1
|
Martínez I, Rivera-Santiago L, Rodríguez-Hernández KD, Galván-Hernández A, Rodríguez-Fragoso L, Díaz-Peralta L, Torres-Martínez L, Agredano-Moreno LT, Jiménez-García LF, Ortega-Blake I, Espinoza B. A Promising Amphotericin B Derivative Induces Morphological Alterations, Mitochondrial Damage, and Oxidative Stress In Vitro and Prevents Mice from Death Produced by a Virulent Strain of Trypanosoma cruzi. Microorganisms 2024; 12:1064. [PMID: 38930447 PMCID: PMC11205368 DOI: 10.3390/microorganisms12061064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Chagas Disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, affecting 6-8 million people, mainly in Latin America. The medical treatment is based on two compounds, benznidazole and nifurtimox, with limited effectiveness and that produce severe side effects; consequently, there is an urgent need to develop new, safe, and effective drugs. Amphotericin B is the most potent antimycotic known to date. A21 is a derivative of this compound with the property of binding to ergosterol present in cell membranes of some organisms. In the search for a new therapeutic drug against T. cruzi, the objective of this work was to study the in vitro and in vivo effects of A21 derivative on T. cruzi. Our results show that the A21 increased the reactive oxygen species and reduced the mitochondrial membrane potential, affecting the morphology, metabolism, and cell membrane permeability of T. cruzi in vitro. Even more important was finding that in an in vivo murine model of infection, A21 in combination with benznidazole was able to reduce blood parasitemia, diminish the immune inflammatory infiltrate in skeletal muscle and rescue all the mice from death due to a virulent T. cruzi strain.
Collapse
Affiliation(s)
- Ignacio Martínez
- Laboratorio de Estudios Sobre Tripanosomiasis y Leishmaniasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City 04510, Mexico; (I.M.); (L.R.-S.); (K.D.R.-H.); (L.T.-M.)
| | - Lucio Rivera-Santiago
- Laboratorio de Estudios Sobre Tripanosomiasis y Leishmaniasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City 04510, Mexico; (I.M.); (L.R.-S.); (K.D.R.-H.); (L.T.-M.)
| | - Karla Daniela Rodríguez-Hernández
- Laboratorio de Estudios Sobre Tripanosomiasis y Leishmaniasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City 04510, Mexico; (I.M.); (L.R.-S.); (K.D.R.-H.); (L.T.-M.)
| | - Arturo Galván-Hernández
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, Cuernavaca 62251, Morelos, Mexico; (A.G.-H.); (L.D.-P.); (I.O.-B.)
| | - Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001 Col. Chamilpa, Cuernavaca 62210, Morelos, Mexico;
| | - Lucero Díaz-Peralta
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, Cuernavaca 62251, Morelos, Mexico; (A.G.-H.); (L.D.-P.); (I.O.-B.)
| | - Lisset Torres-Martínez
- Laboratorio de Estudios Sobre Tripanosomiasis y Leishmaniasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City 04510, Mexico; (I.M.); (L.R.-S.); (K.D.R.-H.); (L.T.-M.)
| | | | - Luis Felipe Jiménez-García
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City 04510, Mexico; (L.T.A.-M.); (L.F.J.-G.)
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, Cuernavaca 62251, Morelos, Mexico; (A.G.-H.); (L.D.-P.); (I.O.-B.)
| | - Bertha Espinoza
- Laboratorio de Estudios Sobre Tripanosomiasis y Leishmaniasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City 04510, Mexico; (I.M.); (L.R.-S.); (K.D.R.-H.); (L.T.-M.)
| |
Collapse
|
2
|
Schaub GA. Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors-A Review. Microorganisms 2024; 12:855. [PMID: 38792688 PMCID: PMC11123833 DOI: 10.3390/microorganisms12050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
3
|
Aliyeva DR, Gurbanova UA, Rzayev FH, Gasimov EK, Huseynova IM. Biochemical and Ultrastructural Changes in Wheat Plants during Drought Stress. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1944-1955. [PMID: 38105211 DOI: 10.1134/s0006297923110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Drought severely slows down plant growth, decreases crop yield, and affects various physiological processes in plants. We examined four local bread wheat cultivars with different drought tolerance (drought-tolerant Zirva 85 and Murov 2 and drought-sensitive Aran and Gyzyl bughda cultivars). Leaves from seedlings of drought-tolerant plants demonstrated higher activity of antioxidant enzymes and lower levels of malondialdehyde and hydrogen peroxide. The content of soluble proteins in drought-exposed increased, possibly due to the stress-induced activation of gene expression and protein synthesis. Drought-exposed Zirva 85 plants exhibited an elevated activity of nitrogen and carbon metabolism enzymes. Ultrastructural analysis by transmission electron microscopy showed drought-induced damage to mesophyll cells and chloroplast membranes, although it was manifested less in the drought-tolerant cultivars. Comparative analysis of the activity of metabolic and antioxidant enzymes, as well as observed ultrastructural changes in drought-exposed plants revealed that the response to drought of seedlings was more pronounced in drought-tolerant cultivars. These findings can be used in further studies of drought stress in wheat plants under natural conditions.
Collapse
Affiliation(s)
- Durna R Aliyeva
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, AZ1073, Azerbaijan.
| | - Ulduza A Gurbanova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, AZ1073, Azerbaijan.
| | - Fuad H Rzayev
- Laboratory of Electron Microscopy of the Scientific Research Center of Azerbaijan Medical University, Baku, AZ1078, Azerbaijan.
| | - Eldar K Gasimov
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, AZ1078, Azerbaijan.
| | - Irada M Huseynova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, AZ1073, Azerbaijan.
- Department of Molecular Biology and Biotechnologies, Baku State University, Baku, AZ1148, Azerbaijan
| |
Collapse
|
4
|
Dario MA, Maranhão PHC, Dos Santos GQ, Rocha MDM, Falqueto A, Da Silva LFCF, Jansen AM, Das Chagas Xavier SC. Environmental influence on <em>Triatoma vitticeps</em> occurrence and <em>Trypanosoma cruzi</em> infection in the Atlantic Forest of south-eastern Brazil. GEOSPATIAL HEALTH 2021; 16. [PMID: 34726032 DOI: 10.4081/gh.2021.997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Trypanosoma cruzi requires a triatomine insect vector for its life cycle, which can be complex in different enzootic scenarios, one of which is the unique transmission network in the Atlantic Forest of south-eastern Brazil. In Espírito Santo (ES) State, highly infected Triatoma vitticeps are frequently reported invading domiciles. However, triatomines were not found colonizing residences and mammals in the surrounding areas did not present T. cruzi infection. To date, the biotic and abiotic variables that modulate T. vitticeps occurrence and T. cruzi infection in ES State are still unknown. The aim of this study was to identify the environmental variables that modulate their occurrence. Local thematic maps were generated for two response variables: T. vitticeps occurrence and T. cruzi infection. The following explanatory variables were tested: climate (temperature, relative air humidity and rainfall), altitude elevation, mammalian species richness as well as soil and vegetation types. Spatiotemporal distribution patterns and correlation levels between response and explanatory variables were assessed through spatial statistics and map algebra modelling. The central and southern mesoregions presented higher T. vitticeps and T. cruzi distributions and can be considered transmission hotspots. The explanatory variables that can explain these phenomena were relative air humidity, average temperature, soil type, altitude elevation and mammalian species richness. Algebra map modelling demonstrated that central and southern mesoregions presented the environmental conditions needed for T. vitticeps occurrence and T. cruzi infection. The consideration of environmental variables is essential for understanding the T. cruzi transmission cycle. Cartographic and statistical methodologies used in parasitology have been demonstrated to be reliable and enlightening tools that should be incorporated routinely to expand the understanding of vector-borne parasite transmission.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro.
| | | | | | - Marcos de Meneses Rocha
- Department of Cartographic Engineering, Military Institute of Engineering, Rio de Janeiro, Rio de Janeiro.
| | - Aloísio Falqueto
- Tropical Medicine Unit, Federal University of Espírito Santo, Vitória, Espírito Santo; Department of Pathology, Federal University of Espírito Santo, Vitória, Espírito Santo.
| | | | - Ana Maria Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro.
| | | |
Collapse
|
5
|
Vasconcelos CI, Cronemberger-Andrade A, Souza-Melo N, Maricato JT, Xander P, Batista WL, Soares RP, Schenkman S, Torrecilhas AC. Stress Induces Release of Extracellular Vesicles by Trypanosoma cruzi Trypomastigotes. J Immunol Res 2021; 2021:2939693. [PMID: 34604391 PMCID: PMC8486533 DOI: 10.1155/2021/2939693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
All extracellular forms of Trypanosoma cruzi, the causative agent of Chagas disease, release extracellular vesicles (EVs) containing major surface molecules of the parasite. EV release depends on several mechanisms (internal and external). However, most of the environmental conditions affecting this phenomenon are still unknown. In this work, we evaluated EV release under different stress conditions and their ability to be internalized by the parasites. In addition, we investigated whether the release conditions would affect their immunomodulatory properties in preactivated bone marrow-derived macrophages (BMDM). Sodium azide and methyl-cyclo-β-dextrin (CDB) reduced EV release, indicating that this phenomenon relies on membrane organization. EV release was increased at low temperatures (4°C) and acidic conditions (pH 5.0). Under this pH, trypomastigotes differentiated into amastigotes. EVs are rapidly liberated and reabsorbed by the trypomastigotes in a concentration-dependent manner. Nitrosative stress caused by sodium nitrite in acid medium or S-nitrosoglutathione also stimulated the secretion of EVs. EVs released under all stress conditions also maintained their proinflammatory activity and increased the expression of iNOS, Arg 1, IL-12, and IL-23 genes in IFN-γ and LPS preactivated BMDM. In conclusion, our results suggest a budding mechanism of release, dependent on the membrane structure and parasite integrity. Stress conditions did not affect functional properties of EVs during interaction with host cells. EV release variations under stress conditions may be a physiological response against environmental changes.
Collapse
Affiliation(s)
- Camilla Ioshida Vasconcelos
- Departamento de Ciências Farmacêuticas, UNIFESP, Rua São Nicolau, 210, 09913-030, Diadema, São Paulo, Brazil
| | - A Cronemberger-Andrade
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Normanda Souza-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Pedro de Toledo, 669, 04039-032 São Paulo, Brazil
| | - Juliana Terzi Maricato
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Botucatu, 862, 04023-062 São Paulo, Brazil
| | - Patrícia Xander
- Departamento de Ciências Farmacêuticas, UNIFESP, Rua São Nicolau, 210, 09913-030, Diadema, São Paulo, Brazil
| | - Wagner Luiz Batista
- Departamento de Ciências Farmacêuticas, UNIFESP, Rua São Nicolau, 210, 09913-030, Diadema, São Paulo, Brazil
| | - Rodrigo Pedro Soares
- Instituto René Rachou/FIOCRUZ-MG, Av. Augusto de Lima, 1715, 30190-009 Belo Horizonte, Minas Gerais, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Pedro de Toledo, 669, 04039-032 São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, UNIFESP, Rua São Nicolau, 210, 09913-030, Diadema, São Paulo, Brazil
| |
Collapse
|
6
|
Cárdenas-Guerra RE, Moreno-Gutierrez DS, Vargas-Dorantes ODJ, Espinoza B, Hernandez-Garcia A. Delivery of Antisense DNA into Pathogenic Parasite Trypanosoma cruzi Using Virus-Like Protein-Based Nanoparticles. Nucleic Acid Ther 2020; 30:392-401. [PMID: 32907491 DOI: 10.1089/nat.2020.0870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trypanosoma cruzi, which causes Chagas disease, is one of the most lacerating parasites in terms of health and social impacts. New approaches for its study and treatment are urgently needed since in more than 50 years only two drugs have been approved. Genetic approaches based on antisense oligonucleotides (AONs) are promising; however, to harness their full potential the development of effective carriers is paramount. Here, we report the use of an engineered virus-like protein C-BK12 to transfect AONs into T. cruzi. Using gel electrophoresis, Dynamic Light Scattering, and atomic force microscopy, we found that C-BK12 binds AONs and forms 10-25 nm nanoparticles (NPs), which are very stable when incubated in biological media, only releasing up to 25% of AON. Fluorescence microscopy and qPCR revealed that the NPs successfully delivered AONs into epimastigotes and reduced the expression of a target gene down to 68%. Importantly, the protein did not show cytotoxicity. The combination of high stability and capability to transfect and knock down gene expression without causing cell damage and death makes the protein C-BK12 a promising starting point for the further development of safe and effective carriers to deliver AONs into T. cruzi for biological studies.
Collapse
Affiliation(s)
- Rosa E Cárdenas-Guerra
- Laboratorio de Estudios sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David S Moreno-Gutierrez
- Laboratory of Biomolecular Engineering and Bionanotechnology, Departamento de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Oscar de J Vargas-Dorantes
- Laboratory of Biomolecular Engineering and Bionanotechnology, Departamento de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Bertha Espinoza
- Laboratorio de Estudios sobre Tripanosomiasis, Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Departamento de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
7
|
Rodríguez-Hernández KD, Martínez I, Reyes-Chilpa R, Espinoza B. Mammea type coumarins isolated from Calophyllum brasiliense induced apoptotic cell death of Trypanosoma cruzi through mitochondrial dysfunction, ROS production and cell cycle alterations. Bioorg Chem 2020; 100:103894. [DOI: 10.1016/j.bioorg.2020.103894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
|
8
|
López-Huerta FA, Nieto-Camacho A, Morales-Flores F, Hernández-Ortega S, Chávez MI, Méndez Cuesta CA, Martínez I, Espinoza B, Espinosa-García FJ, Delgado G. Hopane-type triterpenes from Cnidoscolus spinosus and their bioactivities. Bioorg Chem 2020; 100:103919. [PMID: 32417524 DOI: 10.1016/j.bioorg.2020.103919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/05/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Chemical investigation of the aerial parts of Cnidoscolus spinosus resulted in the isolation of relatively infrequent hopane-type triterpenes, 3β-acetoxy-hop-22(29)-ene (1), first reported here as natural product, together with 3-oxo-hop-22(29)-ene (2), and 3β-hydroxy-hop-22(29)-ene (3). β-Amyrin palmitate and three phytosterols were also characterized. The structures of the compounds were established using spectroscopic methods, and those of 1 and 2 were confirmed by crystallographic analysis. Selected biological activities for the isolated hopane-type triterpenes were tested through a series of assays for determining the cytotoxic, anti-inflammatory, α-glucosidase inhibition and antiparasitic activities. Compounds 1-3 did not show cytotoxic activity, compound 1 displayed an important inhibitory effect in the mouse ear induced inflammation assay, and significantly inhibited the yeast α-glucosidase activity in vitro and in silico. Additionally, compounds 2 and 3 showed marginal activities against Trypanosoma cruzi and Leishmania mexicana. Therefore, the bioactivities of hopane-type triterpenes deserve further investigation, particularly their anti-inflammatory properties.
Collapse
Affiliation(s)
- Fabiola A López-Huerta
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Félix Morales-Flores
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Simón Hernández-Ortega
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - María Isabel Chávez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Carlos A Méndez Cuesta
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Ciudad de México 04960, Mexico
| | - Ignacio Martínez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
| | - Bertha Espinoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
| | - Francisco J Espinosa-García
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Ex Hacienda de San José de la Huerta 58190, Morelia, Mexico
| | - Guillermo Delgado
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Lucena ACR, Amorim JC, de Paula Lima CV, Batista M, Krieger MA, de Godoy LMF, Marchini FK. Quantitative phosphoproteome and proteome analyses emphasize the influence of phosphorylation events during the nutritional stress of Trypanosoma cruzi: the initial moments of in vitro metacyclogenesis. Cell Stress Chaperones 2019; 24:927-936. [PMID: 31368045 PMCID: PMC6717228 DOI: 10.1007/s12192-019-01018-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation is an important event in cell signaling that is modulated by kinases and phosphatases. In Trypanosoma cruzi, the etiological agent of Chagas disease, approximately 2% of the protein-coding genes encode for protein kinases. This parasite has a heteroxenic life cycle with four different development stages. In the midgut of invertebrate vector, epimastigotes differentiate into metacyclic trypomastigotes in a process known as metacyclogenesis. This process can be reproduced in vitro by submitting parasites to nutritional stress (NS). Aiming to contribute to the elucidation of mechanisms that trigger metacyclogenesis, we applied super-SILAC (super-stable isotope labeling by amino acids in cell culture) and LC-MS/MS to analyze different points during NS. This analysis resulted in the identification of 4205 protein groups and 3643 phosphopeptides with the location of 4846 phosphorylation sites. Several phosphosites were considered modulated along NS and are present in proteins associated with various functions, such as fatty acid synthesis and the regulation of protein expression, reinforcing the importance of phosphorylation and signaling events to the parasite. These modulated sites may be triggers of metacyclogenesis.
Collapse
Affiliation(s)
- Aline Castro Rodrigues Lucena
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Juliana Carolina Amorim
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Carla Vanessa de Paula Lima
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Michel Batista
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Marco Aurelio Krieger
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Lyris Martins Franco de Godoy
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | - Fabricio Klerynton Marchini
- Laboratory of Applied Science and Technologies in Health, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.
| |
Collapse
|
10
|
Rodríguez-Hernández KD, Martínez I, Agredano-Moreno LT, Jiménez-García LF, Reyes-Chilpa R, Espinoza B. Coumarins isolated from Calophyllum brasiliense produce ultrastructural alterations and affect in vitro infectivity of Trypanosoma cruzi. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152827. [PMID: 31039535 DOI: 10.1016/j.phymed.2019.152827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The current drugs for Chagas Disease caused by the protozoan Trypanosoma cruzi have limited therapeutic potential and are associated with serious side effects. Natural products can aid to develop new chemotherapeutic agents. Several natural coumarins, especially Mammea A/BA, have shown significant activity against T. cruzi and low toxicity on human lymphocytes, but its effectivity on a wide range of strains need to be tested, as well as to deepen in their mode of action and safety. HYPOTHESIS/PURPOSE To discern the effects and explore the action mechanisms of mammea A/BA and a mixture of mammea coumarins isolated from Calophyllum brasiliense on Mexican strains of T. cruzi belonging to different genotypes and compare its effectivity with the drug benznidazole. STUDY DESIGN We evaluated the trypanocidal activity in vitro of mammea A/BA (93.6%), and a mixture of coumarins, mammea A/BA + A/BB + A/BD (86:10:1%) on Mexican T. cruzi strains belonging to different genotypes Ninoa, Querétaro (TcI) and Ver6 (TcVI). MATERIAL AND METHODS Mammea A/BA and the mixture of coumarins, were isolated from Calophyllum brasiliense, identified by proton NMR and purity determined by HPLC. The in vitro trypanocidal activity was evaluated on mobility, growth recovery, morphology and infectivity of T. cruzi. The cytotoxicity on mammalian cells was compared with benznidazole. The ultrastructure of the treated epimastigotes was analyzed by transmission electron microscopy (TEM). RESULTS Mammea A/BA and the mixture of coumarins showed high trypanocidal activity, affecting the mobility, growth recovery, morphology, ultrastructure of epimastigotes, and drastically reduce trypomastigotes infectivity on Vero cells. These substances were four times more potent than benznidazole and showed low cytotoxicity and high selectivity index. The TEM showed severe alterations on the plasmatic membrane, nuclear envelope, as well as, mitochondrial swelling, that leads to the death of parasites. CONCLUSION Mammea A/BA (93.6%) and a mixture of mammea A/BA + A/BB and A/BD (86: 10: 1%) isolated from the tropical tree C. brasiliense showed higher trypanocidal activity than the current drug benznidazole on three Mexican strains of T. cruzi. These compounds induced severe physiological and morphological alterations. These results suggest their possible use in preclinical studies.
Collapse
Affiliation(s)
- Karla Daniela Rodríguez-Hernández
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico
| | - Ignacio Martínez
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico
| | - Lourdes Teresa Agredano-Moreno
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico
| | - Luis Felipe Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico
| | - Ricardo Reyes-Chilpa
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico.
| | - Bertha Espinoza
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510 México Distrito Federal, Mexico.
| |
Collapse
|
11
|
Landoni M, Piñero T, Soprano LL, Garcia-Bournissen F, Fichera L, Esteva MI, Duschak VG, Couto AS. Tamoxifen acts on Trypanosoma cruzi sphingolipid pathway triggering an apoptotic death process. Biochem Biophys Res Commun 2019; 516:934-940. [PMID: 31277939 DOI: 10.1016/j.bbrc.2019.06.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022]
Abstract
This study shows the effects of tamoxifen, a known estrogen receptor antagonist used in the treatment of breast cancer, on the sphingolipid pathway of Trypanosoma cruzi, searching for potential chemotherapeutic targets. A dose-dependent epimastigote growth inhibition at increasing concentration of tamoxifen was determined. In blood trypomastigotes, treatment with 10 μM showed 90% lysis, while 86% inhibition of intracellular amastigote development was obtained using 50 μM. Lipid extracts from treated and non-treated metabolically labelled epimastigotes evidenced by thin layer chromatography different levels of sphingolipids and MALDI-TOF mass spectrometry analysis assured the identity of the labelled species. Comparison by HPLC-ESI mass spectrometry of lipids, notably exhibited a dramatic increase in the level of ceramide in tamoxifen-treated parasites and a restrained increase of ceramide-1P and sphingosine, indicating that the drug is acting on the enzymes involved in the final breakdown of ceramide. The ultrastructural analysis of treated parasites revealed characteristic morphology of cells undergoing an apoptotic-like death process. Flow cytometry confirmed cell death by an apoptotic-like machinery indicating that tamoxifen triggers this process by acting on the parasitic sphingolipid pathway.
Collapse
Affiliation(s)
- Malena Landoni
- Universidad de Buenos Aires, FCEN, Departamento de Química Orgánica - CONICET, CIHIDECAR, Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Tamara Piñero
- Universidad de Buenos Aires, FCEN, Departamento de Química Orgánica - CONICET, CIHIDECAR, Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Luciana L Soprano
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Malbrán, Secretaría de Salud de la Nación, Departamento de Investigación, Av. Paseo Colon 568, Buenos Aires, 1063, Argentina
| | - Facundo Garcia-Bournissen
- Instituto Multidisciplinario de Investigaciones en Enfermedades Pedíatricas (IMIPP), CONICET, Hospital de Niños "Ricardo Gutiérrez", Gallo 1330, Buenos Aires, 1425, Argentina
| | - Laura Fichera
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Malbrán, Secretaría de Salud de la Nación, Departamento de Investigación, Av. Paseo Colon 568, Buenos Aires, 1063, Argentina
| | - Monica I Esteva
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Malbrán, Secretaría de Salud de la Nación, Departamento de Investigación, Av. Paseo Colon 568, Buenos Aires, 1063, Argentina
| | - Vilma G Duschak
- Instituto Nacional de Parasitología "Dr Mario Fatala Chaben", ANLIS-Malbrán, Secretaría de Salud de la Nación, Departamento de Investigación, Av. Paseo Colon 568, Buenos Aires, 1063, Argentina
| | - Alicia S Couto
- Universidad de Buenos Aires, FCEN, Departamento de Química Orgánica - CONICET, CIHIDECAR, Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
12
|
de Fuentes-Vicente JA, Gutiérrez-Cabrera AE, Flores-Villegas AL, Lowenberger C, Benelli G, Salazar-Schettino PM, Córdoba-Aguilar A. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Trop 2018; 183:23-31. [PMID: 29625091 DOI: 10.1016/j.actatropica.2018.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/13/2018] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
The Chagas disease is caused by the parasite Trypanosoma cruzi, which infect blood-feeding triatomine bugs to finally reach mammal hosts. Chagas disease is endemic in Latin America, and is ranked among the 13 neglected tropical diseases worldwide. Currently, an estimate of 7 million people is infected by T. cruzi, leading to about 22 000 deaths per year throughout the Americas. As occurs with other vectors, a major question towards control programs is what makes a susceptible bug. In this review, we focus on findings linked to insect gut structure and microbiota, immunity, genetics, blood sources, abiotic factors (with special reference to ambient temperature and altitude) to understand the interactions occurring between T. cruzi and triatomine bugs, under a co-evolutionary scenario. These factors lead to varying fitness benefits and costs for bugs, explaining why infection in the insect takes place and how it varies in time and space. Our analysis highlights that major factors are gut components and microbiota, blood sources and temperature. Although their close interaction has never been clarified, knowledge reviewed here may help to boost the success of triatomine control programs, reducing the use of insecticides.
Collapse
|