1
|
Maldonado E, Canobra P, Oyarce M, Urbina F, Miralles VJ, Tapia JC, Castillo C, Solari A. In Vitro Identification of Phosphorylation Sites on TcPolβ by Protein Kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 and Effect of Phorbol Ester on Activation by TcPKC of TcPolβ in Trypanosoma cruzi Epimastigotes. Microorganisms 2024; 12:907. [PMID: 38792752 PMCID: PMC11124317 DOI: 10.3390/microorganisms12050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite's growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could help to develop new drugs to treat the disease caused by these protozoa. In the present work, we have demonstrated that Fetal Calf Serum (FCS) can quickly increase the levels of both phosphorylated and unphosphorylated forms of T. cruzi DNA polymerase beta (TcPolβ) in tissue-cultured trypomastigotes. The in vitro phosphorylation sites on TcPolβ by protein kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 have been identified by Mass Spectrometry (MS) analysis and with antibodies against phosphor Ser-Thr-Tyr. MS analysis indicated that these protein kinases can phosphorylate Ser and Thr residues on several sites on TcPolβ. Unexpectedly, it was found that TcCK1 and TcPKC1 can phosphorylate a different Tyr residue on TcPolβ. By using a specific anti-phosphor Tyr monoclonal antibody, it was determined that TcCK1 can be in vitro autophosphorylated on Tyr residues. In vitro and in vivo studies showed that phorbol 12-myristate 13-acetate (PMA) can activate the PKC to stimulate the TcPolβ phosphorylation and enzymatic activity in T. cruzi epimastigotes.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Paz Canobra
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Matías Oyarce
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Vicente J. Miralles
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46110 Valencia, Spain;
| | - Julio C. Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (P.C.); (M.O.); (F.U.); (J.C.T.)
| |
Collapse
|
2
|
Macedo-da-Silva J, Mule SN, Rosa-Fernandes L, Palmisano G. A computational pipeline elucidating functions of conserved hypothetical Trypanosoma cruzi proteins based on public proteomic data. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:401-428. [PMID: 38220431 DOI: 10.1016/bs.apcsb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The proteome is complex, dynamic, and functionally diverse. Functional proteomics aims to characterize the functions of proteins in biological systems. However, there is a delay in annotating the function of proteins, even in model organisms. This gap is even greater in other organisms, including Trypanosoma cruzi, the causative agent of the parasitic, systemic, and sometimes fatal disease called Chagas disease. About 99.8% of Trypanosoma cruzi proteome is not manually annotated (unreviewed), among which>25% are conserved hypothetical proteins (CHPs), calling attention to the knowledge gap on the protein content of this organism. CHPs are conserved proteins among different species of various evolutionary lineages; however, they lack functional validation. This study describes a bioinformatics pipeline applied to public proteomic data to infer possible biological functions of conserved hypothetical Trypanosoma cruzi proteins. Here, the adopted strategy consisted of collecting differentially expressed proteins between the epimastigote and metacyclic trypomastigotes stages of Trypanosoma cruzi; followed by the functional characterization of these CHPs applying a manifold learning technique for dimension reduction and 3D structure homology analysis (Spalog). We found a panel of 25 and 26 upregulated proteins in the epimastigote and metacyclic trypomastigote stages, respectively; among these, 18 CHPs (8 in the epimastigote stage and 10 in the metacyclic stage) were characterized. The data generated corroborate the literature and complement the functional analyses of differentially regulated proteins at each stage, as they attribute potential functions to CHPs, which are frequently identified in Trypanosoma cruzi proteomics studies. However, it is important to point out that experimental validation is required to deepen our understanding of the CHPs.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil; Centre for Motor Neuron Disease Research, Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Sydney, NSW, Australia
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Caroli AP, Mansoldo FRP, Cardoso VS, Lage CLS, Carmo FL, Supuran CT, Beatriz Vermelho A. Are patents important indicators of innovation for Chagas disease treatment? Expert Opin Ther Pat 2023; 33:193-209. [PMID: 36786067 DOI: 10.1080/13543776.2023.2176219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Chagas disease is a neglected, endemic disease in 21 countries, spreading to non-endemic countries too. Like other neglected diseases affecting primarily low- and middle-income countries, low investment and the absence of new chemical entities from the industry occurred. Increased knowledge about the parasite, drug targets, and vector control has been observed, but this was not translated into new drugs. The partnerships of pharmaceutical companies with academies and consolidated networks to increment the new drugs and treatment research in Chagas disease are shown. The current review analyzes in detail the patents dealing with compounds candidates for new drugs and treatment. The patent search was performed using Orbit Intelligence® software in the 2001-2021 period. AREAS COVERED The author focused specifically on patents for the treatment, the new candidates disclosed in the patents, and the barriers to innovation. EXPERT OPINION Patents in Chagas disease have been increasing in the last years, although they do not bring new compounds to an effective treatment.
Collapse
Affiliation(s)
- Andrea Pestana Caroli
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Felipe R P Mansoldo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Veronica S Cardoso
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Celso Luiz Salgueiro Lage
- National Institute of Intellectual Property (INPI), Graduate and Research Division, Rio de Janeiro-RJ, Brazil
| | - Flavia L Carmo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, LEMM - Molecular Microbial Ecology Laboratory
| | - Claudiu T Supuran
- NEUROFARBA Department Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Alane Beatriz Vermelho
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
García-Huertas P, Cuesta-Astroz Y, Araque-Ruiz V, Cardona-Castro N. Transcriptional changes during metacyclogenesis of a Colombian Trypanosoma cruzi strain. Parasitol Res 2023; 122:625-634. [PMID: 36567399 DOI: 10.1007/s00436-022-07766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 12/27/2022]
Abstract
During its life cycle, Trypanosoma cruzi undergoes physiological modifications in order to adapt to insect vector and mammalian host conditions. Metacyclogenesis is essential, as the parasite acquires the ability to infect a variety of mammalian species, including humans, in which pathology is caused. In this work, the transcriptomes of metacyclic trypomastigotes and epimastigotes were analyzed in order to identify differentially expressed genes that may be involved in metacyclogenesis. Toward this end, in vitro induction of metacyclogenesis was performed and metacyclic trypomastigotes obtained. RNA-Seq was performed on triplicate samples of epimastigotes and metacyclic trypomastigotes. Differential gene expression analysis showed 513 genes, of which 221 were upregulated and 292 downregulated in metacyclic trypomastigotes. The analysis showed that these genes are related to biological processes relevant in metacyclogenesis. Within these processes, we found that most of the genes associated with infectivity and gene expression regulation were upregulated in metacyclic trypomastigotes, while genes involved in cell division, DNA replication, differentiation, cytoskeleton, and metabolism were mainly downregulated. The participation of some of these genes in T. cruzi metacyclogenesis is of interest, as they may be used as potential therapeutic targets in the design of new drugs for Chagas disease.
Collapse
Affiliation(s)
- Paola García-Huertas
- Instituto Colombiano de Medicina Tropical, Universidad CES, CP 055450, Sabaneta, Antioquia, Colombia.
| | - Yesid Cuesta-Astroz
- Instituto Colombiano de Medicina Tropical, Universidad CES, CP 055450, Sabaneta, Antioquia, Colombia
| | - Valentina Araque-Ruiz
- Instituto Colombiano de Medicina Tropical, Universidad CES, CP 055450, Sabaneta, Antioquia, Colombia
| | - Nora Cardona-Castro
- Instituto Colombiano de Medicina Tropical, Universidad CES, CP 055450, Sabaneta, Antioquia, Colombia
| |
Collapse
|
5
|
Alves AA, Alcantara CL, Dantas-Jr MVA, Sunter JD, De Souza W, Cunha-E-Silva NL. Dynamics of the orphan myosin MyoF over Trypanosoma cruzi life cycle and along the endocytic pathway. Parasitol Int 2022; 86:102444. [PMID: 34464754 DOI: 10.1016/j.parint.2021.102444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022]
Abstract
Trypanosoma cruzi proliferative forms perform endocytosis through a specialized structure named the cytostome-cytopharynx complex (SPC). The SPC is a specialized invagination of the cell membrane that extends through the cell body towards the posterior regions, with its aperture close to the flagellar pocket. Recently, diverse proteins were found along the cytopharynx, including two myosin motors. One of these is the orphan myosin MyoF, that was proved to be essential for endocytosis in epimastigotes. However, the dynamics of MyoF localization along the endocytic pathway and through the T. cruzi life cycle remain unclear. Using CRISPR-Cas9 genome editing, we generated epimastigotes expressing MyoF fused to mNeonGreen from its endogenous locus. Using these cells, we observed that during the epimastigote cell cycle MyoF signal disappeared during G2, reappearing at early cytokinesis. Additionally, we show that MyoF localization during metacyclogenesis is compatible with the progressive disappearance of the SPC, being absent in metacyclic trypomastigotes. Detergent fractionation showed that MyoF was predominantly present in the insoluble fraction and immunolocalized at the SPC microtubules in whole-mount cytoskeleton preparations. Moreover, during tracer uptake through the SPC, MyoF followed the tracer along the endocytic pathway and was found in posterior compartments after 30 min. Taken together, the data suggest that MyoF may play a role not only at the cargo entry site but also along the endocytic pathway.
Collapse
Affiliation(s)
- A A Alves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Instituto Nacional de Biologia Estrutural e Bioimagem and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil
| | - C L Alcantara
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Instituto Nacional de Biologia Estrutural e Bioimagem and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil
| | - M V A Dantas-Jr
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Instituto Nacional de Biologia Estrutural e Bioimagem and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil
| | - J D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - W De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Instituto Nacional de Biologia Estrutural e Bioimagem and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil
| | - N L Cunha-E-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Instituto Nacional de Biologia Estrutural e Bioimagem and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Chiurillo MA, Jensen BC, Docampo R. Drug Target Validation of the Protein Kinase AEK1, Essential for Proliferation, Host Cell Invasion, and Intracellular Replication of the Human Pathogen Trypanosoma cruzi. Microbiol Spectr 2021; 9:e0073821. [PMID: 34585973 PMCID: PMC8557885 DOI: 10.1128/spectrum.00738-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
Protein phosphorylation is involved in several key biological roles in the complex life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease, and protein kinases are potential drug targets. Here, we report that the AGC essential kinase 1 (TcAEK1) exhibits a cytosolic localization and a higher level of expression in the replicative stages of the parasite. A CRISPR/Cas9 editing technique was used to generate ATP analog-sensitive TcAEK1 gatekeeper residue mutants that were selectively and acutely inhibited by bumped kinase inhibitors (BKIs). Analysis of a single allele deletion cell line (TcAEK1-SKO), and gatekeeper mutants upon treatment with inhibitor, showed that epimastigote forms exhibited a severe defect in cytokinesis. Moreover, we also demonstrated that TcAEK1 is essential for epimastigote proliferation, trypomastigote host cell invasion, and amastigote replication. We suggest that TcAEK1 is a pleiotropic player involved in cytokinesis regulation in T. cruzi and thus validate TcAEK1 as a drug target for further exploration. The gene editing strategy we applied to construct the ATP analog-sensitive enzyme could be appropriate for the study of other proteins of the T. cruzi kinome. IMPORTANCE Chagas disease affects 6 to 7 million people in the Americas, and its treatment has been limited to drugs with relatively high toxicity and low efficacy in the chronic phase of the infection. New validated targets are needed to combat this disease. In this work, we report the chemical and genetic validation of the protein kinase AEK1, which is essential for cytokinesis and infectivity, using a novel gene editing strategy.
Collapse
Affiliation(s)
- Miguel A. Chiurillo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Bryan C. Jensen
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. mSphere 2021; 6:e0036621. [PMID: 34468164 PMCID: PMC8550152 DOI: 10.1128/msphere.00366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent for Chagas disease, a neglected parasitic disease in Latin America. Gene transcription control governs the eukaryotic cell replication but is absent in trypanosomatids; thus, it must be replaced by posttranscriptional regulatory events. We investigated the entrance into the T. cruzi replicative cycle using ribosome profiling and proteomics on G1/S epimastigote cultures synchronized with hydroxyurea. We identified 1,784 translationally regulated genes (change > 2, false-discovery rate [FDR] < 0.05) and 653 differentially expressed proteins (change > 1.5, FDR < 0.05), respectively. A major translational remodeling accompanied by an extensive proteome change is found, while the transcriptome remains largely unperturbed at the replicative entrance of the cell cycle. The differentially expressed genes comprise specific cell cycle processes, confirming previous findings while revealing candidate cell cycle regulators that undergo previously unnoticed translational regulation. Clusters of genes showing a coordinated regulation at translation and protein abundance share related biological functions such as cytoskeleton organization and mitochondrial metabolism; thus, they may represent posttranscriptional regulons. The translatome and proteome of the coregulated clusters change in both coupled and uncoupled directions, suggesting that complex cross talk between the two processes is required to achieve adequate protein levels of different regulons. This is the first simultaneous assessment of the transcriptome, translatome, and proteome of trypanosomatids, which represent a paradigm for the absence of transcriptional control. The findings suggest that gene expression chronology along the T. cruzi cell cycle is controlled mainly by translatome and proteome changes coordinated using different mechanisms for specific gene groups. IMPORTANCE Trypanosoma cruzi is an ancient eukaryotic unicellular parasite causing Chagas disease, a potentially life-threatening illness that affects 6 to 7 million people, mostly in Latin America. The antiparasitic treatments for the disease have incomplete efficacy and adverse reactions; thus, improved drugs are needed. We study the mechanisms governing the replication of the parasite, aiming to find differences with the human host, valuable for the development of parasite-specific antiproliferative drugs. Transcriptional regulation is essential for replication in most eukaryotes, but in trypanosomatids, it must be replaced by subsequent gene regulation steps since they lack transcription initiation control. We identified the genome-wide remodeling of mRNA translation and protein abundance during the entrance to the replicative phase of the cell cycle. We found that translation is strongly regulated, causing variation in protein levels of specific cell cycle processes, representing the first simultaneous study of the translatome and proteome in trypanosomatids.
Collapse
|
8
|
Maldonado E, Rojas DA, Urbina F, Solari A. T. cruzi DNA polymerase beta (Tcpolβ) is phosphorylated in vitro by CK1, CK2 and TcAUK1 leading to the potentiation of its DNA synthesis activity. PLoS Negl Trop Dis 2021; 15:e0009588. [PMID: 34260580 PMCID: PMC8312956 DOI: 10.1371/journal.pntd.0009588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/26/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
The unicellular protozoan Trypanosoma cruzi is the causing agent of Chagas disease which affects several millions of people around the world. The components of the cell signaling pathways in this parasite have not been well studied yet, although its genome can encode several components able to transduce the signals, such as protein kinases and phosphatases. In a previous work we have found that DNA polymerase β (Tcpolβ) can be phosphorylated in vivo and this modification activates the synthesis activity of the enzyme. Tcpolβ is kinetoplast-located and is a key enzyme in the DNA base excision repair (BER) system. The polypeptide possesses several consensus phosphorylation sites for several protein kinases, however, a direct phosphorylation of those sites by specific kinases has not been reported yet. Tcpolβ has consensus phosphorylation sites for casein kinase 1 (CK1), casein kinase 2 (CK2) and aurora kinase (AUK). Genes encoding orthologues of those kinases exist in T. cruzi and we were able to identify the genes and to express them to investigate whether or no Tcpolβ could be a substrate for in vitro phosphorylation by those kinases. Both CK1 and TcAUK1 have auto-phosphorylation activities and they are able to phosphorylate Tcpolβ. CK2 cannot perform auto-phosphorylation of its subunits, however, it was able to phosphorylate Tcpolβ. Pharmacological inhibitors used to inhibit the homologous mammalian kinases can also inhibit the activity of T. cruzi kinases, although, at higher concentrations. The phosphorylation events carried out by those kinases can potentiate the DNA polymerase activity of Tcpolβ and it is discussed the role of the phosphorylation on the DNA polymerase and lyase activities of Tcpolβ. Taken altogether, indicates that CK1, CK2 and TcAUK1 can play an in vivo role regulating the function of Tcpolβ.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (EM); (AS)
| | - Diego A. Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (EM); (AS)
| |
Collapse
|
9
|
de Almeida RF, Fernandes M, de Godoy LMF. An updated map of Trypanosoma cruzi histone post-translational modifications. Sci Data 2021; 8:93. [PMID: 33767201 PMCID: PMC7994815 DOI: 10.1038/s41597-021-00818-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
In humans and other eukaryotes, histone post-translational modifications (hPTMs) play an essential role in the epigenetic control of gene expression. In trypanosomatid parasites, conversely, gene regulation occurs mainly at the post-transcriptional level. However, our group has recently shown that hPTMs are abundant and varied in Trypanosoma cruzi, the etiological agent of Chagas Disease, signaling for possible conserved epigenetic functions. Here, we applied an optimized mass spectrometry-based proteomic workflow to provide a high-confidence comprehensive map of hPTMs, distributed in all canonical, variant and linker histones of T. cruzi. Our work expands the number of known T. cruzi hPTMs by almost 2-fold, representing the largest dataset of hPTMs available to any trypanosomatid to date, and can be used as a basis for functional studies on the dynamic regulation of chromatin by epigenetic mechanisms and the selection of candidates for the development of epigenetic drugs against trypanosomatids. Measurement(s) | histone_modification | Technology Type(s) | mass spectrometry • nanoflow liquid chromatography-tandem mass spectrometry • Data-Dependent Acquisition | Sample Characteristic - Organism | Trypanosoma cruzi |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.13491165
Collapse
|
10
|
Stryiński R, Łopieńska-Biernat E, Carrera M. Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods 2020; 9:E1403. [PMID: 33022912 PMCID: PMC7601233 DOI: 10.3390/foods9101403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites' transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
| |
Collapse
|
11
|
de Lima LP, Poubel SB, Yuan ZF, Rosón JN, Vitorino FNDL, Holetz FB, Garcia BA, da Cunha JPC. Improvements on the quantitative analysis of Trypanosoma cruzi histone post translational modifications: Study of changes in epigenetic marks through the parasite's metacyclogenesis and life cycle. J Proteomics 2020; 225:103847. [PMID: 32480077 DOI: 10.1016/j.jprot.2020.103847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/26/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Trypanosome histone N-terminal sequences are very divergent from the other eukaryotes, although they are still decorated by post-translational modifications (PTMs). Here, we used a highly robust workflow to analyze histone PTMs in the parasite Trypanosoma cruzi using mass spectrometry-based (MS-based) data-independent acquisition (DIA). We adapted the workflow for the analysis of the parasite's histone sequences by modifying the software EpiProfile 2.0, improving peptide and PTM quantification accuracy. This workflow could now be applied to the study of 141 T. cruzi modified histone peptides, which we used to investigate the dynamics of histone PTMs along the metacyclogenesis and the life cycle of T. cruzi. Global levels of histone acetylation and methylation fluctuates along metacyclogenesis, however most critical differences were observed between parasite life forms. More than 66 histone PTM changes were detected. Strikingly, the histone PTM pattern of metacyclic trypomastigotes is more similar to epimastigotes than to cellular trypomastigotes. Finally, we highlighted changes at the H4 N-terminus and at H3K76 discussing their impact on the trypanosome biology. Altogether, we have optimized a workflow easily applicable to the analysis of histone PTMs in T. cruzi and generated a dataset that may shed lights on the role of chromatin modifications in this parasite. SIGNIFICANCE: Trypanosomes are unicellular parasites that have divergent histone sequences, no chromosome condensation and a peculiar genome/gene regulation. Genes are transcribed from divergent polycistronic regions and post-transcriptional gene regulation play major role on the establishment of transcripts and protein levels. In this regard, the fact that their histones are decorated with multiple PTMs raises interesting questions about their role. Besides, this digenetic organism must adapt to different environments changing its metabolism accordingly. As metabolism and epigenetics are closely related, the study of histone PTMs in trypanosomes may enlighten this strikingly, and not yet fully understood, interplay. From a biomedical perspective, the comprehensive study of molecular mechanisms associated to the metacyclogenesis process is essential to create better strategies for controlling Chagas disease.
Collapse
Affiliation(s)
- Loyze P de Lima
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Saloe Bispo Poubel
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil; Instituto Carlos Chagas, FIOCRUZ, Rua Algacyr Munhoz Mader, 3775. CIC, Curitiba, PR 81350-010, Brazil
| | - Zuo-Fei Yuan
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juliana Nunes Rosón
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Francisca Nathalia de Luna Vitorino
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Fabiola Barbieri Holetz
- Instituto Carlos Chagas, FIOCRUZ, Rua Algacyr Munhoz Mader, 3775. CIC, Curitiba, PR 81350-010, Brazil
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Pinheiro Chagas da Cunha
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, SP, Brazil; Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Parthasarathy A, Kalesh K. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem 2020; 11:625-645. [PMID: 33479664 PMCID: PMC7549140 DOI: 10.1039/d0md00122h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry-based proteomics enables accurate measurement of the modulations of proteins on a large scale upon perturbation and facilitates the understanding of the functional roles of proteins in biological systems. It is a particularly relevant methodology for studying Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei, as the gene expression in these parasites is primarily regulated by posttranscriptional mechanisms. Large-scale proteomics studies have revealed a plethora of information regarding modulated proteins and their molecular interactions during various life processes of the protozoans, including stress adaptation, life cycle changes and interactions with the host. Important molecular processes within the parasite that regulate the activity and subcellular localisation of its proteins, including several co- and post-translational modifications, are also accurately captured by modern proteomics mass spectrometry techniques. Finally, in combination with synthetic chemistry, proteomic techniques facilitate unbiased profiling of targets and off-targets of pharmacologically active compounds in the parasites. This provides important data sets for their mechanism of action studies, thereby aiding drug development programmes.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology , Thomas H. Gosnell School of Life Sciences , 85 Lomb Memorial Dr , Rochester , NY 14623 , USA
| | - Karunakaran Kalesh
- Department of Chemistry , Durham University , Lower Mount Joy, South Road , Durham DH1 3LE , UK .
| |
Collapse
|
13
|
Wozniak JM, Silva TA, Thomas D, Siqueira-Neto JL, McKerrow JH, Gonzalez DJ, Calvet CM. Molecular dissection of Chagas induced cardiomyopathy reveals central disease associated and druggable signaling pathways. PLoS Negl Trop Dis 2020; 14:e0007980. [PMID: 32433643 PMCID: PMC7279607 DOI: 10.1371/journal.pntd.0007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/08/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease, the clinical presentation of T. cruzi infection, is a major human health concern. While the acute phase of Chagas disease is typically asymptomatic and self-resolving, chronically infected individuals suffer numerous sequelae later in life. Cardiomyopathies in particular are the most severe consequence of chronic Chagas disease and cannot be reversed solely by parasite load reduction. To prioritize new therapeutic targets, we unbiasedly interrogated the host signaling events in heart tissues isolated from a Chagas disease mouse model using quantitative, multiplexed proteomics. We defined the host response to infection at both the proteome and phospho-proteome levels. The proteome showed an increase in the immune response and a strong repression of several mitochondrial proteins. Complementing the proteome studies, the phospho-proteomic survey found an abundance of phospho-site alterations in plasma membrane and cytoskeletal proteins. Bioinformatic analysis of kinase activity provided substantial evidence for the activation of NDRG2 and JNK/p38 kinases during Chagas disease. A significant activation of DYRK2 and AMPKA2 and the inhibition of casein family kinases were also predicted. We concluded our analyses by linking the diseased heart proteome profile to known therapeutic interventions, uncovering a potential to target mitochondrial proteins, secreted immune effectors and core kinases for the treatment of chronic Chagas disease. Together, this study provides molecular insight into host proteome and phospho-proteome responses to T. cruzi infection in the heart for the first time, highlighting pathways that can be further validated for functional contributions to disease and suitability as drug targets.
Collapse
Affiliation(s)
- Jacob M. Wozniak
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
| | - Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - David J. Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
- * E-mail: (DJG); (CMC)
| | - Claudia M. Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
- * E-mail: (DJG); (CMC)
| |
Collapse
|
14
|
Manzano-Román R, Fuentes M. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. J Proteomics 2020; 220:103762. [PMID: 32244008 DOI: 10.1016/j.jprot.2020.103762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Protozoan parasitic infections are health, social and economic issues impacting both humans and animals, with significant morbidity and mortality worldwide. Protozoan parasites have complicated life cycles with both intracellular and extracellular forms. As a consequence, protozoan adapt to changing environments in part through a dynamic enzyme-catalyzed process leading to reversible posttranslational modifications (PTMs). The characterization by proteomics approaches reveals the critical role of the PTMs of the proteins involved in host-pathogen interaction. The complexity of PTMs characterization is increased by the high diversity, stoichiometry, dynamic and also co-existence of several PTMs in the same moieties which crosstalk between them. Here, we review how to understand the complexity and the essential role of PTMs crosstalk in order to provide a new hallmark for vaccines developments, immunotherapies and personalized medicine. In addition, the importance of these motifs in the biology and biological cycle of kinetoplastid parasites is highlighted with key examples showing the potential to act as targets against protozoan diseases.
Collapse
Affiliation(s)
- R Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain..
| | - M Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| |
Collapse
|
15
|
Mosquillo MF, Smircich P, Ciganda M, Lima A, Gambino D, Garat B, Pérez-Díaz L. Comparative high-throughput analysis of the Trypanosoma cruzi response to organometallic compounds. Metallomics 2020; 12:813-828. [DOI: 10.1039/d0mt00030b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An in-depth, comparative look at the effects of two structurally related organometallic Pd and Pt compounds on the global gene expression pattern of T. cruzi epimastigotes. This parasite is the causative agent of Chagas disease.
Collapse
Affiliation(s)
- M. Florencia Mosquillo
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Pablo Smircich
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | | | - Analía Lima
- Instituto de Investigaciones Biológicas Clemente Estable
- Montevideo
- Uruguay
- Unidad de Bioquímica y Proteómica Analíticas
- Institut Pasteur de Montevideo
| | - Dinorah Gambino
- Área Química Inorgánica
- Facultad de Química
- Universidad de la República
- Montevideo
- Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| |
Collapse
|