1
|
Peng M, He Y, Hu Y, Liu Z, Chen X, Liu Z, Yang J, Chen M, Liu W, Wu F, Li L, Dai J, Chen C, He J, Hu L, Chen C, Tang J. Te xSe 1-x Shortwave Infrared Photodiode Arrays with Monolithic Integration. NANO LETTERS 2024; 24:12620-12627. [PMID: 39324698 DOI: 10.1021/acs.nanolett.4c03728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
TexSe1-x shortwave infrared (SWIR) photodetectors show promise for monolithic integration with readout integrated circuits (ROIC), making it a potential alternative to conventional expensive SWIR photodetectors. However, challenges such as a high dark current density and insufficient detection performance hinder their application in large-scale monolithic integration. Herein, we develop a ZnO/TexSe1-x heterojunction photodiode and synergistically address the interfacial elemental diffusion and dangling bonds via inserting a well-selected 0.3 nm amorphous TeO2 interfacial layer. The optimized device achieves a reduced dark current density of -3.5 × 10-5 A cm-2 at -10 mV, a broad response from 300 to 1700 nm, a room-temperature detectivity exceeding 2.03 × 1011 Jones, and a 3 dB bandwidth of 173 kHz. Furthermore, for the first time, we monolithically integrate the TexSe1-x photodiodes on ROIC (64 × 64 pixels) with the largest-scale array among all TexSe1-x-based detectors. Finally, we demonstrate its applications in transmission imaging and substance identification.
Collapse
Affiliation(s)
- Meng Peng
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yuming He
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yuxuan Hu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Zunyu Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xinyi Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Zhiqiang Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Junrui Yang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Maohua Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Weijie Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Feng Wu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Luying Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jiangnan Dai
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Changqing Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jungang He
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, P. R. China
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chao Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei 430074, P. R. China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Optics Valley Laboratory, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
2
|
Wang X, Li Z, Jin B, Lu W, Feng M, Dong B, Liu Q, Yan H, Wang S, Xue D. Sustainable Recycling of Selenium-Based Optoelectronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400615. [PMID: 38489666 PMCID: PMC11165508 DOI: 10.1002/advs.202400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/01/2024] [Indexed: 03/17/2024]
Abstract
Selenium (Se), the world's oldest optoelectronic material, has been widely applied in various optoelectronic devices such as commercial X-ray flat-panel detectors and photovoltaics. However, despite the rare and widely-dispersed nature of Se element, a sustainable recycling of Se and other valuable materials from spent Se-based devices has not been developed so far. Here a sustainable strategy is reported that makes use of the significantly higher vapor pressure of volatile Se compared to other functional layers to recycle all of them from end-of-life Se-based devices through a closed-space evaporation process, utilizing Se photovoltaic devices as a case study. This strategy results in high recycling yields of ≈ 98% for Se and 100% for other functional materials including valuable gold electrodes and glass/FTO/TiO2 substrates. The refabricated photovoltaic devices based on these recycled materials achieve an efficiency of 12.33% under 1000-lux indoor illumination, comparable to devices fabricated using commercially sourced materials and surpassing the current indoor photovoltaic industry standard of amorphous silicon cells.
Collapse
Affiliation(s)
- Xia Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062China
| | - Zongbao Li
- School of Materials Science and EngineeringWuhan Textile UniversityWuhan430200China
- School of Material and Chemical EngineeringTongren UniversityTongren554300China
| | - Bowen Jin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062China
| | - Wenbo Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mingjie Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Binghai Dong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062China
| | - Qingxiang Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hui‐Juan Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shi‐Min Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical MaterialsMinistry of Education Key Laboratory for the Green Preparation and Application of Functional MaterialsSchool of Materials Science and EngineeringHubei UniversityWuhan430062China
| | - Ding‐Jiang Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Nanostructure and NanotechnologyInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
3
|
Fu L, He Y, Zheng J, Hu Y, Xue J, Li S, Ge C, Yang X, Peng M, Li K, Zeng X, Wei J, Xue DJ, Song H, Chen C, Tang J. Te x Se 1-x Photodiode Shortwave Infrared Detection and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211522. [PMID: 36972712 DOI: 10.1002/adma.202211522] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Indexed: 06/16/2023]
Abstract
Short-wave infrared detectors are increasingly important in the fields of autonomous driving, food safety, disease diagnosis, and scientific research. However, mature short-wave infrared cameras such as InGaAs have the disadvantage of complex heterogeneous integration with complementary metal-oxide-semiconductor (CMOS) readout circuits, leading to high cost and low imaging resolution. Herein, a low-cost, high-performance, and high-stability Tex Se1- x short-wave infrared photodiode detector is reported. The Tex Se1- x thin film is fabricated through CMOS-compatible low-temperature evaporation and post-annealing process, showcasing the potential of direct integration on the readout circuit. The device demonstrates a broad-spectrum response of 300-1600 nm, a room-temperature specific detectivity of 1.0 × 1010 Jones, a -3 dB bandwidth up to 116 kHz, and a linear dynamic range of over 55 dB, achieving the fastest response among Te-based photodiode devices and a dark current density 7 orders of magnitude smaller than Te-based photoconductive and field-effect transistor devices. With a simple Si3 N4 packaging, the detector shows high electric stability and thermal stability, meeting the requirements for vehicular applications. Based on the optimized Tex Se1- x photodiode detector, the applications in material identification and masking imaging is demonstrated. This work paves a new way for CMOS-compatible infrared imaging chips.
Collapse
Affiliation(s)
- Liuchong Fu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuming He
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiajia Zheng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuxuan Hu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiayou Xue
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Sen Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ciyu Ge
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xuke Yang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Meng Peng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kanghua Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xiangbin Zeng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jinchao Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ding-Jiang Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haisheng Song
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Chao Chen
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
4
|
Sharma S, Ward ZD, Bhimani K, Sharma M, Quinton J, Rhone TD, Shi SF, Terrones H, Koratkar N. Machine Learning-Aided Band Gap Engineering of BaZrS 3 Chalcogenide Perovskite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18962-18972. [PMID: 37014669 DOI: 10.1021/acsami.3c00618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The non-toxic and stable chalcogenide perovskite BaZrS3 fulfills many key optoelectronic properties for a high-efficiency photovoltaic material. It has been shown to possess a direct band gap with a large absorption coefficient and good carrier mobility values. With a reported band gap of 1.7-1.8 eV, BaZrS3 is a good candidate for tandem solar cell materials; however, its band gap is significantly larger than the optimal value for a high-efficiency single-junction solar cell (∼1.3 eV, Shockley-Queisser limit)─thus doping is required to lower the band gap. By combining first-principles calculations and machine learning algorithms, we are able to identify and predict the best dopants for the BaZrS3 perovskites for potential future photovoltaic devices with a band gap within the Shockley-Queisser limit. It is found that the Ca dopant at the Ba site or Ti dopant at the Zr site is the best candidate dopant. Based on this information, we report for the first time partial doping at the Ba site in BaZrS3 with Ca (i.e., Ba1-xCaxZrS3) and compare its photoluminescence with Ti-doped perovskites [i.e., Ba(Zr1-xTix)S3]. Synthesized (Ba,Ca)ZrS3 perovskites show a reduction in the band gap from ∼1.75 to ∼1.26 eV with <2 atom % Ca doping. Our results indicate that for the purpose of band gap tuning for photovoltaic applications, Ca-doping at the Ba-site is superior to Ti-doping at the Zr-site reported previously.
Collapse
Affiliation(s)
- Shyam Sharma
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Zachary D Ward
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Kevin Bhimani
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Mukul Sharma
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Joshua Quinton
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Trevor David Rhone
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Su-Fei Shi
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Humberto Terrones
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Nikhil Koratkar
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|