1
|
Sun M, Li Q, Zou Z, Liu J, Gu Z, Li L. The mechanisms behind heatstroke-induced intestinal damage. Cell Death Discov 2024; 10:455. [PMID: 39468029 PMCID: PMC11519599 DOI: 10.1038/s41420-024-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
With the frequent occurrence of heatwaves, heatstroke (HS) is expected to become one of the main causes of global death. Being a multi-organized disease, HS can result in circulatory disturbance and systemic inflammatory response, with the gastrointestinal tract being one of the primary organs affected. Intestinal damage plays an initiating and promoting role in HS. Multiple pathways result in damage to the integrity of the intestinal epithelial barrier due to heat stress and hypoxia brought on by blood distribution. This usually leads to intestinal leakage as well as the infiltration and metastasis of toxins and pathogenic bacteria in the intestinal cavity, which will eventually cause inflammation in the whole body. A large number of studies have shown that intestinal damage after HS involves the body's stress response, disruption of oxidative balance, disorder of tight junction proteins, massive cell death, and microbial imbalance. Based on these damage mechanisms, protecting the intestinal barrier and regulating the body's inflammatory and immune responses are effective treatment strategies. To better understand the pathophysiology of this complex process, this review aims to outline the potential processes and possible therapeutic strategies for intestinal damage after HS in recent years.
Collapse
Affiliation(s)
- Minshu Sun
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Li
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhimin Zou
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Liu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengtao Gu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Li
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Kirby NV, Meade RD, McCormick JJ, King KE, Notley SR, Kenny GP. Brain-derived neurotrophic factor in older adults exposed to simulated indoor overheating. Eur J Appl Physiol 2024:10.1007/s00421-024-05623-y. [PMID: 39417862 DOI: 10.1007/s00421-024-05623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) is a neuroprotective growth factor that increases in young adults during short, intense bouts of passive heat stress. However, this may not reflect the response in heat-vulnerable populations exposed to air temperatures more consistent with indoor overheating during hot weather and heatwaves, especially as the BDNF response to acute stressors may diminish with increasing age. We therefore evaluated the ambient and body temperature-dependent responses of BDNF in older adults during daylong passive heating. METHODS Sixteen older adults (6 females; aged 66-78 years) completed 8-h exposure to four randomized ambient conditions simulating those experienced indoors during hot weather and heatwaves in continental climates: 22 °C (air-conditioning; control), 26 °C (health-agency-recommended indoor temperature limit), 31 °C, and 36 °C (non-airconditioned home); all 45% relative humidity. To further investigate upstream mechanisms of BDNF regulation during thermal strain, we also explored associations between BDNF and circulating heat shock protein 70 (HSP70; taken as an indicator of the heat shock response). RESULTS Circulating BDNF was elevated by ~ 28% (1139 [95%CI: 166, 2112] pg/mL) at end-exposure in the 36 °C compared to the 22 °C control condition (P = 0.026; 26 °C-and 31 °C-22 °C differences: P ≥ 0.090), increasing 90 [22, 158] pg/mL per 1 °C rise in ambient temperature (linear trend: P = 0.011). BDNF was also positively correlated with mean body temperatures (P = 0.013), which increased 0.12 [0.10, 0.13]°C per 1 °C rise in ambient temperature (P < 0.001). By contrast, serum HSP70 did not change across conditions (P ≥ 0.156), nor was it associated with BDNF (P = 0.376). CONCLUSION Our findings demonstrate a progressive increase in circulating BDNF during indoor overheating in older adults.
Collapse
Affiliation(s)
- Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada.
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Du L, Fan X, Yang Y, Wu S, Liu Y. Quercetin Ameliorates Cognitive Impairment in Depression by Targeting HSP90 to Inhibit NLRP3 Inflammasome Activation. Mol Neurobiol 2024; 61:6628-6641. [PMID: 38329680 DOI: 10.1007/s12035-024-03926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Cognitive dysfunction was a common symptom of major depressive disorder (MDD). In previous studies, psychological stress leads to activation and proliferation of microglial cells in different brain regions. Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory effects in various diseases. To demonstrate the role of quercetin in the hippocampal inflammatory response in depress mice. The chronic unpredictable stress (CUS) depressive mice model built is used to explore the protective effects of quercetin on depression. Neurobehavioral test, protein expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and heat shock protein 90 (HSP90), and cytokines (IL-6, IL-1β, MCP-1, and TNF-α) were assessed. Quercetin ameliorated depressive-like behavior and cognitive impairment, and quercetin attenuates neuroinflammation and by targeting HSP90 to inhibit NLRP3 inflammasome activation. Quercetin inhibited the increase of HSP90 levels in the hippocampus and reverses inflammation-induced cognitive impairment. Besides, quercetin inhibited the increased level of cytokines (IL-6, IL-1β, MCP-1, and TNF-α) in the hippocampus of the depressive model mouse and the increased level of cytokines (IL-6, IL-1β, and MCP-1) in microglia. The current study indicated that quercetin mitigated depressive-like behavior and by targeting HSP90 to inhibit NLRP3 inflammasome activation in microglia and depressive mice model, meanwhile ameliorated cognitive impairment in depression. Quercetin has huge potential for the novel pharmacological efficacy of antidepressant therapy.
Collapse
Affiliation(s)
- Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Xuyuan Fan
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yi Yang
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
- Department of the Central Laboratory, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Shusheng Wu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Yuan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| |
Collapse
|
4
|
Willmott AGB, Diment AG, Chung HC, James CA, Maxwell NS, Roberts JD, Gibson OR. Cross-adaptation from heat stress to hypoxia: A systematic review and exploratory meta-analysis. J Therm Biol 2024; 120:103793. [PMID: 38471285 DOI: 10.1016/j.jtherbio.2024.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024]
Abstract
Cross-adaptation (CA) refers to the successful induction of physiological adaptation under one environmental stressor (e.g., heat), to enable subsequent benefit in another (e.g., hypoxia). This systematic review and exploratory meta-analysis investigated the effect of heat acclimation (HA) on physiological, perceptual and physical performance outcome measures during rest, and submaximal and maximal intensity exercise in hypoxia. Database searches in Scopus and MEDLINE were performed. Studies were included when they met the Population, Intervention, Comparison, and Outcome criteria, were of English-language, peer-reviewed, full-text original articles, using human participants. Risk of bias and study quality were assessed using the COnsensus based Standards for the selection of health status Measurement INstruments checklist. Nine studies were included, totalling 79 participants (100 % recreationally trained males). The most common method of HA included fixed-intensity exercise comprising 9 ± 3 sessions, 89 ± 24-min in duration and occurred within 39 ± 2 °C and 32 ± 13 % relative humidity. CA induced a moderate, beneficial effect on physiological measures at rest (oxygen saturation: g = 0.60) and during submaximal exercise (heart rate: g = -0.65, core temperature: g = -0.68 and skin temperature: g = -0.72). A small effect was found for ventilation (g = 0.24) and performance measures (peak power: g = 0.32 and time trial time: g = -0.43) during maximal intensity exercise. No effect was observed for perceptual outcome measures. CA may be appropriate for individuals, such as occupational or military workers, whose access to altitude exposure prior to undertaking submaximal activity in hypoxic conditions is restricted. Methodological variances exist within the current literature, and females and well-trained individuals have yet to be investigated. Future research should focus on these cohorts and explore the mechanistic underpinnings of CA.
Collapse
Affiliation(s)
- Ashley G B Willmott
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom; Environmental Extremes Laboratory, University of Brighton, Eastbourne, East Sussex, United Kingdom; Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex, United Kingdom.
| | - Alicia G Diment
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom; Pulmonary Function Laboratory, Norfolk and Norwich University Hospital, Colney Lane, Norwich, Norfolk, United Kingdom.
| | - Henry C Chung
- School of Sport, Rehabilitation and Exercise Sciences (SRES), University of Essex, Colchester, Essex, United Kingdom.
| | - Carl A James
- Hong Kong Sports Institute, Sha Tin, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Neil S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, East Sussex, United Kingdom; Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex, United Kingdom.
| | - Justin D Roberts
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom.
| | - Oliver R Gibson
- Centre for Physical Activity in Health and Disease (CPAHD), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom.
| |
Collapse
|
5
|
Lutze P, Brenmoehl J, Tesenvitz S, Ohde D, Wanka H, Meyer Z, Grunow B. Effects of Temperature Adaptation on the Metabolism and Physiological Properties of Sturgeon Fish Larvae Cell Line. Cells 2024; 13:269. [PMID: 38334662 PMCID: PMC10854621 DOI: 10.3390/cells13030269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
This study investigated how Atlantic sturgeon cells respond to elevated temperatures, shedding light on the potential impacts of climate change on fish. Atlantic sturgeon (Acipenser oxyrinchus), an IUCN (International Union for Conservation of Nature) Red List species and evolutionarily related to paleonisiform species, may have considerable physiological adaptability, suggesting that this species may be able to cope with changing climatic conditions and higher temperatures. To test this hypothesis, the AOXlar7y cell line was examined at 20 °C (control) and at elevated temperatures of 25 °C and 28 °C. Parameters including proliferation, vitality, morphology, and gene expressions related to proliferation, stemness, and stress were evaluated. Additionally, to achieve a comprehensive understanding of cellular changes, mitochondrial and metabolic activities were assessed using Seahorse XF96. AOXlar7y cells adapted to 28 °C exhibited enhanced mitochondrial adaptability, plasticity, heightened cell proliferation, and increased hsp70 expression. Increased baseline respiration indicated elevated ATP demand, which is potentially linked to higher cell proliferation and heat stress defense. Cells at 28 °C also displayed elevated reserve respiration capacity, suggesting adaptation to energy demands. At 25 °C, AOXlar7y cells showed no changes in basal respiration or mitochondrial capacity, suggesting unchanged ATP demand compared to cells cultivated at 20 °C. Proliferation and glycolytic response to energy requirements were diminished, implying a connection between glycolysis inhibition and proliferation suppression. These research results indicate sturgeon cells are capable of withstanding and adapting to an 8 °C temperature increase. This cellular analysis lays a foundation for future studies aimed at a deeper understanding of fish cell physiological adaptations, which will contribute to a better knowledge of environmental threats facing Atlantic sturgeon and fish populations amid climate change.
Collapse
Affiliation(s)
- Philipp Lutze
- Fish Growth Physiology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
- Institute of Pathophysiology, University Medicine Greifswald, 17489 Greifswald, Germany;
| | - Julia Brenmoehl
- Signal Transduction, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (J.B.); (D.O.); (Z.M.)
| | - Stephanie Tesenvitz
- Institute of Pathophysiology, University Medicine Greifswald, 17489 Greifswald, Germany;
| | - Daniela Ohde
- Signal Transduction, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (J.B.); (D.O.); (Z.M.)
| | - Heike Wanka
- Institute of Physiology, University Medicine Greifswald, 17489 Greifswald, Germany;
| | - Zianka Meyer
- Signal Transduction, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (J.B.); (D.O.); (Z.M.)
- Diagenom GmbH, 18059 Rostock, Germany
| | - Bianka Grunow
- Fish Growth Physiology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| |
Collapse
|
6
|
Sautillet B, Bourdillon N, Millet GP, Lemaître F, Cozette M, Delanaud S, Ahmaïdi S, Costalat G. Hot water immersion: Maintaining core body temperature above 38.5°C mitigates muscle fatigue. Scand J Med Sci Sports 2024; 34:e14503. [PMID: 37747708 DOI: 10.1111/sms.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Hot water immersion (HWI) has gained popularity to promote muscle recovery, despite limited data on the optimal heat dose. The purpose of this study was to compare the responses of two exogenous heat strains on core body temperature, hemodynamic adjustments, and key functional markers of muscle recovery following exercise-induced muscle damage (EIMD). METHODS Twenty-eight physically active males completed an individually tailored EIMD protocol immediately followed by one of the following recovery interventions: HWI (40°C, HWI40 ), HWI (41°C, HWI41 ) or warm water immersion (36°C, CON36 ). Gastrointestinal temperature (Tgi ), hemodynamic adjustments (cardiac output [CO], mean arterial pressure [MAP], and systemic vascular resistance [SVR]), pre-frontal cortex deoxyhemoglobin (HHb), ECG-derived respiratory frequency, and subjective perceptual measures were tracked throughout immersion. In addition, functional markers of muscle fatigue (maximal concentric peak torque [Tpeak ]) and muscle damage (late-phase rate of force development [RFD100-200 ]) were measured prior to EIMD (pre-), 24 h (post-24 h), and 48 h (post-48 h) post-EIMD. RESULTS By the end of immersion, HWI41 led to significantly higher Tgi values than HWI40 (38.8 ± 0.1 vs. 38.0°C ± 0.6°C, p < 0.001). While MAP was well maintained throughout immersion, only HWI41 led to increased (HHb) (+4.2 ± 1.47 μM; p = 0.005) and respiratory frequency (+4.0 ± 1.21 breath.min-1 ; p = 0.032). Only HWI41 mitigated the decline in RFD100-200 at post-24 h (-7.1 ± 31.8%; p = 0.63) and Tpeak at post-48 h (-3.1 ± 4.3%, p = 1). CONCLUSION In physically active males, maintaining a core body temperature of ~25 min within the range of 38.5°C-39°C has been found to be effective in improving muscle recovery, while minimizing the risk of excessive physiological heat strain.
Collapse
Affiliation(s)
- Benoît Sautillet
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, France
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fréderic Lemaître
- Faculty of Sport Sciences, CETAPS Laboratory, UR 3832, Normandy University, Rouen, France
| | - Maryne Cozette
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, France
| | - Stéphane Delanaud
- PériTox UMR_I 01 laboratory, CURS-UPJV, F-80054, University of Picardie Jules Verne, Amiens, France
| | - Saïd Ahmaïdi
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, France
| | - Guillaume Costalat
- Faculty of Sport Sciences, APERE Laboratory, UR 3300, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
7
|
Willmott AGB, James CA, Hayes M, Maxwell NS, Roberts J, Gibson OR. The reliability of a portable steam sauna pod for the whole-body passive heating of humans. J Therm Biol 2023; 118:103743. [PMID: 37979477 DOI: 10.1016/j.jtherbio.2023.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
INTRODUCTION Passive heating is receiving increasing attention within human performance and health contexts. A low-cost, portable steam sauna pod may offer an additional tool for those seeking to manipulate physiological (cardiovascular, thermoregulatory and sudomotor) and perceptual responses for improving sporting or health profiles. This study aimed to 1) report the different levels of heat stress and determine the pods' inter-unit reliability, and 2) quantify the reliability of physiological and perceptual responses to passive heating. METHOD In part 1, five pods were assessed for temperature and relative humidity (RH) every 5 min across 70 min of heating for each of the 9 settings. In part 2, twelve males (age: 24 ± 4 years) completed two 60 min trials of passive heating (3 × 20 min at 44 °C/99% RH, separated by 1 week). Heart rate (HR), rectal (Trectal) and tympanic temperature (Ttympanic) were recorded every 5 min, thermal comfort (Tcomfort) and sensation (Tsensation) every 10 min, mean arterial pressure (MAP) at each break period and sweat rate (SR) after exiting the pod. RESULTS In part 1, setting 9 provided the highest temperature (44.3 ± 0.2 °C) and longest time RH remained stable at 99% (51±7 min). Inter-unit reliability data demonstrated agreement between pods for settings 5-9 (intra-class correlation [ICC] >0.9), but not for settings 1-4 (ICC <0.9). In part 2, between-visits, high correlations, and low typical error of measurement (TEM) and coefficient of variation (CV) were found for Trectal, HR, MAP, SR, and Tcomfort, but not for Ttympanic or Tsensation. A peak Trectal of 38.09 ± 0.30 °C, HR of 124 ± 15 b min-1 and a sweat loss of 0.73 ± 0.33 L were reported. No between-visit differences (p > 0.05) were observed for Trectal, Ttympanic, Tsensation or Tcomfort, however HR (+3 b.min-1) and MAP (+4 mmHg) were greater in visit 1 vs. 2 (p < 0.05). CONCLUSION Portable steam sauna pods generate reliable heat stress between-units. The highest setting (44 °C/99% RH) also provides reliable but modest adjustments in physiological and perceptual responses.
Collapse
Affiliation(s)
- A G B Willmott
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, Cambridge, UK; Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK.
| | - C A James
- Hong Kong Sports Institute (HKSI), Hong Kong; Department of Sport, Physical Education and Health, Hong Kong Baptist University. Kowloon Tong, Hong Kong
| | - M Hayes
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - N S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - J Roberts
- Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, Cambridge, UK
| | - O R Gibson
- Centre for Physical Activity in Health and Disease (CHPAD), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
8
|
Clark CE, Rigby BR. Can exposure to heat attenuate neurodegeneration in older adults with Parkinson's disease? Front Aging Neurosci 2023; 15:1239656. [PMID: 37744389 PMCID: PMC10513428 DOI: 10.3389/fnagi.2023.1239656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
| | - Brandon Rhett Rigby
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, United States
| |
Collapse
|
9
|
Li X, Xv F, Ma LZ, Xing L, Zhao JB, Zhi WJ, Wang LF, Wang Y, Mao HD, Liu SY, Liu YH, Song Q. Acquired heat acclimation in rats subjected to physical exercise under environmental heat stress alleviates brain injury caused by exertional heat stroke. Brain Res 2023; 1811:148393. [PMID: 37150340 DOI: 10.1016/j.brainres.2023.148393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Exertional heatstroke (EHS) is an emergency with a high mortality rate, characterized by central nervous system dysfunctions. This study aims to establish a Heat acclimation/acclimatization (HA) rat model in locomotion to recapitulate the physical state of human in severe environment of high temperature and humidity, and investigate the mechanism of organism protection in HA. (2) Methods: Wistar rats were exposed to 36°C and ran 2 h/d for 21 days, acquired thermal tolerance test was conducted to assess the thermotolerance and exercise ability. Core temperature and consumption of water and food were observed. Expression of HSP70 and HSP90 of different tissues were determined by WB. Pathological structure of brain tissue was detected with HE staining. Proteomics was used to identify the differently expressed proteins in cerebral cortex of different groups. And key molecules were identified by RT-PCR and WB. (3) Results: HA rats displayed stronger thermotolerance and exercised ability on acquired thermal tolerance test. Brain water content of HA+EHS group reduced compared with EHS group. HE staining revealed slighter brain injuries of HA+EHS group than that of EHS. Proteomics focused on cell death-related pathways and key molecules Aquaporin 4 (AQP4) related to cell edema. Identification results showed HA increased AQP4, Bcl-xl, ratio of p-Akt/AKT and Bcl-xl/Bax, down-regulated Cleaved Caspase-3. (4) Conclusions: This HA model can ameliorate brain injury of EHS by reducing cerebral edema and cell apoptosis, offering experimental evidence for EHS prophylaxis.
Collapse
Affiliation(s)
- Xin Li
- Postgraduate School, Medical School of Chinese PLA, Beijing 100853, China; Department of Emergency, Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Fan Xv
- Postgraduate School, Medical School of Chinese PLA, Beijing 100853, China.
| | - Li-Zhen Ma
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| | - Ling Xing
- Department of Emergency, Beijing Tongren Hospital, Capital Medical University, Beijing. 100176, China.
| | - Jin-Bao Zhao
- Department of Emergency, sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
| | - Wei-Jia Zhi
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| | - Li-Feng Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| | - Yang Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| | - Han-Ding Mao
- Postgraduate School, Medical School of Chinese PLA, Beijing 100853, China.
| | - Shu-Yuan Liu
- Department of Emergency, sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
| | - Ya-Hua Liu
- Department of Emergency, Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Qing Song
- Postgraduate School, Medical School of Chinese PLA, Beijing 100853, China; Department of Critical Care Medicine, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Alele FO, Otto JR, Malau-Aduli BS, Malau-Aduli AEO. Next Generation Sequencing of Genotype Variants and Genetic Association between Heat Shock Proteins HSPA1B Single Nucleotide Polymorphism at the g.31829044 Locus and Heat Tolerance: A Pilot Quasi-Experimental Study. Biomolecules 2022; 12:biom12101465. [PMID: 36291674 PMCID: PMC9599234 DOI: 10.3390/biom12101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/18/2022] Open
Abstract
Heat tolerance and exertional heat stroke (EHS) are rare health conditions that have been described and characterised but have never been genetically solved. Knowledge of the role of single nucleotide polymorphisms (SNPs) in heat shock proteins (HSPs) genes and their associations with heat tolerance and EHS is limited. This pilot study aimed to identify SNP in HSPA1B, HSP90AA2 and DNAJA1 genes and their associations with heat tolerance and EHS history in a quasi-experimental design. Participants comprised Australian Defence Force members (ADF) who had a history of EHS and the general population. Genomic DNA samples were extracted from the venous blood samples of 48 participants, sequenced and analysed for SNP. Forty-four per cent (44%) of the participants were heat intolerant, and 29% had a history of EHS. Among participants with a history of EHS, there was an association between heat tolerance and HSPA1B SNP at the g.31829044 locus. However, there were no associations between HSPA1B and HSP90AA2 SNP and heat tolerance. All participants had the same distribution for the DNAJA1 SNP. In conclusion, the findings indicate an association between the HSPA1B genetic variant at the g.31829044 locus and heat tolerance among ADF participants with a history of EHS. Further research with a larger number of military participants will shed more light on the associations between HSP genes and heat tolerance.
Collapse
Affiliation(s)
- Faith O. Alele
- College of Healthcare Sciences, James Cook University, Townsville, QLD 4811, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - John R. Otto
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Bunmi S. Malau-Aduli
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Aduli E. O. Malau-Aduli
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence: ; Tel.: +61-7-4781-5339
| |
Collapse
|
11
|
Pettit-Mee RJ, Power G, Cabral-Amador FJ, Ramirez-Perez FI, Nogueira Soares R, Sharma N, Liu Y, Christou DD, Kanaley JA, Martinez-Lemus LA, Manrique-Acevedo CM, Padilla J. Endothelial HSP72 is not reduced in type 2 diabetes nor is it a key determinant of endothelial insulin sensitivity. Am J Physiol Regul Integr Comp Physiol 2022; 323:R43-R58. [PMID: 35470695 DOI: 10.1152/ajpregu.00006.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Impaired endothelial insulin signaling and consequent blunting of insulin-induced vasodilation is a feature of type 2 diabetes (T2D) that contributes to vascular disease and glycemic dysregulation. However, the molecular mechanisms underlying endothelial insulin resistance remain poorly known. Herein, we tested the hypothesis that endothelial insulin resistance in T2D is attributed to reduced expression of heat shock protein 72(HSP72). HSP72 is a cytoprotective chaperone protein that can be upregulated with heating and is reported to promote insulin sensitivity in metabolically active tissues, in part via inhibition of JNK activity. Accordingly, we further hypothesized that, in T2D individuals, seven days of passive heat treatment via hot water immersion to waist-level would improve leg blood flow responses to an oral glucose load (i.e., endogenous insulin stimulation) via induction of endothelial HSP72. In contrast, we found that: 1) endothelial insulin resistance in T2D mice and humans was not associated with reduced HSP72 in aortas and venous endothelial cells, respectively; 2) after passive heat treatment, improved leg blood flow responses to an oral glucose load did not parallel with increased endothelial HSP72; 3) downregulation of HSP72 (via small-interfering RNA) or upregulation of HSP72 (via heating) in cultured endothelial cells did not impair or enhance insulin signaling, respectively, nor was JNK activity altered. Collectively, these findings do not support the hypothesis that reduced HSP72 is a key driver of endothelial insulin resistance in T2D but provide novel evidence that lower-body heating may be an effective strategy for improving leg blood flow responses to glucose ingestion-induced hyperinsulinemia.
Collapse
Affiliation(s)
- Ryan J Pettit-Mee
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | | | | | | | - Neekun Sharma
- Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Ying Liu
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Jill A Kanaley
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Luis A Martinez-Lemus
- Department of Medicine, University of Missouri, Columbia, MO, United States.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Camila M Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine University of Missouri, Columbia, MO, United States.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
12
|
Cheng JL, Williams JS, Hoekstra SP, MacDonald MJ. Improvements in vascular function in response to acute lower limb heating in young healthy males and females. J Appl Physiol (1985) 2021; 131:277-289. [PMID: 34013754 DOI: 10.1152/japplphysiol.00630.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Regular exposure to passive heat stress improves vascular function, but the optimal heating prescription remains undefined. Local limb heating is more feasible than whole body heating, but the evidence demonstrating its efficacy is lacking. The purpose of this study was to determine whether acute improvements in vascular function can be achieved with lower limb heating in 16 young healthy individuals (8 female, 8 male). In separate visits, participants underwent 45 min of ankle- and knee-level hot water immersion (45°C). A subset of seven participants also participated in a time-control visit. Endothelial function was assessed through simultaneous brachial and superficial femoral artery flow-mediated dilation (FMD) tests. Macrovascular function was quantified by %FMD, whereas microvascular function was quantified by vascular conductance during reactive hyperemia. Arterial stiffness was assessed through carotid-femoral and femoral-foot pulse wave velocity (PWV). Plasma concentrations of interleukin-6 and extracellular heat shock protein-72 (eHSP72) were used as indicators of inflammation. Our findings showed that 45 min of lower limb heating-regardless of condition-acutely improved upper limb macrovascular endothelial function (i.e., brachial %FMD; Pre: 4.6 ± 1.7 vs. Post: 5.4 ± 2.0%; P = 0.004) and lower limb arterial stiffness (i.e., femoral-foot PWV; Pre: 8.4 ± 1.2 vs. Post: 7.7 ± 1.1 m/s; P = 0.011). However, only knee-level heating increased upper limb microvascular function (i.e., brachial peak vascular conductance; Pre: 6.3 ± 2.7 vs. Post: 7.8 ± 3.5 mL/min ⋅ mmHg; P ≤ 0.050) and plasma eHSP72 concentration (Pre: 12.4 ± 9.4 vs. Post: 14.8 ± 9.8 ng/mL; P ≤ 0.050). These findings show that local lower limb heating acutely improves vascular function in younger individuals, with knee-level heating improving more outcome measures.NEW & NOTEWORTHY This study demonstrates that lower limb hot water immersion is an effective strategy for acutely improving vascular function in young, healthy males and females, thereby encouraging the development of accessible modes of heat therapy for vascular health.
Collapse
Affiliation(s)
- Jem L Cheng
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | - Sven P Hoekstra
- The Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | | |
Collapse
|
13
|
Brunt VE, Minson CT. Heat therapy: mechanistic underpinnings and applications to cardiovascular health. J Appl Physiol (1985) 2021; 130:1684-1704. [PMID: 33792402 DOI: 10.1152/japplphysiol.00141.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and novel therapies are drastically needed to prevent or delay the onset of CVD to reduce the societal and healthcare burdens associated with these chronic diseases. One such therapy is "heat therapy," or chronic, repeated use of hot baths or saunas. Although using heat exposure to improve health is not a new concept, it has received renewed attention in recent years as a growing number of studies have demonstrated robust and widespread beneficial effects of heat therapy on cardiovascular health. Here, we review the existing literature, with particular focus on the molecular mechanisms that underscore the cardiovascular benefits of this practice.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado.,Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
14
|
Local cooling during hot water immersion improves perceptions without inhibiting the acute interleukin-6 response. Eur J Appl Physiol 2021; 121:1581-1591. [PMID: 33646422 PMCID: PMC8144146 DOI: 10.1007/s00421-021-04616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/04/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE Passive elevation of body temperature can induce an acute inflammatory response that has been proposed to be beneficial; however, it can be perceived as uncomfortable. Here, we investigate whether local cooling of the upper body during hot water immersion can improve perception without inhibiting the interleukin-6 (IL-6) response. METHODS Nine healthy male participants (age: 22 ± 1 years, body mass: 83.4 ± 9.4 kg) were immersed up to the waist for three 60-min water immersion conditions: 42 °C hot water immersion (HWI), 42 °C HWI with simultaneous upper-body cooling using a fan (FAN), and 36 °C thermoneutral water immersion (CON). Blood samples to determine IL-6 plasma concentration were collected pre- and post-water immersion; basic affect and thermal comfort were assessed throughout the intervention. RESULTS Plasma IL-6 concentration was higher for HWI and FAN when compared with CON (P < 0.01) and did not differ between HWI and FAN (P = 0.22; pre to post, HWI: 1.0 ± 0.6 to 1.5 ± 0.7 pg·ml-1, FAN: 0.7 ± 0.5 to 1.1 ± 0.5 pg·ml-1, CON: 0.5 ± 0.2 to 0.5 ± 0.2 pg·ml-1). At the end of immersion, basic affect was lowest for HWI (HWI: - 1.8 ± 2.0, FAN: 0.2 ± 1.6, CON 1.0 ± 2.1, P < 0.02); thermal comfort for HWI was in the uncomfortable range (3.0 ± 1.0, P < 0.01 when compared with FAN and CON), whereas FAN (0.7 ± 0.7) and CON (-0.2 ± 0.7) were in the comfortable range. CONCLUSION Local cooling of the upper body during hot water immersion improves basic affect and thermal comfort without inhibiting the acute IL-6 response.
Collapse
|
15
|
Cao Y, Liu Y, Dong Q, Wang T, Niu C. Alterations in the gut microbiome and metabolic profile in rats acclimated to high environmental temperature. Microb Biotechnol 2021; 15:276-288. [PMID: 33620148 PMCID: PMC8719808 DOI: 10.1111/1751-7915.13772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heat acclimation (HA) is the best strategy to improve heat stress tolerance by inducing positive physiological adaptations. Evidence indicates that the gut microbiome plays a fundamental role in the development of HA, and modulation of gut microbiota can improve tolerance to heat exposure and decrease the risks of heat illness. In this study, for the first time, we applied 16S rRNA gene sequencing and untargeted liquid chromatography–mass spectrometry (LC‐MS) metabolomics to explore variations in the gut microbiome and faecal metabolic profiles in rats after HA. The gut microbiota of HA subjects exhibited higher diversity and richer microbes. HA altered the gut microbiota composition with significant increases in the genera Lactobacillus (a major probiotic) and Oscillospira alongside significant decreases in the genera Blautia and Allobaculum. The faecal metabolome was also significantly changed after HA, and among the 13 perturbed metabolites, (S)‐AL 8810 and celastrol were increased. Moreover, the two increased genera were positively correlated with the two upregulated metabolites and negatively correlated with the other 11 downregulated metabolites, while the correlations between the two decreased genera and the upregulated/downregulated metabolites were completely contrary. In summary, both the structure of the gut microbiome community and the faecal metabolome were improved after 28 days of HA. These findings provide novel insights regarding the improvement of the gut microbiome and its functions as a potential mechanism by which HA confers protection against heat stress.
Collapse
Affiliation(s)
- Yang Cao
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Ying Liu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Qingyang Dong
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tao Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
16
|
Changes in gastrointestinal cell integrity after marathon running and exercise-associated collapse. Eur J Appl Physiol 2021; 121:1179-1187. [PMID: 33512586 DOI: 10.1007/s00421-021-04603-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/10/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Endurance exercise and hyperthermia are associated with compromised intestinal permeability and endotoxaemia. The presence of intestinal fatty acid-binding protein (I-FABP) in the systemic circulation suggests intestinal wall damage, but this marker has not previously been used to investigate intestinal integrity after marathon running. METHODS Twenty-four runners were recruited as controls prior to completing a standard marathon and had sequential I-FABP measurements before and on completion of the marathon, then at four and 24 h later. Eight runners incapacitated with exercise-associated collapse (EAC) with hyperthermia had I-FABP measured at the time of collapse and 1 hour later. RESULTS I-FABP was increased immediately on completing the marathon (T0; 2593 ± 1373 ng·l-1) compared with baseline (1129 ± 493 ng·l-1; p < 0.01) in the controls, but there was no significant difference between baseline and the levels at four hours (1419 ± 1124 ng·l-1; p = 0.7), or at 24 h (1086 ± 302 ng·l-1; p = 0.5). At T0, EAC cases had a significantly higher I-FABP concentration (15,389 ± 8547 ng.l-1) compared with controls at T0 (p < 0.01), and remained higher at 1 hour after collapse (13,951 ± 10,476 ng.l-1) than the pre-race control baseline (p < 0.05). CONCLUSION I-FABP is a recently described biomarker whose presence in the circulation is associated with intestinal wall damage. I-FABP levels increase after marathon running and increase further if the endurance exercise is associated with EAC and hyperthermia. After EAC, I-FABP remains high in the circulation for an extended period, suggesting ongoing intestinal wall stress.
Collapse
|
17
|
Sotiridis A, Debevec T, Ciuha U, McDonnell AC, Mlinar T, Royal JT, Mekjavic IB. Aerobic but not thermoregulatory gains following a 10-day moderate-intensity training protocol are fitness level dependent: A cross-adaptation perspective. Physiol Rep 2021; 8:e14355. [PMID: 32061183 PMCID: PMC7023889 DOI: 10.14814/phy2.14355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Abstract
Moderate‐intensity exercise sessions are incorporated into heat‐acclimation and hypoxic‐training protocols to improve performance in hot and hypoxic environments, respectively. Consequently, a training effect might contribute to aerobic performance gains, at least in less fit participants. To explore the interaction between fitness level and a training stimulus commonly applied during acclimation protocols, we recruited 10 young males of a higher (more fit‐MF, peak aerobic power [VO2peak]: 57.9 [6.2] ml·kg−1·min−1) and 10 of a lower (less fit‐LF, VO2peak: 41.7 [5.0] ml·kg−1·min−1) fitness level. They underwent 10 daily exercise sessions (60 min@50% peak power output [Wpeak]) in thermoneutral conditions. The participants performed exercise testing on a cycle ergometer before and after the training period in normoxic (NOR), hypoxic (13.5% FiO2; HYP), and hot (35°C, 50% RH; HE) conditions in a randomized and counterbalanced order. Each test consisted of two stages; a steady‐state exercise (30 min@40% NOR Wpeak to evaluate thermoregulatory function) followed by incremental exercise to exhaustion. VO2peak increased by 9.2 (8.5)% (p = .024) and 10.2 (15.4)% (p = .037) only in the LF group in NOR and HE, respectively. Wpeak increases were correlated with baseline values in NOR (r = −.58, p = .010) and HYP (r = −.52, p = .018). MF individuals improved gross mechanical efficiency in HYP. Peak sweat rate increased in both groups in HE, whereas MF participants activated the forehead sweating response at lower rectal temperatures post‐training. In conclusion, an increase in VO2peak but not mechanical efficiency seems probable in LF males after a 10‐day moderate‐exercise training protocol.
Collapse
Affiliation(s)
- Alexandros Sotiridis
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| | - Urša Ciuha
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tinkara Mlinar
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Joshua T Royal
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
18
|
Response to Letter to the Editor: Are five 60-min sessions of isothermic heat acclimation sufficient to elicit beneficial physiological adaptations? Eur J Appl Physiol 2020; 120:2003-2004. [PMID: 32683488 DOI: 10.1007/s00421-020-04438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
|
19
|
Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could Heat Therapy Be an Effective Treatment for Alzheimer's and Parkinson's Diseases? A Narrative Review. Front Physiol 2020; 10:1556. [PMID: 31998141 PMCID: PMC6965159 DOI: 10.3389/fphys.2019.01556] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases involve the progressive deterioration of structures within the central nervous system responsible for motor control, cognition, and autonomic function. Alzheimer's disease and Parkinson's disease are among the most common neurodegenerative disease and have an increasing prevalence over the age of 50. Central in the pathophysiology of these neurodegenerative diseases is the loss of protein homeostasis, resulting in misfolding and aggregation of damaged proteins. An element of the protein homeostasis network that prevents the dysregulation associated with neurodegeneration is the role of molecular chaperones. Heat shock proteins (HSPs) are chaperones that regulate the aggregation and disaggregation of proteins in intracellular and extracellular spaces, and evidence supports their protective effect against protein aggregation common to neurodegenerative diseases. Consequently, upregulation of HSPs, such as HSP70, may be a target for therapeutic intervention for protection against neurodegeneration. A novel therapeutic intervention to increase the expression of HSP may be found in heat therapy and/or heat acclimation. In healthy populations, these interventions have been shown to increase HSP expression. Elevated HSP may have central therapeutic effects, preventing or reducing the toxicity of protein aggregation, and/or peripherally by enhancing neuromuscular function. Broader physiological responses to heat therapy have also been identified and include improvements in muscle function, cerebral blood flow, and markers of metabolic health. These outcomes may also have a significant benefit for people with neurodegenerative disease. While there is limited research into body warming in patient populations, regular passive heating (sauna bathing) has been associated with a reduced risk of developing neurodegenerative disease. Therefore, the emerging evidence is compelling and warrants further investigation of the potential benefits of heat acclimation and passive heat therapy for sufferers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P. Hunt
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Geoffrey M. Minett
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Graham K. Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian B. Stewart
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Fujii N, McGarr GW, Hatam K, Chandran N, Muia CM, Nishiyasu T, Boulay P, Ghassa R, Kenny GP. Heat shock protein 90 does not contribute to cutaneous vasodilatation in older adults during heat stress. Microcirculation 2019; 26:e12541. [DOI: 10.1111/micc.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba Japan
| | - Gregory W. McGarr
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Kion Hatam
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Nithila Chandran
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Caroline M. Muia
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba Japan
| | - Pierre Boulay
- Faculty of Physical Activity Sciences University of Sherbrooke Sherbrooke Quebec Canada
| | - Reem Ghassa
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
- Clinical Epidemiology Program Ottawa Hospital Research Institute Ottawa Ontario Canada
| |
Collapse
|
21
|
Hoekstra SP, Wright AKA, Bishop NC, Leicht CA. The effect of temperature and heat shock protein 72 on the ex vivo acute inflammatory response in monocytes. Cell Stress Chaperones 2019; 24:461-467. [PMID: 30756293 PMCID: PMC6439050 DOI: 10.1007/s12192-019-00972-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 12/14/2022] Open
Abstract
The acute inflammatory response to active or passive activities that increase body temperature may aid to reduce chronic low-grade inflammation. This study investigates the impact of temperature and extracellular heat shock protein 72 (eHsp72) on the acute intracellular Hsp72 (iHsp72) and interleukin-6 (iIL-6) response in monocytes. Whole blood was incubated for 2 h at 37.0 °C, 38.5 °C and 40.0 °C, in the absence or presence of 0.5 μg/ml eHsp72. Flow cytometry was used to assess iHsp72 and iIL-6 expression in total monocytes and the three monocyte subsets. Incubation at 40.0 °C (p < 0.001) but not 38.5 °C (p = 0.085) increased iHsp72 expression when compared with 37.0 °C, while there was no effect of temperature on iIL-6 expression (p = 0.635). Following incubation with eHsp72, the expression of iHsp72 in classical monocytes was reduced at all temperatures (p < 0.001), while there was no effect of eHsp72 on iIL-6 expression (p = 0.071). Large temperature elevations are needed to induce an acute iHsp72 response in monocytes. In addition, contrary to its suggested role as a danger signal for the innate immune system, eHsp72 reduced iHsp72 and iIL-6 expression in monocytes.
Collapse
Affiliation(s)
- Sven P Hoekstra
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Adam K A Wright
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Nicolette C Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Christof A Leicht
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, UK.
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
22
|
Hoekstra SP, Bishop NC, Faulkner SH, Bailey SJ, Leicht CA. Acute and chronic effects of hot water immersion on inflammation and metabolism in sedentary, overweight adults. J Appl Physiol (1985) 2018; 125:2008-2018. [DOI: 10.1152/japplphysiol.00407.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regular exercise-induced acute inflammatory responses are suggested to improve the inflammatory profile and insulin sensitivity. As body temperature elevations partly mediate this response, passive heating might be a viable tool to improve the inflammatory profile. This study investigated the acute and chronic effects of hot water immersion on inflammatory and metabolic markers. Ten sedentary, overweight men [body mass index (BMI): 31.0 ± 4.2 kg/m2, mean ± SD] were immersed in water set at 39°C for 1 h (HWI) or rested for 1 h at ambient temperature (AMB). Venous blood was obtained before the session, immediately postsession, and 2 h postsession for assessment of monocyte intracellular heat shock protein-72 (iHsp72) and plasma concentrations of extracellular Hsp72 (eHsp72), interleukin-6 (IL-6), fasting glucose, insulin, and nitrite. Thereafter, participants underwent a 2-wk intervention period, consisting of 10 hot water immersion sessions (INT). Eight BMI-matched participants (BMI: 30.0 ± 2.5 kg/m2) were included as control (CON). Plasma IL-6 and nitrite concentrations were higher immediately following HWI compared with AMB (IL-6 P < 0.001, HWI: 1.37 ± 0.94 to 2.51 ± 1.49 pg/ml; nitrite P = 0.04, HWI: 271 ± 52 to 391 ± 72 nM), whereas iHsp72 expression was unchanged ( P = 0.57). In contrast to resting iHsp72 expression ( P = 0.59), fasting glucose ( P = 0.04; INT: 4.44 ± 0.93 to 3.98 ± 0.98 mmol/l), insulin ( P = 0.04; INT: 68.1 ± 44.6 to 55.0 ± 29.9 pmol/l), and eHsp72 ( P = 0.03; INT: 17 ± 41% reduction) concentrations were lowered after INT compared with CON. HWI induced an acute inflammatory response and increased nitric oxide bioavailability. The reductions in fasting glucose and insulin concentrations following the chronic intervention suggest that hot water immersion may serve as a tool to improve glucose metabolism. NEW & NOTEWORTHY A single hot water immersion (HWI) session induces an acute increase in plasma interleukin-6 and nitrite concentrations but does not acutely elevate heat shock protein-72 expression in monocytes [intracellular Hsp72 (iHsp72)]. A chronic HWI intervention reduces fasting glucose and insulin concentrations in the absence of changes in resting iHsp72. Therefore, HWI shows potential as a strategy to combat chronic low-grade inflammation and improve glucose metabolism in individuals without the physical capacity to do so using exercise.
Collapse
Affiliation(s)
- S. P. Hoekstra
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
- The School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - N. C. Bishop
- The School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - S. H. Faulkner
- Department of Engineering, Nottingham Trent University, Nottingham, United Kingdom
| | - S. J. Bailey
- The School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - C. A. Leicht
- The Peter Harrison Centre for Disability Sport, Loughborough University, Loughborough, United Kingdom
- The School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
23
|
Gibson OR, Taylor L, Watt PW, Maxwell NS. Cross-Adaptation: Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia. Sports Med 2018; 47:1751-1768. [PMID: 28389828 PMCID: PMC5554481 DOI: 10.1007/s40279-017-0717-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To prepare for extremes of heat, cold or low partial pressures of oxygen (O2), humans can undertake a period of acclimation or acclimatization to induce environment-specific adaptations, e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. While these strategies are effective, they are not always feasible due to logistical impracticalities. Cross-adaptation is a term used to describe the phenomenon whereby alternative environmental interventions, e.g. HA or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate-intensity exercise at altitude via adaptations allied to improved O2 delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross-acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on O2 delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA, suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross-tolerance. The effects of CA on markers of cross-tolerance is an area requiring further investigation. Because much of the evidence relating to cross-adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted, given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross-adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK. .,Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK.
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter W Watt
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| |
Collapse
|
24
|
Barrington JH, Chrismas BCR, Gibson OR, Tuttle J, Pegrum J, Govilkar S, Kabir C, Giannakakis N, Rayan F, Okasheh Z, Sanaullah A, Ng Man Sun S, Pearce O, Taylor L. Hypoxic Air Inhalation and Ischemia Interventions Both Elicit Preconditioning Which Attenuate Subsequent Cellular Stress In vivo Following Blood Flow Occlusion and Reperfusion. Front Physiol 2017; 8:560. [PMID: 28824456 PMCID: PMC5539087 DOI: 10.3389/fphys.2017.00560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Ischemic preconditioning (IPC) is valid technique which elicits reductions in femoral blood flow occlusion mediated reperfusion stress (oxidative stress, Hsp gene transcripts) within the systemic blood circulation and/or skeletal muscle. It is unknown whether systemic hypoxia, evoked by hypoxic preconditioning (HPC) has efficacy in priming the heat shock protein (Hsp) system thus reducing reperfusion stress following blood flow occlusion, in the same manner as IPC. The comparison between IPC and HPC being relevant as a preconditioning strategy prior to orthopedic surgery. In an independent group design, 18 healthy men were exposed to 40 min of (1) passive whole-body HPC (FiO2 = 0.143; no ischemia. N = 6), (2) IPC (FiO2 = 0.209; four bouts of 5 min ischemia and 5 min reperfusion. n = 6), or (3) rest (FiO2 = 0.209; no ischemia. n = 6). The interventions were administered 1 h prior to 30 min of tourniquet derived femoral blood flow occlusion and were followed by 2 h subsequent reperfusion. Systemic blood samples were taken pre- and post-intervention. Systemic blood and gastrocnemius skeletal muscle samples were obtained pre-, 15 min post- (15PoT) and 120 min (120PoT) post-tourniquet deflation. To determine the cellular stress response gastrocnemius and leukocyte Hsp72 mRNA and Hsp32 mRNA gene transcripts were determined by RT-qPCR. The plasma oxidative stress response (protein carbonyl, reduced glutathione/oxidized glutathione ratio) was measured utilizing commercially available kits. In comparison to control, at 15PoT a significant difference in gastrocnemius Hsp72 mRNA was seen in HPC (−1.93-fold; p = 0.007) and IPC (−1.97-fold; p = 0.006). No significant differences were observed in gastrocnemius Hsp32 and Hsp72 mRNA, leukocyte Hsp72 and Hsp32 mRNA, or oxidative stress markers (p > 0.05) between HPC and IPC. HPC provided near identical amelioration of blood flow occlusion mediated gastrocnemius stress response (Hsp72 mRNA), compared to an established IPC protocol. This was seen independent of changes in systemic oxidative stress, which likely explains the absence of change in Hsp32 mRNA transcripts within leukocytes and the gastrocnemius. Both the established IPC and novel HPC interventions facilitate a priming of the skeletal muscle, but not leukocyte, Hsp system prior to femoral blood flow occlusion. This response demonstrates a localized tissue specific adaptation which may ameliorate reperfusion stress.
Collapse
Affiliation(s)
- James H Barrington
- Institute of Sport and Physical Activity Research, University of BedfordshireLuton, United Kingdom
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar UniversityDoha, Qatar
| | - Oliver R Gibson
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Centre for Human Performance, Exercise and Rehabilitation, Brunel University LondonUxbridge, United Kingdom
| | - James Tuttle
- Institute of Sport and Physical Activity Research, University of BedfordshireLuton, United Kingdom
| | - J Pegrum
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - S Govilkar
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Chindu Kabir
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - N Giannakakis
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - F Rayan
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Z Okasheh
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - A Sanaullah
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - S Ng Man Sun
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Oliver Pearce
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Lee Taylor
- ASPETAR, Athlete Health and Performance Research Centre, Qatar Orthopedic and Sports Medicine HospitalDoha, Qatar.,School of Sport, Exercise and Health Sciences. Loughborough UniversityLoughborough, United Kingdom
| |
Collapse
|
25
|
Horowitz M. Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life Epigenetics? Front Physiol 2017; 8:548. [PMID: 28804462 PMCID: PMC5532440 DOI: 10.3389/fphys.2017.00548] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/14/2017] [Indexed: 12/29/2022] Open
Abstract
The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce “ON CALL” molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance—HACT). The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower “doses” of the stressor, which induce adaptation to higher “doses” of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1α nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1α and there are less injuries caused by Ca+2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo physiological evidence and the associated cellular and molecular mechanisms leading to HACT and its difference from short-acting cross-tolerance strategies will be discussed.
Collapse
Affiliation(s)
- Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
26
|
Tuttle JA, Chrismas BCR, Gibson OR, Barrington JH, Hughes DC, Castle PC, Metcalfe AJ, Midgley AW, Pearce O, Kabir C, Rayanmarakar F, Al-Ali S, Lewis MP, Taylor L. The Hsp72 and Hsp90α mRNA Responses to Hot Downhill Running Are Reduced Following a Prior Bout of Hot Downhill Running, and Occur Concurrently within Leukocytes and the Vastus Lateralis. Front Physiol 2017; 8:473. [PMID: 28747888 PMCID: PMC5506191 DOI: 10.3389/fphys.2017.00473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
The leukocyte heat shock response (HSR) is used to determine individual's thermotolerance. The HSR and thermotolerance are enhanced following interventions such as preconditioning and/or acclimation/acclimatization. However, it is unclear whether the leukocyte HSR is an appropriate surrogate for the HSR in other tissues implicated within the pathophysiology of exertional heat illnesses (e.g., skeletal muscle), and whether an acute preconditioning strategy (e.g., downhill running) can improve subsequent thermotolerance. Physically active, non-heat acclimated participants were split into two groups to investigate the benefits of hot downhill running as preconditioning strategy. A hot preconditioning group (HPC; n = 6) completed two trials (HPC1HOTDOWN and HPC2HOTDOWN) of 30 min running at lactate threshold (LT) on -10% gradient in 30°C and 50% relative humidity (RH) separated by 7 d. A temperate preconditioning group (TPC; n = 5) completed 30 min running at LT on a -1% gradient in 20°C and 50% (TPC1TEMPFLAT) and 7 d later completed 30 min running at LT on -10% gradient in 30°C and 50% RH (TPC2HOTDOWN). Venous blood samples and muscle biopsies (vastus lateralis; VL) were obtained before, immediately after, 3, 24, and 48 h after each trial. Leukocyte and VL Hsp72, Hsp90α, and Grp78 mRNA relative expression was determined via RT-QPCR. Attenuated leukocyte and VL Hsp72 (2.8 to 1.8 fold and 5.9 to 2.4 fold; p < 0.05) and Hsp90α mRNA (2.9 to 2.4 fold and 5.2 to 2.4 fold; p < 0.05) responses accompanied reductions (p < 0.05) in physiological strain [exercising rectal temperature (-0.3°C) and perceived muscle soreness (~ -14%)] during HPC2HOTDOWN compared to HPC1HOTDOWN (i.e., a preconditioning effect). Both VL and leukocyte Hsp72 and Hsp90α mRNA increased (p < 0.05) simultaneously following downhill runs and demonstrated a strong relationship (p < 0.01) of similar magnitudes with one another. Hot downhill running is an effective preconditioning strategy which ameliorates physiological strain, soreness and Hsp72 and Hsp90α mRNA responses to a subsequent bout. Leukocyte and VL analyses are appropriate tissues to infer the extent to which the HSR has been augmented.
Collapse
Affiliation(s)
- James A Tuttle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar UniversityDoha, Qatar
| | - Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University LondonLondon, United Kingdom
| | - James H Barrington
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavis, CA, United States
| | - Paul C Castle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Alan J Metcalfe
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom.,School of Exercise and Health Sciences, Edith Cowan UniversityPerth, WA, Australia
| | - Adrian W Midgley
- Department of Sport and Physical Activity, Edgehill UniversityOrmskirk, United Kingdom
| | - Oliver Pearce
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Chindu Kabir
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | | | - Sami Al-Ali
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,ASPETAR, Qatar Orthopedic and Sports Medicine HospitalDoha, Qatar
| |
Collapse
|