelial cell line (MAC-T) as an in vitro model. The results showed that Met improved cell vitality, restored mitochondrial function; reduced the content of various reactive oxygen species (ROS), especially hydrogen peroxide (H2O2) and superoxide anion (O2·-); had positive effects on antioxidant enzyme activity, namely glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). More importantly, Met reduced labile iron protein (LIP) levels; increased iron storage and simultaneously decreased the levels of lipid reactive oxygen species (lipid ROS) and malondialdehyde (MDA), which all caused by HS in MAC-T. Mechanistically, Met increased the protein expression levels of glutathione peroxidase 4 (GPX4), solute carrier family 7, member 11 (SLC7A11) and ferritin heavy chain 1 (FTH1) by activating nuclear factor E2-related factor 2 (Nrf2) expression. Additionally, the protection effect of Met was cut off in MAC-T cells after interference with Nrf2, manifesting in decresing the protein expression levels of GPX4, SLC7A11 and FTH1,and increasing the levels of LIP and lipid ROS. Our findings indicate that Met eases HS-induced ferroptosis in MAC-T through the Nrf2 pathway, revealing that Met produces a marked effect on easing HS-induced bovine mammary gland injury in dairy cows.
Collapse
Affiliation(s)
- Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Ling Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Han-Fang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhao-Yu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Khan MZ, Liu S, Ma Y, Ma M, Ullah Q, Khan IM, Wang J, Xiao J, Chen T, Khan A, Cao Z. Overview of the effect of rumen-protected limiting amino acids (methionine and lysine) and choline on the immunity, antioxidative, and inflammatory status of periparturient ruminants. Front Immunol 2023; 13:1042895. [PMID: 36713436 PMCID: PMC9878850 DOI: 10.3389/fimmu.2022.1042895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Overproduction of reactive oxygen species (ROS) is a well-known phenomenon experienced by ruminants, especially during the transition from late gestation to successful lactation. This overproduction of ROS may lead to oxidative stress (OS), which compromises the immune and anti-inflammatory systems of animals, thus predisposing them to health issues. Besides, during the periparturient period, metabolic stress is developed due to a negative energy balance, which is followed by excessive fat mobilization and poor production performance. Excessive lipolysis causes immune suppression, abnormal regulation of inflammation, and enhanced oxidative stress. Indeed, OS plays a key role in regulating the metabolic activity of various organs and the productivity of farm animals. For example, rapid fetal growth and the production of large amounts of colostrum and milk, as well as an increase in both maternal and fetal metabolism, result in increased ROS production and an increased need for micronutrients, including antioxidants, during the last trimester of pregnancy and at the start of lactation. Oxidative stress is generally neutralized by the natural antioxidant system in the body. However, in some special phases, such as the periparturient period, the animal's natural antioxidant system is unable to cope with the situation. The effect of rumen-protected limiting amino acids and choline on the regulation of immunity, antioxidative, and anti-inflammatory status and milk production performance, has been widely studied in ruminants. Thus, in the current review, we gathered and interpreted the data on this topic, especially during the perinatal and lactational stages.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China,Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan, Pakistan
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mei Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, the University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Zhijun Cao,
| |
Collapse
|
7
|
Kyriakaki P, Zisis F, Pappas AC, Mavrommatis A, Tsiplakou E. Effects of PUFA-Rich Dietary Strategies on Ruminants' Mammary Gland Gene Network: A Nutrigenomics Review. Metabolites 2022; 13:metabo13010044. [PMID: 36676968 PMCID: PMC9861346 DOI: 10.3390/metabo13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Although the inclusion of polyunsaturated fatty acids (PUFAs) in ruminants' diets appears to be a well-documented strategy to enrich milk with PUFAs, several gene networks that regulate milk synthesis and mammary gland homeostasis could be impaired. The objective of this literature review is to assess the effects of nutritional strategies focused on enriching milk with PUFAs on gene networks regulating mammary gland function and lipogenesis, as well as the impact of feed additives and bioactive compounds with prominent antioxidant potential on immune-oxidative transcriptional profiling, as a part of mammary gland homeostasis and health. The findings support the conclusion that PUFAs' inclusion in ruminants' diets more strongly downregulate the stearoyl-CoA desaturase (SCD) gene compared to other key genes involved in de novo fatty acid synthesis in the mammary gland. Additionally, it was revealed that seed oils rich in linoleic and linolenic acids have no such strong impact on networks that regulate lipogenic homeostasis compared to marine oils rich in eicosapentaenoic and docosahexaenoic acids. Furthermore, ample evidence supports that cows and sheep are more prone to the suppression of lipogenesis pathways compared to goats under the impact of dietary marine PUFAs. On the other hand, the inclusion of feed additives and bioactive compounds with prominent antioxidant potential in ruminants' diets can strengthen mammary gland immune-oxidative status. Considering that PUFA's high propensity to oxidation can induce a cascade of pro-oxidant incidences, the simultaneous supplementation of antioxidant compounds and especially polyphenols may alleviate any side effects caused by PUFA overload in the mammary gland. In conclusion, future studies should deeply investigate the effects of PUFAs on mammary gland gene networks in an effort to holistically understand their impact on both milk fat depression syndrome and homeostatic disturbance.
Collapse
|
8
|
Coleman DN, Totakul P, Onjai-Uea N, Aboragah A, Jiang Q, Vailati-Riboni M, Pate RT, Luchini D, Paengkoum P, Wanapat M, Cardoso FC, Loor JJ. Rumen-protected methionine during heat stress alters mTOR, insulin signaling, and 1-carbon metabolism protein abundance in liver, and whole-blood transsulfuration pathway genes in Holstein cows. J Dairy Sci 2022; 105:7787-7804. [PMID: 35879168 DOI: 10.3168/jds.2021-21379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/26/2022] [Indexed: 11/19/2022]
Abstract
We investigated effects of rumen-protected Met (RPM) during a heat stress (HS) challenge on (1) hepatic abundance of mTOR, insulin, and antioxidant signaling proteins, (2) enzymes in 1-carbon metabolism, and (3) innate immunity. Holstein cows (n = 32; mean ± standard deviation, 184 ± 59 d in milk) were randomly assigned to 1 of 2 environmental groups, and 1 of 2 diets [total mixed ration (TMR) with RPM (Smartamine M; 0.105% dry matter as top-dress) or TMR without (CON); n = 16/diet] in a split-plot crossover design. There were 2 periods with 2 phases. During phase 1 (9 d), all cows were in thermoneutral conditions (TN; temperature-humidity index = 60 ± 3) and fed ad libitum. During phase 2 (9 d), half the cows (n = 8/diet) were exposed to HS using electric heat blankets. The other half (n = 8/diet) remained in TN, but was pair-fed to HS counterparts. After a 14-d washout and 7-d adaptation period, the study was repeated (period 2) and environmental treatments were inverted relative to phase 2, but dietary treatments were the same. Blood was collected on d 6 of each phase 2 to measure immune function and isolate whole-blood RNA. Liver biopsies were performed at the end of each period for cystathione β-synthase (CBS) and methionine adenosyltransferase activity, glutathione concentration, and protein abundance. Data were analyzed using PROC MIXED in SAS. Abundance of CUL3, inhibitor of antioxidant responses, tended to be downregulated by HS suggesting increased oxidative stress. Heat-shock protein 70 abundance was upregulated by HS. Phosphorylated mTOR abundance was greater overall with RPM, suggesting an increase in pathway activity. An environment × diet (E × D) effect was observed for protein kinase B (AKT), whereas there was a tendency for an interaction for phosphorylated AKT. Abundance of AKT was upregulated in CON cows during HS versus TN, this was not observed in RPM cows. For phosphorylated AKT, tissue from HS cows fed CON had greater abundance compared with all other treatments. The same effect was observed for EIF2A (translation initiation) and SLC2A4 (insulin-induced glucose uptake). An E × D effect was observed for INSR due to upregulation in CON cows during HS versus TN cows fed CON or RPM. There was an E × D effect for CBS, with lower activity in RPM versus CON cows during HS. The CON cows tended to have greater CBS during HS versus TN. An E × D effect was observed for methionine adenosyltransferase, with lower activity in RPM versus CON during HS. Although activity increased in CON during HS versus TN, RPM cows tended to have greater activity during TN. Neutrophil and monocyte oxidative burst and monocyte phagocytosis decreased with HS. An (E × D) effect was observed for whole-blood mRNA abundance of CBS, SOD1 and CSAD; RPM led to upregulation during TN versus HS. Regardless of diet, CDO1, CTH, and SOD1 decreased with HS. Although HS increased hepatic HSP70 and seemed to alter antioxidant signaling, feeding RPM may help cows maintain homeostasis in mTOR, insulin signaling, and 1-carbon metabolism. Feeding RPM also may help maintain whole-blood antioxidant response during HS, which is an important aspect of innate immune function.
Collapse
Affiliation(s)
- D N Coleman
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - P Totakul
- Tropical Feed Resources Research and Development Center, Department of Animal Sciences, Khon Kaen University, Khon Kaen, Thailand 40002
| | - N Onjai-Uea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 3000, Thailand
| | - A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - Q Jiang
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - M Vailati-Riboni
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - R T Pate
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | | | - P Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 3000, Thailand
| | - M Wanapat
- Tropical Feed Resources Research and Development Center, Department of Animal Sciences, Khon Kaen University, Khon Kaen, Thailand 40002
| | - F C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
9
|
Wang H, Hao W, Yang L, Li T, Zhao C, Yan P, Wei S. Procyanidin B2 Alleviates Heat-Induced Oxidative Stress through the Nrf2 Pathway in Bovine Mammary Epithelial Cells. Int J Mol Sci 2022; 23:ijms23147769. [PMID: 35887117 PMCID: PMC9316217 DOI: 10.3390/ijms23147769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate the protective effects and potential molecular mechanisms of procyanidin B2 (PB2) in MAC-T (mammary alveolar cells-large T antigen) cells during heat stress (HS). The MAC-T cells were divided into three treatment groups: control (37 °C), HS (42 °C), and PB2 + HS (42 °C). Compared with MAC-T cells that were consistently cultured at 37 °C, acute HS treatment remarkably decreased cell viability, reduced activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC), and elevated intracellular levels of malondialdehyde (MDA) and reactive oxygen species (ROS). Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) was activated and translocated to the nucleus, in accompaniment with upregulation of Nrf2, heme oxygenase 1 (HO-1), thioredoxin reductase 1 (Txnrd1), and heat shock protein 70 (HSP70). In parallel, both mRNA transcript and actual protein secretion of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), were increased by heat stress. Pretreatment of MAC-T cells with 0~25 μM PB2 alleviated the decline of cell viability by HS in a dose-dependent fashion and protected cells against HS-induced oxidative stress, as evidenced by significantly improved CAT, SOD, and T-AOC activity, as well as with decreased MDA and ROS generation. Furthermore, PB2 further activated the Nrf2 signaling pathway and reversed the inflammatory response induced by HS. Silencing of Nrf2 by si-Nrf2 transfection not only exacerbated HS-induced cell death and provoked oxidative stress and the inflammatory response, but also greatly abolished the cytoprotective effects under HS of PB2. In summary, PB2 protected MAC-T cells against HS-induced cell death, oxidative stress, and inflammatory response, partially by operating at the Nrf2 signal pathway.
Collapse
|
10
|
Coleman DN, Vailati-Riboni M, Pate RT, Aboragah A, Luchini D, Cardoso FC, Loor JJ. Increased Supply of Methionine During a Heat-Stress Challenge in Lactating Holstein Cows Alters Mammary Tissue mTOR Signaling and its Response to Lipopolysaccharide. J Anim Sci 2022; 100:6585298. [PMID: 35553680 PMCID: PMC9387603 DOI: 10.1093/jas/skac175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The first objective was to investigate the effects of feeding rumen-protected methionine (RPM) during a heat stress (HS) challenge on abundance and phosphorylation of mechanistic target of rapamycin (mTOR)-related signaling proteins in mammary gland. The second objective was to investigate how HS and RPM may modulate the response of mammary gland explants to lipopolysaccharide (LPS) stimulation. Thirty-two multiparous, lactating Holstein cows (184 ± 59 DIM) were randomly assigned to 1 of 2 environmental treatment groups, and 1 of 2 dietary treatments [TMR with RPM (Smartamine M; Adisseo Inc.; 0.105% DM as top dress) or TMR without RPM (CON)] in a crossover design. There were 2 periods with 2 phases per period. In phase 1 (9 d), all cows were in thermoneutral conditions (TN) and fed ad libitum. During phase 2 (9 d), group 1 (n = 16) was exposed to HS using electric heat blankets while group 2 (n = 16) remained in TN but were pair-fed to HS counterparts to control for DMI decreases associated with HS. After a washout period (14 d), the study was repeated (period 2). Environmental treatments were inverted in period 2 (sequence), while dietary treatments remained the same. Mammary tissue was harvested via biopsy at the end of both periods. Tissue was used for protein abundance analysis and also for incubation with 0 or 3 μg/mL of LPS for 2 h and subsequently used for mRNA abundance. Data were analyzed using PROC MIXED in SAS. Analysis of protein abundance data included the effects of diet, environment and their interaction, and period and sequence to account for the crossover design. The explant data model also included the effect of LPS and its interaction with environment and diet. Abundance of phosphorylated mTOR and ratio of phosphorylated eukaryotic translation elongation factor 2 (p-EEF2) to total EEF2 in non-challenged tissue was greater with RPM supplementation (P = 0.04 for both) and in both cases tended to be greater with HS (P = 0.08 for both). Regardless of RPM supplementation, incubation with LPS upregulated mRNA abundance of IL8, IL6, IL1B, CXCL2, TNF, NFKB1 and TLR2 (P < 0.05). An environment × LPS interaction was observed for NFKB1 (P = 0.03); abundance was greater in LPS-treated explants from non-HS compared with HS cows. Abundance of CXCL2, NFKB1, NOS2, NOS1, and SOD2 was lower with HS (P < 0.05). While LPS did not alter abundance of mRNA associated with the antioxidant transcription factor NFE2L2 signaling (P = 0.59), explants from HS cows had lower abundance of NFE2L2 (P < 0.001) and CUL3 (P = 0.04). Overall, RPM supplementation may alter mTOR activation. Additionally, while HS reduced explant immune and antioxidant responses, RPM did not attenuate the inflammatory response induced by LPS in vitro.
Collapse
Affiliation(s)
- D N Coleman
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA
| | - M Vailati-Riboni
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA
| | - R T Pate
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA
| | - A Aboragah
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA
| | | | - F C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801 USA.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801 USA
| |
Collapse
|
11
|
Field SL, Ouellet V, Sheftel CM, Hernandez LL, Laporta J. In vitro effects of 5-Hydroxy-L-tryptophan supplementation on primary bovine mammary epithelial cell gene expression under thermoneutral or heat shock conditions. Sci Rep 2022; 12:3820. [PMID: 35264606 PMCID: PMC8907223 DOI: 10.1038/s41598-022-07682-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT) is an autocrine-paracrine molecule within the mammary gland regulating homeostasis during lactation and triggering involution after milk stasis. Exposure of dairy cows to hyperthermia during the dry period alters mammary gland involution processes leading to reduced subsequent yields. Herein, primary bovine mammary epithelial cells (pBMEC) under thermoneutral (TN, 37 °C) or heat shock (HS, 41.5 °C) conditions were cultured with either 0, 50, 200, or 500 μM 5-Hydroxy-L-tryptophan (5-HTP; 5-HT precursor) for 8-, 12- or 24-h. Expression of 95 genes involved in 5-HT signaling, involution and tight junction regulation were evaluated using a Multiplex RT-qPCR BioMark Dynamic Array Circuit. Different sets of genes were impacted by 5-HTP or temperature, or by their interaction. All 5-HT signaling genes were downregulated after 8-h of HS and then upregulated after 12-h, relative to TN. After 24-h, apoptosis related gene, FASLG, was upregulated by all doses except TN-200 μM 5-HTP, and cell survival gene, FOXO3, was upregulated by HS-50, 200 and 500 μM 5-HTP, suggesting 5-HTP involvement in cell turnover under HS. Supplementing 5-HTP at various concentrations in vitro to pBMEC modulates the expression of genes that might aid in promoting epithelial cell turn-over during involution in dairy cattle under hyperthermia.
Collapse
Affiliation(s)
- Sena L Field
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Véronique Ouellet
- Department of Animal Sciences, Université Laval, Québec City, QC, Canada
| | - Celeste M Sheftel
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
12
|
Pate RT, Luchini D, Cant JP, Baumgard LH, Cardoso FC. Immune and metabolic effects of rumen-protected methionine during a heat stress challenge in lactating Holstein cows. J Anim Sci 2021; 99:skab323. [PMID: 34741611 PMCID: PMC8648293 DOI: 10.1093/jas/skab323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Multiparous, lactating Holstein cows (n = 32) were randomly assigned to one of two dietary treatments [TMR with rumen-protected Met (RPM) or TMR without RPM (CON)], and within each dietary treatment group cows were randomly assigned to one of two environmental treatment groups in a split-plot crossover design. In phase 1 (9 d), all cows were fed ad libitum and in thermoneutral conditions (TN). In phase 2 (9 d), group 1 (n = 16) was exposed to a heat stress (HS) challenge (HSC). Group 2 cows (n = 16) were pair-fed (PFTN) to HSC counterparts and remained in TN. After a 21-d washout period, the study was repeated (period 2) and the environmental treatments were inverted relative to treatments from phase 2 of period 1, while dietary treatments remained the same for each cow. During phase 1, cows in RPM had greater plasma Met concentration compared with cows in CON (59 and 30 µM, respectively; P < 0.001). Cows in PFTN had a greater decrease (P < 0.05) in plasma insulin than cows in HSC at 4 h (-2.7 µIU/mL vs. -0.7 µIU/mL) and 8 h (-7.7 µIU/mL vs. -0.4 µIU/mL) during phase 2. Compared with cows in PFTN, cows in HSC had an increase (P < 0.05) in plasma serum amyloid A (-59 µg/mL vs. +58 µg/mL), serum haptoglobin (-3 µg/mL vs. +33 µg/mL), plasma lipopolysaccharide binding protein (-0.27 and +0.11 µg/mL), and plasma interleukin-1β (-1.9 and +3.9 pg/mL) during phase 2. In conclusion, HSC elicited immunometabolic alterations; however, there were limited effects of RPM on cows in HSC.
Collapse
Affiliation(s)
- Russell T Pate
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - John P Cant
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Felipe C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Zhou J, Yue S, Xue B, Wang Z, Wang L, Peng Q, Xue B. Enhanced supply of methionine regulates protein synthesis in bovine mammary epithelial cells under hyperthermia condition. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1126-1141. [PMID: 34796352 PMCID: PMC8564303 DOI: 10.5187/jast.2021.e93] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023]
Abstract
Recent evidence has shown that methionine (Met) supplementation can improve milk
protein synthesis under hyperthermia (which reduces milk production). To explore
the mechanism by which milk protein synthesis is affected by Met supplementation
under hyperthermia, mammary alveolar (MAC-T) cells were incubated at a
hyperthermic temperature of 42°C for 6 h in media with different
concentrations of Met. While the control group (CON) contained a normal amino
acid concentration profile (60 μg/mL of Met), the three treatment groups
were supplemented with Met at concentrations of 10 μg/mL (MET70, 70
μg/mL of Met), 20 μg/mL (MET80, 80 μg/mL of Met), and 30
μg/mL (MET90,90 μg/mL of Met). Our results show that additional
Met supplementation increases the mRNA and protein levels of BCL2 (B-cell
lymphoma-2, an anti-apoptosis agent), and decreases the mRNA and protein levels
of BAX (Bcl-2-associated X protein, a pro-apoptosis agent), especially at an
additional supplementary concentration of 20 μg/mL (group Met80).
Supplementation with higher concentrations of Met decreased the mRNA levels of
Caspase-3 and
Caspase-9, and increased protein levels of
heat shock protein (HSP70). The total protein levels of the mechanistic target
of rapamycin (mTOR) and the mTOR signalling pathway-related proteins, AKT,
ribosomal protein S6 kinase B1 (RPS6KB1), and ribosomal protein S6 (RPS6),
increased with increasing Met supplementation, and peaked at 80 μg/mL Met
(group Met80). In addition, we also found that additional Met supplementation
upregulated the gene expression of αS1-casein (CSN1S1),
β-casein (CSN2), and the amino acid transporter genes
SLC38A2, SLC38A3 which are known to be
mTOR targets. Additional Met supplementation, however, had no effect on the gene
expression of κ-casein (CSN3) and solute carrier family
34 member 2 (SLC34A2). Our results suggest that additional Met
supplementation with 20 μg/mL may promote the synthesis of milk proteins
in bovine mammary epithelial cells under hyperthermia by inhibiting apoptosis,
activating the AKT-mTOR-RPS6KB1 signalling pathway, and regulating the entry of
amino acids into these cells.
Collapse
Affiliation(s)
- Jia Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuangming Yue
- Department of Bioengineering, Sichuan Water Conservancy Vocation College, Chengdu 611845, China
| | - Benchu Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanhui Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bai Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Effect of low-dose sodium nitrite treatment on the endogenous antioxidant capacity of yak meat during wet curing: Pros and cons. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Effect of incubation temperature on lactogenic function of goat milk-derived mammary epithelial cells. In Vitro Cell Dev Biol Anim 2020; 56:842-846. [PMID: 33197037 DOI: 10.1007/s11626-020-00529-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
In general, goat mammary epithelial cells (MECs) are cultured in vitro under 37 °C. We demonstrated previously that goat MECs differentiate under 37 °C although their body temperature is approximately 39 °C. This study aimed to investigate the influence of 39 °C on lactogenic differentiation of goat milk-derived MECs. The results revealed that HSP70 gene was significantly elevated at 1 h after an exposure to 39 °C but declined at 48 h thereafter. Oxidative stress status was not significantly affected by 39 °C. Expressions of CSN2, β-GALT1, α-LA, and Akt genes tended to increase after the differentiation under 39 °C. Secretion of lactose under 39 °C was not significantly lower than 37 °C. In conclusion, incubation temperature at 39 °C does not dramatically affect lactogenic function of goat milk-derived MECs.
Collapse
|
16
|
Dai H, Coleman DN, Lopes MG, Hu L, Martinez-Cortés I, Parys C, Shen X, Loor JJ. Alterations in immune and antioxidant gene networks by gamma-d-glutamyl-meso-diaminopimelic acid in bovine mammary epithelial cells are attenuated by in vitro supply of methionine and arginine. J Dairy Sci 2020; 104:776-785. [PMID: 33189269 DOI: 10.3168/jds.2020-19307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor 1 (NOD1) is a cytosolic pattern recognition receptor with a crucial role in the innate immune response of cells triggered by the presence of compounds such as gamma-d-glutamyl-meso-diaminopimelic acid (iE-DAP) present in the peptidoglycan of all gram-negative and certain gram-positive bacteria. Methionine (Met) and arginine (Arg) are functional AA with immunomodulatory properties. In the present study, we aimed to assess the effect of increased Met and Arg supply on mRNA abundance of genes associated with innate immune response, antioxidant function, and AA metabolism during iE-DAP challenge in bovine mammary epithelial cells (BMEC). Primary BMEC (n = 4 per treatment) were precultured in modified medium for 12 h with the following AA formulations: ideal profile of AA (control), increased Met supply (incMet), increased Arg supply (incArg), or increased supply of Met plus Arg (incMetArg). Subsequently, cells were challenged with or without iE-DAP (10 μg/mL) for 6 h. Data were analyzed as a 2 × 2 × 2 factorial using the MIXED procedure of SAS 9.4. Greater mRNA abundance of NOD1, the antioxidant enzyme SOD1, and AA transporters (SLC7A1 and SLC3A2) was observed in the incMet cells after iE-DAP stimulation. Although increased Met alone had no effect, incMetArg led to greater abundance of the inflammatory cytokine IL-6, and the antioxidant enzyme GPX1 after iE-DAP stimulation. The increased Arg alone downregulated NOD1 after iE-DAP stimulation, coupled with a downregulation in the AA transporters mRNA abundance (SLC7A1, SLC7A5, SLC3A2, and SLC38A9), and upregulation in GSS and KEAP1 mRNA abundance. Overall, the data indicated that increased supply of both Met and Arg in the culture medium were more effective in modulating the innate immune response and antioxidant capacity of BMEC during in vitro iE-DAP stimulation.
Collapse
Affiliation(s)
- H Dai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China; Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - L Hu
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China
| | - I Martinez-Cortés
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Agricultural and Animal Production Department, UAM-Xochimilco, Mexico City, Mexico 04960
| | - C Parys
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, 63457, Germany
| | - X Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
17
|
Lopreiato V, Vailati-Riboni M, Parys C, Fernandez C, Minuti A, Loor JJ. Methyl donor supply to heat stress-challenged polymorphonuclear leukocytes from lactating Holstein cows enhances 1-carbon metabolism, immune response, and cytoprotective gene network abundance. J Dairy Sci 2020; 103:10477-10493. [PMID: 32952025 DOI: 10.3168/jds.2020-18638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Mechanisms controlling immune function of dairy cows are dysregulated during heat stress (HS). Methyl donor supply-methionine (Met) and choline (Chol)-positively modulates innate immune function, particularly antioxidant systems of polymorphonuclear leukocytes (PMN). The objective of this study was to investigate the effect of Met and Chol supply in vitro on mRNA abundance of genes related to 1-carbon metabolism, inflammation, and immune function in short-term cultures of PMN isolated from mid-lactating Holstein cows in response to heat challenge. Blood PMN were isolated from 5 Holstein cows (153 ± 5 d postpartum, 34.63 ± 2.73 kg/d of milk production; mean ± SD). The PMN were incubated for 2 h at thermal-neutral (37°C; TN) or heat stress (42°C; HS) temperatures with 3 levels of Chol (0, 400, or 800 μg/mL) or 3 ratios of Lys:Met (Met; 3.6:1, 2.9:1, or 2.4:1). Supernatant concentrations of IL-1β, IL-6, and tumor necrosis factor-α were measured via bovine-specific ELISA. Fold-changes in mRNA abundance were calculated separately for Chol and Met treatments to obtain the fold-change response at 42°C (HS) relative to 37°C (TN). Data were subjected to ANOVA using PROC MIXED in SAS (SAS Institute Inc., Cary, NC). Orthogonal contrasts were used to determine the linear or quadratic effect of Met and Chol for mRNA fold-change and supernatant cytokine concentrations. Compared with PMN receiving 0 μg of Chol/mL, heat-stressed PMN supplemented with Chol at 400 or 800 μg/mL had greater fold-change in abundance of CBS, CSAD, GSS, GSR, and GPX1. Among genes associated with inflammation and immune function, fold-change in abundance of TLR2, TLR4, IRAK1, IL1B, and IL10 increased with 400 and 800 μg of Chol/mL compared with PMN receiving 0 μg of Chol/mL. Fold-change in abundance of SAHH decreased linearly at increasing levels of Met supply. A linear effect was detected for MPO, NFKB1, and SOD1 due to greater fold-change in abundance when Met was increased to reach Lys:Met ratios of 2.9:1 and 2.4:1. Although increasing Chol supply upregulated BAX, BCL2, and HSP70, increased Met supply only upregulated BAX. Under HS conditions, enhancing PMN supply of Chol to 400 μg/mL effectively increased fold-change in abundance of genes involved in antioxidant production (conferring cellular processes protection from free radicals and reactive oxygen species), inflammatory signaling, and innate immunity. Although similar outcomes were obtained with Met supply at Lys:Met ratios of 2.9:1 and 2.4:1, the response was less pronounced. Both Chol and Met supply enhanced the cytoprotective characteristics of PMN through upregulation of heat shock proteins. Overall, the modulatory effects detected in the present experiment highlight an opportunity to use Met and particularly Chol supplementation during thermal stress.
Collapse
Affiliation(s)
- V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang 63457, Germany
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - A Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
18
|
Yue S, Wang Z, Wang L, Peng Q, Xue B. Transcriptome Functional Analysis of Mammary Gland of Cows in Heat Stress and Thermoneutral Condition. Animals (Basel) 2020; 10:ani10061015. [PMID: 32532099 PMCID: PMC7341491 DOI: 10.3390/ani10061015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The current study employed RNA-seq technology to analyze the impact of heat stress on the whole transcript sequencing profile in the mammary glands of lactating Holstein dairy cows. In the findings of the current study, heat stress downregulated the expression of casein genes, which resulted in a decrease in milk production. Moreover, heat stress upregulated the gene expression of HSPA1A and HSP90B1, while it downregulated the expression of immune response-related genes that resulted in a reduction in milk yield. Furthermore, there was an increased synthesis of heat shock proteins and unfolded proteins that could reduce the availability of circulating amino acids for milk protein synthesis. The findings of the current experiment may help to explore the impact of heat stress on immune function, milk production, and milk protein synthesis in cows. Abstract Heat stress (HS) exerts significant effects on the production of dairy animals through impairing health and biological functions. However, the molecular mechanisms related to the effect of HS on dairy cow milk production are still largely unknown. The present study employed an RNA-sequencing approach to explore the molecular mechanisms associated with a decline in milk production by the functional analysis of differentially expressed genes (DEGs) in mammary glands of cows exposed to HS and non-heat-stressed cows. The results of the current study reveal that HS increases the rectal temperature and respiratory rate. Cows under HS result in decreased bodyweight, dry matter intake (DMI), and milk yield. In the current study, a total of 213 genes in experimental cow mammary glands was identified as being differentially expressed by DEGs analysis. Among identified genes, 89 were upregulated, and 124 were downregulated. Gene Ontology functional analysis found that biological processes, such as immune response, chaperone-dependent refolding of protein, and heat shock protein binding activity, were notably affected by HS. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis found that almost all of the top-affected pathways were related to immune response. Under HS, the expression of heat shock protein 90 kDa beta I (HSP90B1) and heat shock 70 kDa protein 1A was upregulated, while the expression of bovine lymphocyte antigen (BoLA) and histocompatibility complex, class II, DRB3 (BoLA-DRB3) was downregulated. We further explored the effects of HS on lactation-related genes and pathways and found that HS significantly downregulated the casein genes. Furthermore, HS increased the expression of phosphorylation of mammalian target of rapamycin, cytosolic arginine sensor for mTORC1 subunit 2 (CASTOR2), and cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1), but decreased the phosphorylation of Janus kinase-2, a signal transducer and activator of transcription factor-5. Based on the findings of DMI, milk yield, casein gene expression, and the genes and pathways identified by functional annotation analysis, it is concluded that HS adversely affects the immune function of dairy cows. These results will be beneficial to understand the underlying mechanism of reduced milk yield in HS cows.
Collapse
|
19
|
Lopreiato V, Vailati-Riboni M, Bellingeri A, Khan I, Farina G, Parys C, Loor J. Inflammation and oxidative stress transcription profiles due to in vitro supply of methionine with or without choline in unstimulated blood polymorphonuclear leukocytes from lactating Holstein cows. J Dairy Sci 2019; 102:10395-10410. [DOI: 10.3168/jds.2019-16413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
|
20
|
Salama AAK, Duque M, Wang L, Shahzad K, Olivera M, Loor JJ. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. J Dairy Sci 2019; 102:2469-2480. [PMID: 30639019 DOI: 10.3168/jds.2018-15219] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Heat stress (HS) causes reductions in milk production, but it is unclear whether this effect is due to reduced number or functional capacity (or both) of mammary cells. Methionine supplementation improves milk protein, whereas Arg is taken up in excess by mammary cells to produce energy and nonessential AA that can be incorporated into milk protein. To evaluate molecular mechanisms by which mammary functional capacity is affected by HS and Met or Arg, mammary alveolar (MAC-T) cells were incubated at thermal-neutral (37°C) or HS (42°C) temperatures. Treatments were optimal AA profiles (control; Lys:Met = 2.9:1.0; Lys:Arg = 2.1:1.0), control plus Met (Lys:Met = 2.5:1.0), or control plus Arg (Lys:Arg = 1.0:1.0). After incubation for 6 h, cells were harvested and RNA and protein were extracted for quantitative real-time PCR and Western blotting. Protein abundance of mechanistic target of rapamycin (MTOR), eukaryotic initiation factor 2a, serine-threonine protein kinase (AKT), 4E binding protein 1 (EIF4EBP1), and phosphorylated EIF4EBP1 was lower during HS. The lower phosphorylated EIF4EBP1 with HS would diminish translation initiation and reduce protein synthesis. Both Met and Arg had no effect on MTOR proteins, but the phosphorylated EIF4EBP1 decreased by AA, especially Arg. Additionally, Met but not Arg decreased the abundance of phosphorylated eukaryotic elongation factor 2, which could be positive for protein synthesis. Although HS upregulated the heat shock protein HSPA1A, the apoptotic gene BAX, and the translation inhibitor EIF4EBP1, the mRNA abundance of PPARG, FASN, ACACA (lipogenesis), and BCL2L1 (antiapoptotic) decreased. Greater supply of Met or Arg reversed most of the effects of HS occurring at the mRNA level and upregulated the abundance of HSPA1A. In addition, compared with the control, supply of Met or Arg upregulated genes related to transcription and translation (MAPK1, MTOR, SREBF1, RPS6KB1, JAK2), insulin signaling (AKT2, IRS1), AA transport (SLC1A5, SLC7A1), and cell proliferation (MKI67). Upregulation of microRNA related to cell growth arrest and apoptosis (miR-34a, miR-92a, miR-99, and miR-184) and oxidative stress (miR-141 and miR-200a) coupled with downregulation of fat synthesis-related microRNA (miR-27ab and miR-221) were detected with HS. Results suggest that HS has a direct negative effect on synthesis of protein and fat, mediated in part by coordinated changes in mRNA, microRNA, and protein abundance of key networks. The positive responses with Met and Arg raise the possibility that supplementation with these AA during HS might have a positive effect on mammary metabolism.
Collapse
Affiliation(s)
- A A K Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - M Duque
- Grupo de Investigación Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Carrera 75 # 65-87, Medellín, Colombia
| | - L Wang
- Department of Animal Science, Southwest University, Rongchang, Chongqing 402460, China
| | - K Shahzad
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - M Olivera
- Grupo de Investigación Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Carrera 75 # 65-87, Medellín, Colombia
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
21
|
Han L, Batistel F, Ma Y, Alharthi ASM, Parys C, Loor JJ. Methionine supply alters mammary gland antioxidant gene networks via phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) protein in dairy cows during the periparturient period. J Dairy Sci 2018; 101:8505-8512. [PMID: 29908802 DOI: 10.3168/jds.2017-14206] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/03/2018] [Indexed: 11/19/2022]
Abstract
The periparturient period is the most critical period during the lactation cycle of dairy cows and is characterized by increased oxidative stress status. The objective of this experiment was to evaluate the effect of supplementing rumen-protected methionine on nuclear factor erythroid 2-like 2 (NFE2L2, formerly NRF2) protein and target gene expression in the mammary gland during the early postpartal period. Multiparous Holstein cows were used in a block design experiment with 30 cows per treatment. Treatments consisting of a basal control diet (control) or the basal diet plus rumen-protected methionine (methionine) were fed from d -28 to 60 relative to parturition. Mammary tissue biopsies were harvested on d 21 postpartum from 5 cows per treatment. Compared with control, methionine increased dry matter intake, milk yield, and milk protein content. Among plasma parameters measured, methionine led to greater methionine and lower reactive oxygen metabolites. Compared with control, methionine supply resulted in greater mRNA abundance of the NFE2L2 target genes glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), malic enzyme 1 (ME1), ferrochelatase (FECH), ferritin heavy chain 1 (FTH1), and NAD(P) H quinone dehydrogenase 1 (NQO1) in the mammary tissue. In addition, methionine upregulated the mRNA abundance of NFE2L2, NFKB1, MAPK14 and downregulated KEAP1. The ratio of phosphorylated NFE2L2 to total NFE2L2 protein, and total heme oxygenase 1 (HMOX1) protein were markedly greater in response to methionine supply. In contrast, total protein abundance of Kelch-like ECH-associated protein 1 (KEAP1), which sequesters NFE2L2 in the cytosol and reduces its activity, was lower with methionine. Besides the consistent positive effect of methionine supply on systemic inflammation and oxidative stress status, the present data indicate a positive effect also on antioxidant mechanisms within the mammary gland, which are regulated, at least in part, via phosphorylation of NFE2L2 and its target genes. The exact mechanisms for these responses merit further study.
Collapse
Affiliation(s)
- L Han
- Department of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - F Batistel
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Y Ma
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, P. R. China
| | - A S M Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition and Care GmbH, Hanau-Wolfgang, 63457, Germany
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
22
|
Moura CS, Lollo PCB, Morato PN, Amaya-Farfan J. Dietary Nutrients and Bioactive Substances Modulate Heat Shock Protein (HSP) Expression: A Review. Nutrients 2018; 10:nu10060683. [PMID: 29843396 PMCID: PMC6024325 DOI: 10.3390/nu10060683] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/06/2023] Open
Abstract
Interest in the heat shock proteins (HSPs), as a natural physiological toolkit of living organisms, has ranged from their chaperone function in nascent proteins to the remedial role following cell stress. As part of the defence system, HSPs guarantee cell tolerance against a variety of stressors, including exercise, oxidative stress, hyper and hypothermia, hyper and hypoxia and improper diets. For the past couple of decades, research on functional foods has revealed a number of substances likely to trigger cell protection through mechanisms that involve the induction of HSP expression. This review will summarize the occurrence of the most easily inducible HSPs and describe the effects of dietary proteins, peptides, amino acids, probiotics, high-fat diets and other food-derived substances reported to induce HSP response in animals and humans studies. Future research may clarify the mechanisms and explore the usefulness of this natural alternative of defense and the modulating mechanism of each substance.
Collapse
Affiliation(s)
- Carolina Soares Moura
- Protein Resources Laboratory, Food and Nutrition Department, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862 São Paulo, Brazil.
| | | | - Priscila Neder Morato
- School of Health Sciences, Federal University of Grande Dourados, Dourados 79825-070, Mato Grosso do Sul, Brazil.
| | - Jaime Amaya-Farfan
- Protein Resources Laboratory, Food and Nutrition Department, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862 São Paulo, Brazil.
| |
Collapse
|
23
|
Zhang J, Ye J, Yuan C, Fu Q, Zhang F, Zhu X, Wang L, Gao P, Shu G, Jiang Q, Wang S. Exogenous H 2 S exerts biphasic effects on porcine mammary epithelial cells proliferation through PI3K/Akt-mTOR signaling pathway. J Cell Physiol 2018; 233:7071-7081. [PMID: 29744857 DOI: 10.1002/jcp.26630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the effects of exogenous H2 S on the proliferation of porcine mammary gland epithelial cells (PMECs) and explore the underlying mechanisms. We found that exposure of PMECs to NaHS, at concentrations ranging from 10 to 200 µM, stimulated cell proliferation. However, high concentration of NaHS (600 µM) inhibited PMECs proliferation. Accordingly, 10 µM NaHS significantly increased the percentage of cells undergoing DNA replication, elevated the mRNA and/or protein expression of Cyclin A2, Cyclin D1/3, Cyclin E2 and PCNA, and decreased p21 mRNA expression. In contrast, 600 µM NaHS elicited the opposite effects to that of 10 µM NaHS. In addition, PI3 K/Akt and mTOR signaling pathways were activated or inhibited in response to 10 or 600 µM NaHS, respectively. Furthermore, the promotion of PMECs proliferation, the change of proliferative genes expression, and the activation of mTOR signaling pathway induced by 10 µM NaHS were effectively blocked by PI3 K inhibitor Wortmannin. Similarly, inhibition of mTOR with Rapamycin totally abolished the 10 µM NaHS-induced stimulation of PMECs proliferation and alteration of proliferative genes expression, with no influence on PI3 K/Akt signaling pathway. Moreover, constitutive activation of Akt pathway via transfection of Akt-CA completely eliminated the inhibition of PMECs proliferation and mTOR signaling pathway, and the change of proliferative genes expression induced by 600 µM NaHS. In conclusion, our findings provided evidence that exogenous H2 S supplied by NaHS exerted biphasic effects on PMECs proliferation, with stimulation at lower doses and suppression at high dose, through the intracellular PI3 K/Akt-mTOR signaling pathway.
Collapse
Affiliation(s)
- Jing Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Jiayi Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Cong Yuan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Qin Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, P. R. China.,National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
24
|
Sorby KL, Green MP, Dempster TD, Jessop TS. Can physiological engineering/programming increase multi-generational thermal tolerance to extreme temperature events? J Exp Biol 2018; 221:jeb.174672. [DOI: 10.1242/jeb.174672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/22/2018] [Indexed: 02/02/2023]
Abstract
Organisms increasingly encounter higher frequencies of extreme weather events as a consequence of global climate change. Currently, few strategies are available to mitigate climate change effects on animals arising from acute extreme high temperature events. We tested the capacity of physiological engineering to influence the intra- and multi-generational upper thermal tolerance capacity of a model organism Artemia, subjected to extreme high temperatures. Enhancement of specific physiological regulators during development could affect thermal tolerances or life-history attributes affecting subsequent fitness. Using experimental Artemia populations we exposed F0 individuals to one of four treatments; heat hardening (28°C to 36°C, 1°C per 10 minutes), heat hardening plus serotonin (0.056 µg ml−1), heat hardening plus methionine (0.79 mg ml−1), and a control treatment. Regulator concentrations were based on previous literature. Serotonin may promote thermotolerance, acting upon metabolism and life-history. Methionine acts as a methylation agent across generations. For all groups, measurements were collected for three performance traits of individual thermal tolerance (upper sublethal thermal limit, lethal limit, and dysregulation range) over two generations. Results showed no treatment increased upper thermal limit during acute thermal stress, although serotonin-treated and methionine-treated individuals outperformed controls across multiple thermal performance traits. Additionally, some effects were evident across generations. Together these results suggest phenotypic engineering provides complex outcomes; and if implemented with heat hardening can further influence performance in multiple thermal tolerance traits, within and across generations. Potentially, such techniques could be up-scaled to provide resilience and stability in populations susceptible to extreme temperature events.
Collapse
Affiliation(s)
- Kris L. Sorby
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Mark P. Green
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Tim D. Dempster
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Tim S. Jessop
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
25
|
Guo L, Li R, Zhang YF, Qin TY, Li QS, Li XX, Qi ZL. A comparison of two sources of methionine supplemented at different levels on heat shock protein 70 expression and oxidative stress product of Peking ducks subjected to heat stress. J Anim Physiol Anim Nutr (Berl) 2017; 102:e147-e154. [PMID: 28503893 DOI: 10.1111/jpn.12722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to examine the effects of different sources and levels of methionine (Met) on Heat shock proteins HSP70 expression and protein carbonylation in liver, HSP70 expression and malondialdehyde (MDA) concentration in intestine under heat stress conditions during summer. A total of 720 (4 days old) Peking ducks were placed 20 per pen into six replicates for each of the six treatments with a 2 × 3 factorial arrangement, such that two sources of Met (DL-methionine [DLM] and DL-2-hydroxy-4-methylthiobutyrate [HMTBA] were supplemented at three different levels (0.05%, 0.20%, or 0.35% on as-fed basis respectively). The experiment was divided into a starter (day 4-16) and a grower (day 17-35) period. Diet supplemented with 0.35% Met significantly up-regulated the HSP70 mRNA expression in duodenum, jejunum and ileum on day 16 and 35 as well as in liver on day 35 (p < .05) of ducks. HMTBA-supplemented diets increased the HSP70 mRNA expression in duodenum, jejunum, ileum and liver on day 35 (p < .01). An increased MDA concentration was detected in jejunum of birds in 0.35% DLM-supplemented treatment on day 16 (p < .05). And decreased protein carbonylation concentration was found in DLM-supplemented treatment on day 16 (p < .01). The birds fed with 0.35% Met supplemental diet displayed lower hepatic protein carbonylation on day 16 (p < .05). In conclusion, supplementation of 0.35% Met in the duck diet showed up-regulated HSP70 expression in small intestine and liver, which may provide new perspective to the mechanism of Met function. At the same time, DLM supplemented in diet may ameliorate oxidative status of liver, while HMTBA supplementation may partially improve the intestinal oxidative status of Peking ducks.
Collapse
Affiliation(s)
- L Guo
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - R Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Y F Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - T Y Qin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Q S Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - X X Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Z L Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Xiao Y, Rungruang S, Hall L, Collier J, Dunshea F, Collier R. Effects of niacin and betaine on bovine mammary and uterine cells exposed to thermal shock in vitro. J Dairy Sci 2017; 100:4025-4037. [DOI: 10.3168/jds.2016-11876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
|
27
|
Moura CS, Lollo PCB, Morato PN, Risso EM, Amaya-Farfan J. Modulatory effects of arginine, glutamine and branched-chain amino acids on heat shock proteins, immunity and antioxidant response in exercised rats. Food Funct 2017; 8:3228-3238. [DOI: 10.1039/c7fo00465f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (HSPs) are endogenous proteins whose function is to maintain the cell's tolerance to insult, including intense exercise.
Collapse
Affiliation(s)
- Carolina Soares Moura
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Pablo Christiano Barboza Lollo
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Priscila Neder Morato
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Eder Muller Risso
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| | - Jaime Amaya-Farfan
- Food and Nutrition Department
- Protein resources laboratory
- School of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
| |
Collapse
|
28
|
Jin XL, Wang K, Liu L, Liu HY, Zhao FQ, Liu JX. Nuclear factor-like factor 2-antioxidant response element signaling activation by tert-butylhydroquinone attenuates acute heat stress in bovine mammary epithelial cells. J Dairy Sci 2016; 99:9094-9103. [PMID: 27592432 DOI: 10.3168/jds.2016-11031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/16/2016] [Indexed: 12/21/2022]
Abstract
Nuclear factor (erythroid-derived 2)-like factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element (ARE) in the upstream promoter region of many antioxidative genes. The Nrf2-ARE signaling plays a key role in the cellular antioxidant-defense system, but whether Nrf2 activation has protective effects against heat shock (HS) stress in mammary epithelial cells (MEC) remains unclear. The objective of this study was to determine whether tert-butylhydroquinone (tBHQ), a well-known Nrf2 activator, could attenuate heat stress-induced cell damage in MAC-T cells of the bovine MEC line. The MAC-T cells were exposed to HS (42.5°C for 1h) followed by recovery at 37°C to mimic HS. Compared with cells that were consistently cultured at normothermia (37°C), the cell viability levels significantly decreased after HS stress. In parallel, heat stress increased the reactive oxygen species levels and induced cellular apoptosis and endoplasmic reticulum stress. The MAC-T cells that were pretreated with tBHQ (10μM) for 2h followed by HS had a reduction in the loss of cell viability. The tBHQ pretreatment significantly decreased cellular reactive oxygen species levels and stress-related marker gene expression. The tBHQ-treated MAC-T cells showed strong Nrf2-ARE signaling activation and a nuclear accumulation of Nrf2 and upregulated expression of Nrf2-ARE downstream genes. Small interfering RNA silencing of Nrf2 in HS-treated MAC-T cells almost completely abolished the cytoprotective effects by tBHQ. Overall, our results demonstrated that HS could cause cell damage in cultured bovine MEC, and that activation of Nrf2 by tBHQ could attenuate HS-induced cell damage.
Collapse
Affiliation(s)
- X L Jin
- Institute of Dairy Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, P.R. China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - K Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - L Liu
- Institute of Dairy Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, P.R. China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - H Y Liu
- Institute of Dairy Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, P.R. China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| | - F-Q Zhao
- Institute of Dairy Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, P.R. China; Laboratory of Lactation and Metabolic Physiology, Department of Animal and Veterinary Sciences, University of Vermont, Burlington 05405
| | - J X Liu
- Institute of Dairy Science, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou 310058, P.R. China; College of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
29
|
Regulation of Nutritional Metabolism in Transition Dairy Cows: Energy Homeostasis and Health in Response to Post-Ruminal Choline and Methionine. PLoS One 2016; 11:e0160659. [PMID: 27501393 PMCID: PMC4976856 DOI: 10.1371/journal.pone.0160659] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 07/23/2016] [Indexed: 12/30/2022] Open
Abstract
This study investigated the effects of rumen-protected methionine (RPM) and rumen-protected choline (RPC) on energy balance, postpartum lactation performance, antioxidant capacity and immune response in transition dairy cows. Forty-eight multiparous transition cows were matched and divided into four groups: control, 15 g/d RPC, 15 g/d RPM or 15 g/d RPC + 15 g/d RPM. Diet samples were collected daily before feeding, and blood samples were collected weekly from the jugular vein before morning feeding from 21 days prepartum to 21 days postpartum. Postpartum dry matter intake (DMI) was increased by both additives (P < 0.05), and energy balance values in supplemented cows were improved after parturition (P < 0.05). Both RPC and RPM decreased the plasma concentrations of non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P < 0.05), but increased the plasma levels of glucose, very-low-density lipoprotein (VLDL) and apolipoprotein B100 (ApoB 100, P < 0.05). The supplements improved milk production (P < 0.05), and increased (P < 0.05) or tended to increase (0.05 < P < 0.10) the contents of milk fat and protein. The post-ruminal choline and methionine elevated the blood antioxidant status, as indicated by total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) activity and the vitamin E concentration (P < 0.05), and reduced the plasma malondialdehyde (MDA) level (P < 0.05). Furthermore, RPM and RPC elevated the plasma interleukin 2 (IL-2) concentration and the CD4+/CD8+ T lymphocyte ratio in peripheral blood (P < 0.05). Alternatively, the levels of tumor necrosis factor-α (TNF-α) and IL-6 were decreased by RPM and RPC (P < 0.05). Overall, the regulatory responses of RPC and RPM were highly correlated with time and were more effective in the postpartum cows. The results demonstrated that dietary supplementation with RPC and RPM promoted energy balance by increasing postpartal DMI and regulating hepatic lipid metabolism, improved postpartum lactation performance and enhanced antioxidant capacity and immune function of transition dairy cows.
Collapse
|
30
|
Li B, Wu W, Luo H, Liu Z, Liu H, Li Q, Pan Z. Molecular characterization and epigenetic regulation of Mei1 in cattle and cattle-yak. Gene 2015; 573:50-6. [PMID: 26165450 DOI: 10.1016/j.gene.2015.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
Mei1 is required for the homologous recombination of meiosis during the mammalian spermatogenesis. However, the knowledge about bovine Mei1 (bMei1) is still limited. In the present study, we cloned and characterized the bMei1, and investigated the epigenetic regulatory mechanism of bMei1 expression in vivo and in vitro. The full length coding region of bMei1 was 3819bp, which encoded a polypeptide of 1272 amino acids. Real-time PCR showed that the mRNA expression level of bMei1 in the testis of cattle-yak with meiotic arrest and male infertility was significantly decreased as compared with cattle (P<0.01). Conversely, the methylation levels of bMei1 promoter and gene body in the testis of cattle-yak were significantly increased. Additionally, the expression level of bMei1 in bovine mammary epithelial cells (BMECs) was activated by treatment with the methyltransferase inhibitor 5-aza-2' deoxycytidine (5-Aza-CdR). Our data suggest that bMei1 may play an important role in the meiosis of spermatogenesis and may be involved in cattle-yak male sterility, and its transcription was regulated by DNA methylation.
Collapse
Affiliation(s)
- Bojiang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zequn Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Li L, Sun Y, Wu J, Li X, Luo M, Wang G. The global effect of heat on gene expression in cultured bovine mammary epithelial cells. Cell Stress Chaperones 2015; 20:381-9. [PMID: 25536930 PMCID: PMC4326376 DOI: 10.1007/s12192-014-0559-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022] Open
Abstract
Heat stress (HS) in hot climates is a major cause that strongly negatively affects milk yield in dairy cattle, leading to immeasurable economic loss. The heat stress response of bovine mammary epithelial cells (BMECs) is one component of the acute systemic response to HS. Gene networks of BMECs respond to environmental heat loads with both intra- and extracellular signals that coordinate cellular and whole-animal metabolism. Our experimental objective was to characterize the direct effects of heat stress on the cultured bovine mammary epithelial cells by microarray analyses. The data identified 2716 differentially expressed genes in 43,000 transcripts which were changed significantly between heat-stressed and normal bovine mammary epithelial cells (fold change ≥2, P ≤ 0.001). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these differentially expressed genes are involved in different pathways that regulate cytoskeleton, cell cycle, and stress response processes. Our study provides an overview of gene expression profile and the interaction between gene expression and heat stress, which will lead to further understanding of the potential effects of heat stress on bovine mammary glands.
Collapse
Affiliation(s)
- Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yu Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jie Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xiaojuan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Man Luo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|