1
|
Cho ES, Hwang CY, Seo MJ. Optimized production of bacterioruberin from "Haloferax marinum" using one-factor-at-a-time and central composite design approaches. BIORESOUR BIOPROCESS 2024; 11:111. [PMID: 39699698 DOI: 10.1186/s40643-024-00834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
Haloarchaea represents a unique group of microorganisms that have adapted to thrive in high-salt environments. These microbes produce distinctive biomolecules, some of which exhibit extraordinary properties. One such biomolecule is bacterioruberin, a prominent red-pigmented C50 carotenoid commonly found in halophilic archaea, renowned for its antioxidant properties and potential as a functional resource. This study aimed to enhance the culture conditions for optimal production of C50 carotenoids, primarily bacterioruberin, using "Haloferax marinum" MBLA0078. The optimization process involved a combination of one-factor-at-a-time (OFAT) and statistical methodology. Under OFAT-optimized conditions, fed-batch fermentation, and response surface methodology (RSM) optimization, carotenoid production reached 0.954 mg/L, 2.80 mg/L, and 2.16 mg/L, respectively, in a 7-L laboratory-scale fermenter. Notably, RSM-optimized conditions led to a 12-fold increase in productivity (0.72 mg/L/day) compared to the basal DBCM2 medium (0.06 mg/L/day). These findings suggest that strain MBLA0078 holds significant promise for commercial-scale production of bacterioruberin.
Collapse
Affiliation(s)
- Eui-Sang Cho
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Research Center for Bio Materials and Process Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
2
|
Mussagy CU, Caicedo-Paz AV, Farias FO, de Souza Mesquita LM, Giuffrida D, Dufossé L. Microbial bacterioruberin: The new C50 carotenoid player in food industries. Food Microbiol 2024; 124:104623. [PMID: 39244374 DOI: 10.1016/j.fm.2024.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
The demand for natural products has significantly increased, driving interest in carotenoids as bioactive compounds for both human and animal consumption. Carotenoids, natural pigments with several biological properties, like antioxidant and antimicrobial, are increasingly preferred over synthetic colorants by the consumers (chemophobia). The global carotenoid market is projected to reach US$ 2.45 billion by 2034, driven by consumer preferences for natural ingredients and regulatory restrictions on synthetic products. Among carotenoids, bacterioruberin (BR), a C50 carotenoid naturally found in microbial hyperhalophilic archaea and in moderate halophilic archaea, stands out for its exceptional antioxidant capabilities, surpassing even well-known carotenoids like astaxanthin. BR's and its derivatives unique structure, with 13 conjugated double bonds and four -OH groups, contributes to its potent antioxidant activity and potential applications in food, feed, supplements, pharmaceuticals, and cosmeceuticals. This review explores BR's chemical and biological properties, upstream and downstream technologies, analytical techniques, market applications, and prospects in the colorants industry. While BR is not intended to replace existing carotenoids, its inclusion enriches the range of natural products available to meet the rising demand for natural alternatives. Furthermore, BR's promising antioxidant capacity positions it as a key player in the future carotenoid market, offering diverse industries a natural and potent alternative for several applications.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, 2260000, Chile.
| | - Angie V Caicedo-Paz
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, 2260000, Chile
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba/PR, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria 1300, 13484-350, Limeira, SP, Brazil
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS, 92003, CEDEX 9, F-97744, Saint-Denis, France
| |
Collapse
|
3
|
Palanisamy M, Ramalingam S. Microbial Bacterioruberin: A Comprehensive Review. Indian J Microbiol 2024; 64:1477-1501. [PMID: 39678945 PMCID: PMC11645389 DOI: 10.1007/s12088-024-01312-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/11/2024] [Indexed: 12/17/2024] Open
Abstract
Bacterioruberin (BR) is a fat-soluble, dipolar, reddish pigment predominantly found in halophilic archaea. BR is a rare C50 carotenoid from the xanthophyll family, and it has been extensively studied for its potent antioxidant properties, such as its ability to protect cells from oxidative stress. In addition, several studies have shown that BR-rich extracts and its derivatives exhibit significant antiviral, antidiabetic, antibacterial, and anti-inflammatory effects, making them ideal candidates for the development of novel therapeutic interventions against various diseases. Although it possesses remarkable biological properties, studies related to the regulatory aspects of biosynthesis, in vitro and in vivo studies of purified BR have been rare. However, investigations are needed to explore the potential application of BR in various industries. Additionally, optimization of the culture conditions of BR-producing haloarchaea could pave the way for their sustainable production and utilization. The current review provides comprehensive information on BR, which includes the sources of this compound and its bioproduction, extraction, stability, toxicity, and biological activities in relation to its commercial applications. This review also discusses the potential challenges and limitations associated with BR bioproduction and its utilization in various industries. In addition, this treatise highlights the need for further research to optimize production and extraction methods and explore avenues for novel applications of BR in various sectors, such as pharmaceuticals, food, and cosmetics. Graphical Abstract
Collapse
Affiliation(s)
- Mouliraj Palanisamy
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
4
|
Matarredona L, Zafrilla B, Camacho M, Bonete M, Esclapez J. Understanding the tolerance of halophilic archaea to stress landscapes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70039. [PMID: 39568122 PMCID: PMC11578932 DOI: 10.1111/1758-2229.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Haloarchaea, known for their resilience to environmental fluctuations, require a minimum salt concentration of 10% (w/v) for growth and can survive up to 35% (w/v) salinity. In biotechnology, these halophiles have diverse industrial applications. This study investigates the tolerance responses of nine haloarchaea: Haloferax mediterranei, Haloferax volcanii, Haloferax gibbonsii, Halorubrum californiense, Halorubrum litoreum, Natrinema pellirubrum, Natrinema altunense, Haloterrigena thermotolerans and Haloarcula sinaiiensis, under various stressful conditions. All these archaea demonstrated the ability to thrive in the presence of toxic metals such as chromium, nickel, cobalt and arsenic, and their tolerance to significantly elevated lithium concentrations in the medium was remarkable. Among the studied haloarchaea, Hfx. mediterranei exhibited superior resilience, particularly against lithium, with an impressive minimum inhibitory concentration (MIC) of up to 4 M LiCl, even replacing NaCl entirely. Haloferax species showed specificity for conditions with maximal growth rates, while Htg. thermotolerans and Nnm. altunense displayed high resilience without losing growth throughout the ranges, although these were generally low. ICP-MS results highlighted the impressive intracellular lithium accumulation in Nnm. pellirubrum, emphasizing its potential significance in bioremediation. This research highlights a new characteristic of haloarchaea, their tolerance to high lithium concentrations and the potential for new applications in extreme industrial processes and bioremediation.
Collapse
Affiliation(s)
- Laura Matarredona
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of ScienceUniversity of AlicanteAlicanteSpain
| | - Basilio Zafrilla
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of ScienceUniversity of AlicanteAlicanteSpain
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of ScienceUniversity of AlicanteAlicanteSpain
| | - María‐José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of ScienceUniversity of AlicanteAlicanteSpain
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of ScienceUniversity of AlicanteAlicanteSpain
| |
Collapse
|
5
|
Sheokand P, Tiwari SK. Characterization of carotenoids extracted from Haloferax larsenii NCIM 5678 isolated from Pachpadra salt lake, Rajasthan. Extremophiles 2024; 28:33. [PMID: 39037576 DOI: 10.1007/s00792-024-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Carotenoids are a diverse group of pigments known for their broad range of biological functions and applications. This study delves into multifaceted potential of carotenoids extracted from Haloferax larsenii NCIM 5678 previously isolated from Pachpadra Salt Lake in Rajasthan, India. H. larsenii NCIM 5678 was able to grow up to OD600 1.77 ± 0.03 with carotenoid concentration, 3.3 ± 0.03 µg/ml. The spectrophotometric analysis of carotenoid extract indicated the presence of three-fingered peak (460, 490 and 520 nm) which is a characteristic feature of bacterioruberin and its derivatives. The bacterioruberin was purified using silica gel column chromatography and thin layer chromatography. The carotenoid extract showed 12.3 ± 0.09 mm zone of growth inhibition with a minimum inhibitory concentration 546 ng/ml against indicator strain, H. larsenii HA4. The percentage antioxidant activity of carotenoid was found to be 84% which was higher as compared to commercially available ascorbic acid (56.74%). Thus, carotenoid extract from H. larsenii NCIM 5678 possesses unique attributes with compelling evidence of antimicrobial and antioxidant potential for the development of novel pharmaceuticals and nutraceuticals.
Collapse
Affiliation(s)
- Pardeep Sheokand
- Department of Genetics, Maharshi Dayanand University, 124001, Rohtak, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, 124001, Rohtak, Haryana, India.
| |
Collapse
|
6
|
Giani M, Pire C, Martínez-Espinosa RM. Bacterioruberin: Biosynthesis, Antioxidant Activity, and Therapeutic Applications in Cancer and Immune Pathologies. Mar Drugs 2024; 22:167. [PMID: 38667784 PMCID: PMC11051356 DOI: 10.3390/md22040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR and its derivatives have been the aim of research in several research groups all over the world during the last decade. This review aims to summarise the most relevant characteristics of BR and its derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant biological activities. Based on their biological activities, these carotenoids can be considered promising natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other potential uses.
Collapse
Affiliation(s)
- Micaela Giani
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.); (C.P.)
| | - Carmen Pire
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.); (C.P.)
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (M.G.); (C.P.)
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
7
|
Wang Y, Qian J, Shi T, Wang Y, Ding Q, Ye C. Application of extremophile cell factories in industrial biotechnology. Enzyme Microb Technol 2024; 175:110407. [PMID: 38341913 DOI: 10.1016/j.enzmictec.2024.110407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/13/2024]
Abstract
Due to the extreme living conditions, extremophiles have unique characteristics in morphology, structure, physiology, biochemistry, molecular evolution mechanism and so on. Extremophiles have superior growth and synthesis capabilities under harsh conditions compared to conventional microorganisms, allowing for unsterilized fermentation processes and thus better performance in low-cost production. In recent years, due to the development and optimization of molecular biology, synthetic biology and fermentation technology, the identification and screening technology of extremophiles has been greatly improved. In this review, we summarize techniques for the identification and screening of extremophiles and review their applications in industrial biotechnology in recent years. In addition, the facts and perspectives gathered in this review suggest that next-generation industrial biotechnology (NGIBs) based on engineered extremophiles holds the promise of simplifying biofuturing processes, establishing open, non-sterilized continuous fermentation production systems, and utilizing low-cost substrates to make NGIBs attractive and cost-effective bioprocessing technologies for sustainable manufacturing.
Collapse
Affiliation(s)
- Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, PR China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China; Ministry of Education Key Laboratory of NSLSCS.
| |
Collapse
|
8
|
Kesbiç FI, Gültepe N. Carotenoid characterization, fatty acid profiles, and antioxidant activities of haloarchaeal extracts. J Basic Microbiol 2024; 64:e2300330. [PMID: 37847881 DOI: 10.1002/jobm.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
Microorganisms that can survive in saline environments, known as halotolerant or halophilic organisms, have a wide range of current and potential uses in biotechnology. In this study, it was aimed to determine the carotenoids of halophilic archaea strains isolated from the brine samples taken from different points of Salt Lake (Turkey) and determine the antioxidant activities of their carotenoids. To identify the halophilic archaea strains, they were cultivated in MAM JCM 168 medium and subjected to antibiotic susceptibility, fatty acid, two-dimensional and three-dimensional imaging by scanning electron microscopy and atomic force microscopy, biochemical and phylogenetic assays. The findings show that five different halophilic archaea strains have been identified as Halorubrum lipolyticum, Halorubrum sodomense, Haloarcula salaria, Halorubrum chaoviator, and Haloarcula japonica with 98% and above similarity ratio. The main fatty acids of all haloarchaeal strains were octadecanoic acid (C18:0) and palmitic acid (C16:0). The major carotenoid of the species was determined as all-trans bacterioruberin, and different carotenoid types such as lycopene, β-carotene, and 2-isopentenyl-3,4-dehydrorodopin were found as well as bacterioruberin isomers. The antioxidant activities of carotenoids extracted from the species were analyzed by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging method and the extracts showed antioxidant activity statistically significantly higher than ascorbic acid and butylated hydroxytoluene as reference products (p < 0.05).
Collapse
Affiliation(s)
| | - Nejdet Gültepe
- Department of Fisheries Fundamental Sciences, Fisheries Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
9
|
Hwang CY, Cho ES, Kim S, Kim K, Seo MJ. Optimization of bacterioruberin production from Halorubrum ruber and assessment of its antioxidant potential. Microb Cell Fact 2024; 23:2. [PMID: 38172950 PMCID: PMC10762969 DOI: 10.1186/s12934-023-02274-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Haloarchaea produce bacterioruberin, a major C50 carotenoid with antioxidant properties that allow for its potential application in the food, cosmetic, and pharmaceutical industries. This study aimed to optimize culture conditions for total carotenoid, predominantly comprising bacterioruberin, production using Halorubrum ruber MBLA0099. A one-factor-at-a-time and statistically-based experimental design were applied to optimize the culture conditions. Culture in the optimized medium caused an increase in total carotenoid production from 0.496 to 1.966 mg L- 1 Maximal carotenoid productivity was achieved in a 7-L laboratory-scale fermentation and represented a 6.05-fold increase (0.492 mg L-1 d-1). The carotenoid extracts from strain MBLA0099 exhibited a 1.8-10.3-fold higher antioxidant activity in vitro, and allowed for a higher survival rate of Caenorhabditis elegans under oxidative stress conditions. These results demonstrated that Hrr. ruber MBLA0099 has significant potential as a haloarchaon for the commercial production of bacterioruberin.
Collapse
Affiliation(s)
- Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea.
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Research Center for Bio Materials & Process Development, Incheon, 22012, Republic of Korea.
- MJ BIOLAB, Inc, Incheon, 21999, Republic of Korea.
| |
Collapse
|
10
|
Kesbiç FI, Metin H, Fazio F, Parrino V, Kesbiç OS. Effects of Bacterioruberin-Rich Haloarchaeal Carotenoid Extract on the Thermal and Oxidative Stabilities of Fish Oil. Molecules 2023; 28:8023. [PMID: 38138512 PMCID: PMC10745883 DOI: 10.3390/molecules28248023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to assess the efficacy of a bacterioruberin-rich carotenoid extract (HAE) derived from the halophilic archaea Halorubrum ezzemoulense DSM 19316 in protecting crude fish oil against thermal oxidation. The research used fish oil derived from anchovies, which had a peroxide value (PV) of 6.44 ± 0.81 meq O2 kg-1. To assess the impact of HAE on the thermal stability and post-oxidation characteristics of fish oil, several concentrations of HAE were added to the fish oil samples: 0 ppm (no additive) (HAE0), 50 ppm (HAE50), 100 ppm (HAE100), 500 ppm (HAE500), and 1000 ppm (HAE1000). Furthermore, a control group was established with the addition of 100 ppm butylated hydroxytoluene (BHT100) in order to evaluate the effectiveness of HAE with a synthetic antioxidant that is commercially available. Prior to the fast oxidation experiment, thermogravimetric analysis was conducted on samples from all experimental groups. At the conclusion of the examination, it was seen that the HAE500 and HAE1000 groups exhibited a delay in the degradation temperature. The experimental groups underwent oxidation at a temperature of 55.0 ± 0.5 °C for a duration of 96 h. The measurement of PV was conducted every 24 h during this time. PV in all experimental groups exhibited a time-dependent rise (p < 0.05). However, the HAE500 group had the lowest PV measurement at the conclusion of the 96 h period (p < 0.05). Significant disparities were detected in the fatty acid compositions of the experimental groups at the completion of the oxidation experiment. The HAE500 group exhibited the highest levels of EPA, DHA, and ΣPUFA at the end of oxidation, with statistical significance (p < 0.05). Through the examination of volatile component analysis, specifically an oxidation marker, it was shown that the HAE500 group exhibited the lowest level of volatile components (p < 0.05). Consequently, it was concluded that the addition of HAE to fish oil provided superior protection compared to BHT at an equivalent rate. Moreover, the group that used 500 ppm HAE demonstrated the highest level of performance in the investigation.
Collapse
Affiliation(s)
| | - Hilal Metin
- Institute of Science, Department of Sustainable Agriculture and Natural Sources, Kastamonu University, 37150 Kastamonu, Turkey;
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci, 13, 98168 Messina, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Osman Sabri Kesbiç
- Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases, Kastamonu University, 37150 Kastamonu, Turkey;
| |
Collapse
|
11
|
Serino I, Squillaci G, Errichiello S, Carbone V, Baraldi L, La Cara F, Morana A. Antioxidant Capacity of Carotenoid Extracts from the Haloarchaeon Halorhabdus utahensis. Antioxidants (Basel) 2023; 12:1840. [PMID: 37891919 PMCID: PMC10603985 DOI: 10.3390/antiox12101840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Herein, we report on the production, characterization, and antioxidant power assessment of carotenoids from the haloarchaeon Halorhabdus utahensis. It was grown at 37 °C and 180 rpm agitation in halobacteria medium supplemented with glucose, fructose, and xylose, each at concentrations of 0.2%, 1%, and 2%, and the carotenoid yield and composition were investigated. The microorganism produced the carotenoids under all the conditions tested, and their amount followed the order glucose < xylose < fructose. The highest yield was achieved in 2% fructose growth medium with 550.60 ± 7.91 μg/g dry cell and 2428.15 ± 49.33 μg/L. Separation and identification of the carotenoids were performed by RP-HPLC and HPLC/APCI-ITMSn. Bacterioruberin was the main carotenoid detected and accounted for 60.6%, 56.4%, and 58.9% in 2% glucose, 1% xylose, and 2% fructose extracts, respectively. Several geometric isomers of bacterioruberin were distinguished, and representatives of monoanhydrobacterioruberin, and bisanhydrobacterioruberin were also detected. The assignment to cis-isomers was attempted through analysis of the UV/Vis spectra, intensity of cis peaks, and spectral fine structures. The extracts exhibited superoxide scavenging activity higher than butylhydroxytoluene, ascorbic acid, and Trolox, selected as antioxidant references. The anti-hyaluronidase capacity was investigated, and the 2% fructose extract showed the highest activity reaching 90% enzyme inhibition with 1.5 μg. The overall data confirm that Hrd. utahensis can be regarded as an interesting source of antioxidants that can find applications in the food and cosmetic sectors.
Collapse
Affiliation(s)
- Ismene Serino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Naples, Italy;
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (G.S.); (S.E.); (F.L.C.)
| | - Giuseppe Squillaci
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (G.S.); (S.E.); (F.L.C.)
| | - Sara Errichiello
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (G.S.); (S.E.); (F.L.C.)
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council of Italy (CNR), Via Roma 64, 83100 Avellino, Italy;
| | - Lidia Baraldi
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, National Research Council of Italy (CNR), Via S. Pansini 5, 80131 Naples, Italy;
| | - Francesco La Cara
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (G.S.); (S.E.); (F.L.C.)
| | - Alessandra Morana
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (G.S.); (S.E.); (F.L.C.)
| |
Collapse
|
12
|
Giani M, Montoyo-Pujol YG, Peiró G, Martínez-Espinosa RM. Haloarchaeal carotenoids exert an in vitro antiproliferative effect on human breast cancer cell lines. Sci Rep 2023; 13:7148. [PMID: 37130864 PMCID: PMC10154395 DOI: 10.1038/s41598-023-34419-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/29/2023] [Indexed: 05/04/2023] Open
Abstract
Oxidative stress has been linked to the onset and progression of different neoplasia. Antioxidants might help prevent it by modulating biochemical processes involved in cell proliferation. Here, the aim was to evaluate the in vitro cytotoxic effect of Haloferax mediterranei bacterioruberin-rich carotenoid extracts (BRCE) (0-100 µg/ml) in six BC cell lines, representative of the intrinsic phenotypes and a healthy mammary epithelium cell line. Cell index values were obtained using xCELLigence RTCA System. Furthermore, cell diameter, viability, and concentration were measured at 12 h, 24 h, and 30 h. We found that BC cells were selectively affected by BRCE (SI > 1, p < 0.005). After 30 h, the population of BC cells exposed to 100 µg/ml was 11.7-64.6% of the control (p = 0.0001-0.0009). Triple-negative cells were significantly affected [MDA-MB-231 (IC50 51.8 µg/ml, p < 0.0001) and MDA-MB-468 (IC50 63.9 µg/ml, p < 0.0001)]. Cell size was also reduced after 30 h treatment in 3.8 (± 0.1) µm and 3.3 (± 0.02) µm for SK-BR-3 (p < 0.0001) and MDA-MB-468 (p < 0.0001), respectively. In conclusion, Hfx. mediterranei BRCE exerts a cytotoxic effect on BC cell lines representative of all studied intrinsic subtypes. Furthermore, results obtained for MDA-MB-231 and MDA-MB-468 are very promising, considering the aggressive behaviour of the triple-negative BC subtype.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry, Molecular Biology, Edaphology, and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, 03080, Alicante, Spain
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies "Ramón Margalef" University of Alicante, Ap. 99, 03080, Alicante, Spain
| | - Yoel Genaro Montoyo-Pujol
- Breast Cancer Research Group, Research Unit, Dr. Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010, Alicante, Spain
| | - Gloria Peiró
- Department of Pathology, Dr. Balmis University General Hospital, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010, Alicante, Spain
- Biotechnology Department, Immunology Area, Faculty of Sciences, University of Alicante, Ap. 99, 03080, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology, and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, 03080, Alicante, Spain.
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies "Ramón Margalef" University of Alicante, Ap. 99, 03080, Alicante, Spain.
| |
Collapse
|
13
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
Metwally RA, El-Sersy NA, El Sikaily A, Sabry SA, Ghozlan HA. Optimization and multiple in vitro activity potentials of carotenoids from marine Kocuria sp. RAM1. Sci Rep 2022; 12:18203. [PMID: 36307503 PMCID: PMC9616409 DOI: 10.1038/s41598-022-22897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/20/2022] [Indexed: 12/31/2022] Open
Abstract
Marine pigmented bacteria are a promising natural source of carotenoids. Kocuria sp. RAM1 was isolated from the Red Sea Bohadschia graeffei collected from Marsa Alam, Egypt, and used for carotenoids production. The extracted carotenoids were purified by thin-layer chromatography (TLC). The characteristic UV absorbance of the three purified fractions gave us an inkling of what the purified pigments were. The chemical structures were confirmed by nuclear magnetic resonance spectroscopy (NMR) and LC-ESI-QTOF-MS/MS. The three different red pigments were identified as two C50-carotenoids, namely bisanhydrobacterioruberin and trisanhydrobacterioruberin, in addition to 3,4,3',4'-Tetrahydrospirilloxanthin (C42-carotenoids). Kocuria sp. RAM1 carotenoids were investigated for multiple activities, including antimicrobial, anti-inflammatory, antioxidant, anti-HSV-1, anticancer, antidiabetic and wound healing. These new observations suggest that Kocuria sp. RAM1 carotenoids can be used as a distinctive natural pigment with potent properties.
Collapse
Affiliation(s)
- Rasha A. Metwally
- grid.419615.e0000 0004 0404 7762Marine Microbiology Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Nermeen A. El-Sersy
- grid.419615.e0000 0004 0404 7762Marine Microbiology Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Amany El Sikaily
- grid.419615.e0000 0004 0404 7762Marine Pollution Lab., National Institute of Oceanography and Fisheries, NIOF, Alexandria, Egypt
| | - Soraya A. Sabry
- grid.7155.60000 0001 2260 6941Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hanan A. Ghozlan
- grid.7155.60000 0001 2260 6941Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Vaz BMC, Kholany M, Pinto DCGA, Macário IPE, Veloso T, Caetano T, Pereira JL, Coutinho JAP, Ventura SPM. Recovery of bacterioruberin and proteins using aqueous solutions of surface-active compounds. RSC Adv 2022; 12:30278-30286. [PMID: 36337967 PMCID: PMC9590249 DOI: 10.1039/d2ra02581g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Haloarchaea microorganisms are little explored marine resources that can be a promising source of valuable compounds with unique characteristics, due to their adaptation to extreme environments. In this work, the extraction of bacterioruberin and proteins from Haloferax mediterranei ATCC 33500 was investigated using aqueous solutions of ionic liquids and surfactants, which were further compared with ethanol. Despite the good performance of ethanol in the extraction of bacterioruberin, the use of aqueous solutions of surface-active compounds allowed the simultaneous release of bacterioruberin and proteins in a multi-product process, with the non-ionic surfactants being identified as the most promising. The optimum operational conditions allowed a maximum extraction yield of 0.37 ± 0.01 mgbacterioruberin gwet biomass -1 and 352 ± 9 mgprotein gwet biomass -1 with an aqueous solution of Tween® 20 (at 182.4 mM) as the extraction solvent. In addition, high purities of bacterioruberin were obtained, after performing a simple induced precipitation using ethanol as an antisolvent to recover the proteins present in the initial extract. Finally, a step for polishing the bacterioruberin was performed, to enable solvent recycling, further closing the process to maximize its circularity.
Collapse
Affiliation(s)
- Bárbara M C Vaz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Mariam Kholany
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Diana C G A Pinto
- LAQV - REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - Inês P E Macário
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Telma Veloso
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Tânia Caetano
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Joana L Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Sónia P M Ventura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|