1
|
Chinchilla-Cárdenas DJ, Cruz-Méndez JS, Petano-Duque JM, García RO, Castro LR, Lobo-Castañón MJ, Cancino-Escalante GO. Current developments of SELEX technologies and prospects in the aptamer selection with clinical applications. J Genet Eng Biotechnol 2024; 22:100400. [PMID: 39179327 PMCID: PMC11338109 DOI: 10.1016/j.jgeb.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
Aptamers are single-stranded oligonucleotide sequences capable of binding to specific ligands with high affinity. In this manner, they are like antibodies but have advantages such as lower manufacturing costs, lower immunogenicity, fewer batch-to-batch differences, a longer shelf life, high tolerance to different molecular milieus, and a greater number of potential targets. Due to their special features, they have been used in drug delivery, biosensor technology, therapy, and diagnostics. The methodology that allowed its production was the "Systematic Evolution of Ligands by Exponential enrichment" (SELEX). Unfortunately, the traditional protocol is time-consuming and laborious. Therefore, numerous variants with considerable optimization steps have been developed, nonetheless, there are still challenges to achieving real applications in the clinical field. Among them, are control of in vivo activities, fast renal filtration, degradation by nucleases and toxicity testing. This review focuses on current technologies based on SELEX, the critical factors for successful aptamer selection, and its upcoming biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Danny Jair Chinchilla-Cárdenas
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia.
| | - Juan Sebastian Cruz-Méndez
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia.
| | - Julieth Michel Petano-Duque
- Laboratorio de Biología Molecular y Genética Animal Mascolab, Calle 49 Sur # 45ª-300, Oficina 1202, Centro Empresarial S48 Tower, Envigado 055422, Antioquia, Colombia; Group of Biosocial Studies of the Body-EBSC, Faculty of Dentistry, Universidad de Antioquia, La Candelaria, Medellín 050010, Antioquia, Colombia.
| | | | - Lyda R Castro
- Grupo de investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Colombia.
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain.
| | | |
Collapse
|
2
|
Wong KY, Wong MS, Liu J. Aptamer-functionalized liposomes for drug delivery. Biomed J 2024; 47:100685. [PMID: 38081386 PMCID: PMC11340590 DOI: 10.1016/j.bj.2023.100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 12/05/2023] [Indexed: 07/26/2024] Open
Abstract
Among the various targeting ligands for drug delivery, aptamers have attracted much interest in recent years because of their smaller size compared to antibodies, ease of modification, and better batch-to-batch consistency. In addition, aptamers can be selected to target both known and even unknown cell surface biomarkers. For drug loading, liposomes are the most successful vehicle and many FDA-approved formulations are based on liposomes. In this paper, aptamer-functionalized liposomes for targeted drug delivery are reviewed. We begin with the description of related aptamers selection, followed by methods to conjugate aptamers to liposomes and the fate of such conjugates in vivo. Then a few examples of applications are reviewed. In addition to intravenous injection for systemic delivery and hoping to achieve accumulation at target sites, for certain applications, it is also possible to have aptamer/liposome conjugates applied directly at the target tissue such as intratumor injection and dropping on the surface of the eye by adhering to the cornea. While previous reviews have focused on cancer therapy, the current review mainly covers other applications in the last four years. Finally, this article discusses potential issues of aptamer targeting and some future research opportunities.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), Pak Shek Kok, Shatin, Hong Kong.
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), Pak Shek Kok, Shatin, Hong Kong; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), Pak Shek Kok, Shatin, Hong Kong.
| |
Collapse
|
3
|
Cossu J, Ravelet C, Martel-Frachet V, Peyrin E, Boturyn D. Peptide-based CE-SELEX enables convenient isolation of aptamers specifically recognizing CD20-expressing cells. Bioorg Med Chem 2024; 110:117831. [PMID: 39004051 DOI: 10.1016/j.bmc.2024.117831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The CD20 antigen is a key target for several diseases including lymphoma and autoimmune diseases. For over 20 years, several monoclonal antibodies were developed to treat CD20-related disorders. As many therapeutic proteins, their clinical use is however limited due to their nature with a costly biotechnological procedure and side effects such as the production of anti-drug neutralizing antibodies. Nucleic acid aptamers have some advantages over mAbs and are currently investigated for clinical use. We herein report the selection of DNA aptamer by using a peptide-based CE-SELEX (Capillary Electrophoresis-Systematic Evolution of Ligands by Exponential Enrichment) method. It was demonstrated that these aptamers bind specifically a CD20-expressing human cell line, with Kd estimated from isothermal titration calorimetry experiments in the micromolar range. This study demonstrates that the CE-SELEX is suitable as alternative method to the conventional Cell-SELEX to discover new cell-targeting compounds.
Collapse
Affiliation(s)
- Jordan Cossu
- University Grenoble Alpes, CNRS, DCM UMR 5250, 38058 Grenoble Cedex 9, France; University Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble Cedex 9, France
| | - Corinne Ravelet
- University Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble Cedex 9, France
| | - Véronique Martel-Frachet
- University Grenoble Alpes, IAB CNRS UMR5309, INSERM U1209, Allée des Alpes 38700, La Tronche, France; University PSL Research, EPHE, 5014 Paris, France
| | - Eric Peyrin
- University Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble Cedex 9, France.
| | - Didier Boturyn
- University Grenoble Alpes, CNRS, DCM UMR 5250, 38058 Grenoble Cedex 9, France.
| |
Collapse
|
4
|
Koksaldi I, Park D, Atilla A, Kang H, Kim J, Seker UOS. RNA-Based Sensor Systems for Affordable Diagnostics in the Age of Pandemics. ACS Synth Biol 2024; 13:1026-1037. [PMID: 38588603 PMCID: PMC11036506 DOI: 10.1021/acssynbio.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
In the era of the COVID-19 pandemic, the significance of point-of-care (POC) diagnostic tools has become increasingly vital, driven by the need for quick and precise virus identification. RNA-based sensors, particularly toehold sensors, have emerged as promising candidates for POC detection systems due to their selectivity and sensitivity. Toehold sensors operate by employing an RNA switch that changes the conformation when it binds to a target RNA molecule, resulting in a detectable signal. This review focuses on the development and deployment of RNA-based sensors for POC viral RNA detection with a particular emphasis on toehold sensors. The benefits and limits of toehold sensors are explored, and obstacles and future directions for improving their performance within POC detection systems are presented. The use of RNA-based sensors as a technology for rapid and sensitive detection of viral RNA holds great potential for effectively managing (dealing/coping) with present and future pandemics in resource-constrained settings.
Collapse
Affiliation(s)
- Ilkay
Cisil Koksaldi
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Dongwon Park
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Abdurahman Atilla
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Hansol Kang
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Jongmin Kim
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Urartu Ozgur Safak Seker
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
5
|
Zhu C, Feng Z, Qin H, Chen L, Yan M, Li L, Qu F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024; 266:124998. [PMID: 37527564 DOI: 10.1016/j.talanta.2023.124998] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Nucleic acid aptamers are oligonucleotide sequences screened by an in vitro methodology called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Known as "chemical antibodies", aptamers can achieve specific recognition towards the targets through conformational changes with high affinity, and possess multiple attractive features including, but not limited to, easy and inexpensive to prepare by chemical synthesis, relatively stable and low batch-to-batch variability, easy modification and signal amplification, and low immunogenicity. Now, aptamers are attracting researchers' attentions from more than 25 disciplines, and have showed great potential for application and economic benefits in disease diagnosis, environmental detection, food security, drug delivery and discovery. Although some aptamers exist naturally as the ligand-binding elements of riboswitches, SELEX is a recognized method for aptamers screening. After thirty-two years of development, a series of SELEX methods have been investigated and developed, as well as have shown unique advantages to improve sequence performances or to explore screening mechanisms. This review would mainly focus on the novel or improved SELEX methods that are available in the past five years. Firstly, we present a clear overview of the aptamer's history, features, and SELEX development. Then, we highlight the specific examples to emphasize the recent progress of SELEX methods in terms of carrier materials, technical improvements, real sample-improved screening, post-SELEX and other methods, as well as their respects of screening strategies, implementation features, screening parameters. Finally, we discuss the remaining challenges that have the potential to hinder the success of SELEX and aptamers in practical applications, and provide the suggestions and future directions for developing more convenient, efficient, and stable SELEX methods in the future.
Collapse
Affiliation(s)
- Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Ziru Feng
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Shi Y, Katdare KA, Kim H, Rosch JC, Neal EH, Vafaie-Partin S, Bauer JA, Lippmann ES. An arrayed CRISPR knockout screen identifies genetic regulators of GLUT1 expression. Sci Rep 2023; 13:21038. [PMID: 38030680 PMCID: PMC10687026 DOI: 10.1038/s41598-023-48361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023] Open
Abstract
Glucose, a primary fuel source under homeostatic conditions, is transported into cells by membrane transporters such as glucose transporter 1 (GLUT1). Due to its essential role in maintaining energy homeostasis, dysregulation of GLUT1 expression and function can adversely affect many physiological processes in the body. This has implications in a wide range of disorders such as Alzheimer's disease (AD) and several types of cancers. However, the regulatory pathways that govern GLUT1 expression, which may be altered in these diseases, are poorly characterized. To gain insight into GLUT1 regulation, we performed an arrayed CRISPR knockout screen using Caco-2 cells as a model cell line. Using an automated high content immunostaining approach to quantify GLUT1 expression, we identified more than 300 genes whose removal led to GLUT1 downregulation. Many of these genes were enriched along signaling pathways associated with G-protein coupled receptors, particularly the rhodopsin-like family. Secondary hit validation confirmed that removal of select genes, or modulation of the activity of a corresponding protein, yielded changes in GLUT1 expression. Overall, this work provides a resource and framework for understanding GLUT1 regulation in health and disease.
Collapse
Affiliation(s)
- Yajuan Shi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ketaki A Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Emma H Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sidney Vafaie-Partin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua A Bauer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Sun D, Sun M, Zhang J, Lin X, Zhang Y, Lin F, Zhang P, Yang C, Song J. Computational tools for aptamer identification and optimization. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Wang W, Gunasekaran S. MXene-Based Nucleic Acid Biosensors for Agricultural and Food Systems. BIOSENSORS 2022; 12:982. [PMID: 36354491 PMCID: PMC9688781 DOI: 10.3390/bios12110982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 05/04/2023]
Abstract
MXene is a two-dimensional (2D) nanomaterial that exhibits several superior properties suitable for fabricating biosensors. Likewise, the nucleic acid (NA) in oligomerization forms possesses highly specific biorecognition ability and other features amenable to biosensing. Hence the combined use of MXene and NA is becoming increasingly common in biosensor design and development. In this review, MXene- and NA-based biosensors are discussed in terms of their sensing mechanisms and fabrication details. MXenes are introduced from their definition and synthesis process to their characterization followed by their use in NA-mediated biosensor fabrication. The emphasis is placed on the detection of various targets relevant to agricultural and food systems, including microbial pathogens, chemical toxicants, heavy metals, organic pollutants, etc. Finally, current challenges and future perspectives are presented with an eye toward the development of advanced biosensors with improved detection performance.
Collapse
Affiliation(s)
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
9
|
Zhu C, Zhang F, Li H, Chen Z, Yan M, Li L, Qu F. CRISPR/Cas Systems Accelerating the Development of Aptasensors. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Roueinfar M, Templeton HN, Sheng JA, Hong KL. An Update of Nucleic Acids Aptamers Theranostic Integration with CRISPR/Cas Technology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031114. [PMID: 35164379 PMCID: PMC8839139 DOI: 10.3390/molecules27031114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system is best known for its role in genomic editing. It has also demonstrated great potential in nucleic acid biosensing. However, the specificity limitation in CRISPR/Cas has created a hurdle for its advancement. More recently, nucleic acid aptamers known for their high affinity and specificity properties for their targets have been integrated into CRISPR/Cas systems. This review article gives a brief overview of the aptamer and CRISPR/Cas technology and provides an updated summary and discussion on how the two distinctive nucleic acid technologies are being integrated into modern diagnostic and therapeutic applications
Collapse
Affiliation(s)
- Mina Roueinfar
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA
| | - Hayley N. Templeton
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
| | - Julietta A. Sheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
| | - Ka Lok Hong
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Notre Dame of Maryland University, 4701 North Charles Street, Baltimore, MD 21210, USA
- Correspondence: ; Tel.: +1-410-532-5044
| |
Collapse
|
11
|
Rosch JC, Hoogenboezem EN, Sorets AG, Duvall CL, Lippmann ES. Albumin-Binding Aptamer Chimeras for Improved siRNA Bioavailability. Cell Mol Bioeng 2022; 15:161-173. [PMID: 35401842 PMCID: PMC8938549 DOI: 10.1007/s12195-022-00718-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/05/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Short interfering RNAs (siRNAs) are potent nucleic acid-based drugs designed to target disease driving genes that may otherwise be undruggable with small molecules. However, therapeutic potential of siRNA in vivo is limited by poor pharmacokinetic properties, including rapid renal clearance and nuclease degradation. Backpacking on natural carriers such as albumin, which is present at high concentration and has a long half-life in serum, is an effective way to modify pharmacokinetics of biologic drugs that otherwise have poor bioavailability. In this work, we sought to develop albumin-binding aptamer-siRNA chimeras to improve the bioavailability of siRNA. Methods A Systematic Evolution of Ligands through Exponential Enrichment (SELEX) approach was used to obtain modified RNA-binding aptamers, which were then fused directly to siRNA via in vitro transcription. Molecular and pharmacokinetic properties of the aptamer-siRNA chimeras were subsequently measured in vitro and in vivo. Results In vitro assays show that albumin-binding aptamers are stable in serum while maintaining potent gene knockdown capabilities in the chimera format. In vivo, the absolute circulation half-life of the best-performing aptamer-siRNA chimera (Clone 1) was 1.6-fold higher than a scrambled aptamer chimera control. Conclusions Aptamer-siRNA chimeras exhibit improved bioavailability without compromising biological activity. Hence, this albumin-binding aptamer-siRNA chimera approach may be a promising strategy for drug delivery applications. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00718-y.
Collapse
Affiliation(s)
- Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | | | - Alexander G. Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA ,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
12
|
Slaymaker IM, Gaudelli NM. Engineering Cas9 for human genome editing. Curr Opin Struct Biol 2021; 69:86-98. [PMID: 33964614 DOI: 10.1016/j.sbi.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Since the initial reports describing CRISPR-Cas9, labs across the globe have leveraged this valuable gene editing tool to alter the genomes of living cells. With the goal of generating more precise and efficient genome changes, scientists and engineers have mutated, evolved, and covalently altered Cas9 in order to predictably edit the genetic code. Here, we highlight recent advancements and contributions to the growing field of Cas9 engineering. We present key aspects of Cas9 engineering efforts focused on sgRNA manipulation, PAM-recognition, specificity, deaminase fusions, reverse-transcriptase fusions, and structural rearrangements of this important gene-modifying tool.
Collapse
Affiliation(s)
- Ian M Slaymaker
- Beam Therapeutics, 26 Landsdowne St., Cambridge, MA 02139, USA.
| | | |
Collapse
|