1
|
Fan J, Yu H, Miao F, Ke J, Hu R. Attenuated African swine fever viruses and the live vaccine candidates: a comprehensive review. Microbiol Spectr 2024; 12:e0319923. [PMID: 39377589 PMCID: PMC11537121 DOI: 10.1128/spectrum.03199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 04/22/2024] [Indexed: 10/09/2024] Open
Abstract
The African swine fever virus (ASFV) is spreading worldwide and causing huge economic losses to the global pig industry. The ASFV genome is 170-193 kb in length, contains approximately 150 open reading frames, and encodes more than 200 proteins, most of which have unknown functions. Owing to the unique viral structure, replication strategy, large number of genes of unknown function, and complicated pathogenesis, vaccine development research is challenging. Several naturally attenuated ASFV isolates have been extensively investigated and many genetically manipulated, gene-deleted, and cell-adapted ASFVs have been reported. Currently, live attenuated viruses prepared from weakly virulent strains are an efficient method to provide effective protection in vaccinated pigs; however, these have seldom been widely approved for vaccine use, except in Vietnam. Herein, we summarize the attenuated isolates or vaccine candidates for live vaccines derived from different sources, including naturally mutated, attenuated, cell-adapted, and genetically modified recombinant ASFVs. This will help to understand the gene function and immunogenicity of attenuated live ASFV, as well as the shortcomings of these viruses as vaccine candidates, and provide clues to prepare live, efficient, and safe vaccines for African swine fever.IMPORTANCEOutbreaks of African swine fever (ASF) have caused devastating losses to the global pig industry. Pigs immunized with ASFV attenuated virus can resist the lethal challenge of a strongly virulent virus. Here, we summarize the virulence of naturally mutated, cell-adapted, and genetically recombinant ASFV for pigs, and the protective effect after facing an attack challenge. We also analyze the advantages and disadvantages of ASFV attenuated viruses as vaccine candidates to provide clues for the preparation of efficient and safe live African swine fever vaccines.
Collapse
Affiliation(s)
- Jiaqi Fan
- College of Life Sciences, Ningxia University, Yinchuan, Ningxia, China
| | - Haisheng Yu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Faming Miao
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Junnan Ke
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Rongliang Hu
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs Changchun, Changchun, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
2
|
Pérez-Núñez D, Madden DW, Vigara-Astillero G, Meekins DA, McDowell CD, Libanori-Artiaga B, García-Belmonte R, Bold D, Trujillo JD, Cool K, Kwon T, Balaraman V, Morozov I, Gaudreault NN, Revilla Y, Richt JA. Generation and Genetic Stability of a PolX and 5' MGF-Deficient African Swine Fever Virus Mutant for Vaccine Development. Vaccines (Basel) 2024; 12:1125. [PMID: 39460292 PMCID: PMC11511218 DOI: 10.3390/vaccines12101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
The African swine fever virus (ASFV) causes fatal disease in pigs and is currently spreading globally. Commercially safe vaccines are urgently required. Aiming to generate a novel live attenuated vaccine (LAV), a recombinant ASFV was generated by deleting the viral O174L (PolX) gene. However, during in vitro generation, an additional spontaneous deletion of genes belonging to the multigene families (MGF) occurred, creating a mixture of two viruses, namely, Arm-ΔPolX and Arm-ΔPolX-ΔMGF. This mixture was used to inoculate pigs in a low and high dose to assess the viral dynamics of both populations in vivo. Although the Arm-ΔPolX population was a much lower proportion of the inoculum, in the high-dose immunized animals, it was the only resulting viral population, while Arm-ΔPolX-ΔMGF only appeared in low-dose immunized animals, revealing the role of deleted MGFs in ASFV fitness in vivo. Furthermore, animals in the low-dose group survived inoculation, whereas animals in the high-dose group died, suggesting that the lack of MGF and PolX genes, and not the PolX gene alone, led to attenuation. The two recombinant viruses were individually isolated and inoculated into piglets, confirming this hypothesis. However, immunization with the Arm-ΔPolX-ΔMGF virus did not induce protection against challenge with the virulent parental ASFV strain. This study demonstrates that deletion of the PolX gene alone neither leads to attenuation nor induces an increased mutation rate in vivo.
Collapse
Affiliation(s)
- Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Daniel W. Madden
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Gonzalo Vigara-Astillero
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - David A. Meekins
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Chester D. McDowell
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Bianca Libanori-Artiaga
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Dashzeveg Bold
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Jessie D. Trujillo
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Konner Cool
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Taeyong Kwon
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Velmurugan Balaraman
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Igor Morozov
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Natasha N. Gaudreault
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, c/ Nicolás Cabrera 1, 28049 Madrid, Spain; (D.P.-N.); (G.V.-A.); (R.G.-B.)
| | - Juergen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (D.W.M.); (D.A.M.); (C.D.M.); (B.L.-A.); (D.B.); (J.D.T.); (K.C.); (T.K.); (V.B.); (I.M.); (N.N.G.)
| |
Collapse
|
3
|
Venkateswaran D, Prakash A, Nguyen QA, Salman M, Suntisukwattana R, Atthaapa W, Tantituvanont A, Lin H, Songkasupa T, Nilubol D. Comprehensive Characterization of the Genetic Landscape of African Swine Fever Virus: Insights into Infection Dynamics, Immunomodulation, Virulence and Genes with Unknown Function. Animals (Basel) 2024; 14:2187. [PMID: 39123713 PMCID: PMC11311002 DOI: 10.3390/ani14152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
African Swine Fever (ASF) is a lethal contagious hemorrhagic viral disease affecting the swine population. The causative agent is African Swine Fever Virus (ASFV). There is no treatment or commercial vaccine available at present. This virus poses a significant threat to the global swine industry and economy, with 100% mortality rate in acute cases. ASFV transmission occurs through both direct and indirect contact, with control measures limited to early detection, isolation, and culling of infected pigs. ASFV exhibits a complex genomic structure and encodes for more than 50 structural and 100 non-structural proteins and has 150 to 167 open reading frames (ORFs). While many of the proteins are non-essential for viral replication, they play crucial roles in mediating with the host to ensure longevity and transmission of virus in the host. The dynamic nature of ASFV research necessitates constant updates, with ongoing exploration of various genes and their functions, vaccine development, and other ASF-related domains. This comprehensive review aims to elucidate the structural and functional roles of both newly discovered and previously recorded genes involved in distinct stages of ASFV infection and immunomodulation. Additionally, the review discusses the virulence genes and genes with unknown functions, and proposes future interventions.
Collapse
Affiliation(s)
- Dhithya Venkateswaran
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anwesha Prakash
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Quynh Anh Nguyen
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Salman
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roypim Suntisukwattana
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranya Atthaapa
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutic and Industrial Pharmacies, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore
| | - Tapanut Songkasupa
- National Institute of Animal Health, Department of Livestock Development, 50/2 Kasetklang, Phahonyothin 45-15, Chatuchak, Bangkok 10900, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Ramirez-Medina E, Rai A, Espinoza N, Spinard E, Silva E, Burton L, Clark J, Meyers A, Valladares A, Velazquez-Salinas L, Gay CG, Gladue DP, Borca MV. Recombinant Vaccine Strain ASFV-G-Δ9GL/ΔUK Produced in the IPKM Cell Line Is Genetically Stable and Efficacious in Inducing Protection in Pigs Challenged with the Virulent African Swine Fever Virus Field Isolate Georgia 2010. Pathogens 2024; 13:319. [PMID: 38668274 PMCID: PMC11055038 DOI: 10.3390/pathogens13040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
We have previously reported that the recombinant African Swine Fever (ASF) vaccine candidate ASFV-G-Δ9GL/ΔUK efficiently induces protection in domestic pigs challenged with the virulent strain Georgia 2010 (ASFV-G). As reported, ASFV-G-Δ9GL/ΔUK induces protection, while intramuscularly (IM), administered at doses of 104 HAD50 or higher, prevents ASF clinical disease in animals infected with the homologous ASFV g strain. Like other recombinant vaccine candidates obtained from ASFV field isolates, ASFV-G-Δ9GL/ΔUK stocks need to be produced in primary cultures of swine macrophages, which constitutes an important limitation in the production of large virus stocks at the industrial level. Here, we describe the development of ASFV-G-Δ9GL/ΔUK stocks using IPKM (Immortalized Porcine Kidney Macrophage) cells, which are derived from swine macrophages. We show that ten successive passages of ASFV-G-Δ9GL/ΔUK in IPKM cells induced small changes in the virus genome. The produced virus, ASFV-G-Δ9GL/ΔUKp10, presented a similar level of replication in swine macrophages cultures to that of the original ASFV-G-Δ9GL/ΔUK (ASFV-G-Δ9GL/ΔUKp0). The protective efficacy of ASFV-G-Δ9GL/ΔUKp10 was evaluated in pigs that were IM-inoculated with either 104 or 106 HAD50 of ASFV-G-Δ9GL/ΔUKp10. While animals inoculated with 104 HAD50 present a partial protection against the experimental infection with the virulent parental virus ASFV-G, those inoculated with 106 HAD50 were completely protected. Therefore, as was just recently reported for another ASF vaccine candidate, ASFV-G-ΔI177L, IPKM cells are an effective alternative to produce stocks for vaccine strains which only grow in swine macrophages.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Ayushi Rai
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Edward Spinard
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Ediane Silva
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Leeanna Burton
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Jason Clark
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Amanda Meyers
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Alyssa Valladares
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Lauro Velazquez-Salinas
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Cyril G. Gay
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Douglas P. Gladue
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Manuel V. Borca
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.R.-M.); (A.R.); (N.E.); (E.S.); (A.M.); (A.V.); (L.V.-S.)
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Animal Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| |
Collapse
|
5
|
Sunwoo SY, García-Belmonte R, Walczak M, Vigara-Astillero G, Kim DM, Szymankiewicz K, Kochanowski M, Liu L, Tark D, Podgórska K, Revilla Y, Pérez-Núñez D. Deletion of MGF505-2R Gene Activates the cGAS-STING Pathway Leading to Attenuation and Protection against Virulent African Swine Fever Virus. Vaccines (Basel) 2024; 12:407. [PMID: 38675789 PMCID: PMC11054455 DOI: 10.3390/vaccines12040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
African swine fever virus (ASFV) is the etiological agent causing African swine fever (ASF), affecting domestic pigs and wild boar, which is currently the biggest animal epidemic in the world and a major threat to the swine sector. At present, some safety concerns about using LAVs against ASFV still exist despite a commercial vaccine licensed in Vietnam. Therefore, the efforts to identify virulence factors and their mechanisms, as well as to generate new vaccine prototypes, are of major interest. In this work, we have identified the MGF505-2R gene product as an inhibitor of the cGAS/STING pathway, specifically through its interaction with STING protein, controlling IFN-β production. In addition, immunization of a recombinant virus lacking this gene, Arm/07-ΔMGF505-2R, resulted in complete attenuation, demonstrating its involvement in ASFV virulence. Finally, immunization with Arm/07-ΔMGF505-2R induced the generation of antibodies and proved to be partially protective against virulent ASFV strains. These results identify MGF505-2R, as well as its mechanism of action, as a gene contributing to understanding the molecular mechanisms of ASFV virulence, which will be of great value in the design of future vaccine prototypes.
Collapse
Affiliation(s)
- Sun-Young Sunwoo
- Careside Co., Ltd., Sagimakgol-ro 45 Beongil 14, Seongnam-si 13209, Gyeonggi-do, Republic of Korea;
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain; (R.G.-B.); (G.V.-A.)
| | - Marek Walczak
- Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland; (M.W.); (K.S.); (M.K.); (K.P.)
| | - Gonzalo Vigara-Astillero
- Microbes in Health and Welfare Department, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain; (R.G.-B.); (G.V.-A.)
| | - Dae-Min Kim
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 79 Gobong-ro, Ma-dong, Iksan 54531, Jeollabuk-do, Republic of Korea; (D.-M.K.); (D.T.)
| | - Krzesimir Szymankiewicz
- Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland; (M.W.); (K.S.); (M.K.); (K.P.)
| | - Maciej Kochanowski
- Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland; (M.W.); (K.S.); (M.K.); (K.P.)
| | - Lihong Liu
- Department of Microbiology, Swedish Veterinary Agency, 751 89 Uppsala, Sweden;
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 79 Gobong-ro, Ma-dong, Iksan 54531, Jeollabuk-do, Republic of Korea; (D.-M.K.); (D.T.)
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland; (M.W.); (K.S.); (M.K.); (K.P.)
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain; (R.G.-B.); (G.V.-A.)
| | - Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, c/Nicolás Cabrera 1, 28049 Madrid, Spain; (R.G.-B.); (G.V.-A.)
| |
Collapse
|
6
|
Thaweerattanasinp T, Kaewborisuth C, Viriyakitkosol R, Saenboonrueng J, Wanitchang A, Tanwattana N, Sonthirod C, Sangsrakru D, Pootakham W, Tangphatsornruang S, Jongkaewwattana A. Adaptation of African swine fever virus to MA-104 cells: Implications of unique genetic variations. Vet Microbiol 2024; 291:110016. [PMID: 38340553 DOI: 10.1016/j.vetmic.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal, contagious disease specifically in pigs. However, prevention and control of ASFV outbreaks have been hampered by the lack of an effective vaccine or antiviral treatment for ASFV. Although ASFV has been reported to adapt to a variety of continuous cell lines, the phenotypic and genetic changes associated with ASFV adaptation to MA-104 cells remain poorly understood. Here, we adapted ASFV field isolates to efficiently propagate through serial viral passages in MA-104 cells. The adapted ASFV strain developed a pronounced cytopathic effect and robust infection in MA-104 cells. Interestingly, the adapted variant maintained its tropism in primary porcine kidney macrophages. Whole genome analysis of the adapted virus revealed unique gene deletions in the left and right variable regions of the viral genome compared to other previously reported cell culture-adapted ASFV strains. Notably, gene duplications at the 5' and 3' ends of the viral genome were in reverse complementary alignment with their paralogs. Single point mutations in protein-coding genes and intergenic regions were also observed in the viral genome. Collectively, our results shed light on the significance of these unique genetic changes during adaptation, which facilitate the growth of ASFV in MA-104 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chutima Sonthirod
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Duangjai Sangsrakru
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wirulda Pootakham
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sithichoke Tangphatsornruang
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | | |
Collapse
|
7
|
Vu HLX, McVey DS. Recent progress on gene-deleted live-attenuated African swine fever virus vaccines. NPJ Vaccines 2024; 9:60. [PMID: 38480758 PMCID: PMC10937926 DOI: 10.1038/s41541-024-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
African Swine Fever (ASF) is a highly lethal viral disease in swine, with mortality rates approaching 100%. The disease has spread to many swine-producing countries, leading to significant economic losses and adversely impacting global food security. Extensive efforts have been directed toward developing effective ASF vaccines. Among the vaccinology approaches tested to date, live-attenuated virus (LAV) vaccines produced by rational deleting virulence genes from virulent African Swine Fever Virus (ASFV) strains have demonstrated promising safety and efficacy in experimental and field conditions. Many gene-deleted LAV vaccine candidates have been generated in recent years. The virulence genes targeted for deletion from the genome of virulent ASFV strains can be categorized into four groups: Genes implicated in viral genome replication and transcription, genes from the multigene family located at both 5' and 3' termini, genes participating in mediating hemadsorption and putative cellular attachment factors, and novel genes with no known functions. Some promising LAV vaccine candidates are generated by deleting a single viral virulence gene, whereas others are generated by simultaneously deleting multiple genes. This article summarizes the recent progress in developing and characterizing gene-deleted LAV vaccine candidates.
Collapse
Affiliation(s)
- Hiep L X Vu
- Department of Animal Science, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - D Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
8
|
Gao H, Di D, Wu Q, Li J, Liu X, Xu Z, Xu S, Wu C, Gong L, Sun Y, Zhang G, Chen H, Wang H. Pathogenicity and horizontal transmission evaluation of a novel isolated African swine fever virus strain with a three-large-fragment-gene deletion. Vet Microbiol 2024; 290:110002. [PMID: 38295489 DOI: 10.1016/j.vetmic.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
African swine fever has caused substantial economic losses to China`s pig industry in recent years. Currently, the highly pathogenic African swine fever virus strain of genotype II is predominantly circulating in China, accompanied by a series of emerging isolates displaying unique genetic variations. The pathogenicity of these emerging strains is still unclear. Recently, a novel ASFV strain with a distinguishable three-large-fragment gene deletion was obtained from the field specimens, and its in vivo pathogenicity and transmission were evaluated in this study. The animal experiment involved inoculating a high dose of YNFN202103 and comparing its effects with those of the highly pathogenic strain GZ201801_2. Results showed that pigs infected by YNFN202103 exhibited significantly prolonged onset and survival time, lower viremia levels, and less severe histopathological lesions compared to GZ201801_2. These findings contributed valuable insights into the pathogenicity and transmission of ASFV and its prevention and eradication strategies in practical settings.
Collapse
Affiliation(s)
- Han Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Dongdong Di
- The Spirit Jinyu Biological Pharmaceutical Co., Ltd., Hohhot, People's Republic of China
| | - Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Jie Li
- The Spirit Jinyu Biological Pharmaceutical Co., Ltd., Hohhot, People's Republic of China
| | - Xing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Zhiying Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Sijia Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China
| | - Chengyu Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, People's Republic of China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, People's Republic of China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Research Center for African Swine Fever Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, People's Republic of China.
| |
Collapse
|
9
|
Borca MV, Ramirez-Medina E, Espinoza N, Rai A, Spinard E, Velazquez-Salinas L, Valladares A, Silva E, Burton L, Meyers A, Clark J, Wu P, Gay CG, Gladue DP. Deletion of the EP402R Gene from the Genome of African Swine Fever Vaccine Strain ASFV-G-∆I177L Provides the Potential Capability of Differentiating between Infected and Vaccinated Animals. Viruses 2024; 16:376. [PMID: 38543742 PMCID: PMC10974803 DOI: 10.3390/v16030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
The African swine fever virus (ASFV) mutant ASFV-G-∆I177L is a safe and efficacious vaccine which induces protection against the challenge of its parental virus, the Georgia 2010 isolate. Although a genetic DIVA (differentiation between infected and vaccinated animals) assay has been developed for this vaccine, still there is not a serological DIVA test for differentiating between animals vaccinated with ASFV-G-∆I177L and those infected with wild-type viruses. In this report, we describe the development of the ASFV-G-∆I177L mutant having deleted the EP402R gene, which encodes for the viral protein responsible for mediating the hemadsorption of swine erythrocytes. The resulting virus, ASFV-G-∆I177L/∆EP402R, does not have a decreased ability to replicates in swine macrophages when compared with the parental ASFV-G-∆I177L. Domestic pigs intramuscularly (IM) inoculated with either 102 or 106 HAD50 of ASFV-G-∆I177L/∆EP402R remained clinically normal, when compared with a group of mock-vaccinated animals, indicating the absence of residual virulence. Interestingly, an infectious virus could not be detected in the blood samples of the ASFV-G-∆I177L/∆EP402R-inoculated animals in either group at any of the time points tested. Furthermore, while all of the mock-inoculated animals presented a quick and lethal clinical form of ASF after the intramuscular inoculation challenge with 102 HAD50 of highly virulent parental field isolate Georgia 2010 (ASFV-G), all of the ASFV-G-∆I177L/∆EP402R-inoculated animals were protected, remaining clinically normal until the end of the observational period. Most of the ASFV-G-∆I177L/∆EP402R-inoculated pigs developed strong virus-specific antibody responses against viral antigens, reaching maximum levels at 28 days post inoculation. Importantly, all of the sera collected at that time point in the ASFV-G-∆I177L/∆EP402R-inoculated pigs did not react in a direct ELISA coated with the recombinant EP402R protein. Conversely, the EP402R protein was readily recognized by the pool of sera from the animals immunized with recombinant live attenuated vaccine candidates ASFV-G-∆I177L, ASFV-G-∆MGF, or ASFV-G-∆9GL/∆UK. Therefore, ASFV-G-∆I177L/∆EP402R is a novel, safe and efficacious candidate with potential to be used as an antigenically DIVA vaccine.
Collapse
Affiliation(s)
- Manuel V. Borca
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Elizabeth Ramirez-Medina
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Nallely Espinoza
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Ayushi Rai
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Edward Spinard
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Alyssa Valladares
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Leeanna Burton
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Amanda Meyers
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Jason Clark
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| | - Ping Wu
- Plum Island Animal Disease Center, U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Orient, NY 11957, USA;
| | - Cyril G. Gay
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA;
| | - Douglas P. Gladue
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Orient, NY 11957, USA; (E.R.-M.); (N.E.); (A.R.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Foreign Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66502, USA; (E.S.); (L.B.); (J.C.)
| |
Collapse
|
10
|
Johnston CM, Olesen AS, Lohse L, le Maire Madsen A, Bøtner A, Belsham GJ, Rasmussen TB. A Deep Sequencing Strategy for Investigation of Virus Variants within African Swine Fever Virus-Infected Pigs. Pathogens 2024; 13:154. [PMID: 38392892 PMCID: PMC10893071 DOI: 10.3390/pathogens13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever, an economically important disease of pigs, often with a high case fatality rate. ASFV has demonstrated low genetic diversity among isolates collected within Eurasia. To explore the influence of viral variants on clinical outcomes and infection dynamics in pigs experimentally infected with ASFV, we have designed a deep sequencing strategy. The variant analysis revealed unique SNPs at <10% frequency in several infected pigs as well as some SNPs that were found in more than one pig. In addition, a deletion of 10,487 bp (resulting in the complete loss of 21 genes) was present at a nearly 100% frequency in the ASFV DNA from one pig at position 6362-16849. This deletion was also found to be present at low levels in the virus inoculum and in two other infected pigs. The current methodology can be used for the currently circulating Eurasian ASFVs and also adapted to other ASFV strains and genotypes. Comprehensive deep sequencing is critical for following ASFV molecular evolution, especially for the identification of modifications that affect virus virulence.
Collapse
Affiliation(s)
- Camille Melissa Johnston
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| | - Ann Sofie Olesen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| | - Louise Lohse
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| | - Agnete le Maire Madsen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, DK-1353 København, Denmark
| | - Anette Bøtner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg, Denmark; (A.B.); (G.J.B.)
| | - Graham J. Belsham
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg, Denmark; (A.B.); (G.J.B.)
| | - Thomas Bruun Rasmussen
- Section for Veterinary Virology, Department of Virus & Microbiological Special Diagnostics, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark; (C.M.J.); (A.S.O.); (L.L.); (A.l.M.M.)
| |
Collapse
|
11
|
Yang J, Zhu R, Zhang Y, Zhou X, Yue H, Li Q, Ke J, Wang Y, Miao F, Chen T, Zhang F, Zhang S, Qian A, Hu R. Deleting the C84L Gene from the Virulent African Swine Fever Virus SY18 Does Not Affect Its Replication in Porcine Primary Macrophages but Reduces Its Virulence in Swine. Pathogens 2024; 13:103. [PMID: 38392841 PMCID: PMC10891671 DOI: 10.3390/pathogens13020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: African swine fever (ASF) is a highly contagious disease that causes high pig mortality. Due to the absence of vaccines, prevention and control are relatively challenging. The pathogenic African swine fever virus (ASFV) has a complex structure and encodes over 160 proteins, many of which still need to be studied and verified for their functions. In this study, we identified one of the unknown functional genes, C84L. (2) Methods: A gene deficient strain was obtained through homologous recombination and several rounds of purification, and its replication characteristics and virulence were studied through in vitro and in vivo experiments, respectively. (3) Results: Deleting this gene from the wild-type virulent strain SY18 did not affect its replication in porcine primary macrophages but reduced its virulence in pigs. In animal experiments, we injected pigs with a 102 TCID50, 105 TCID50 deletion virus, and a 102 TCID50 wild-type strain SY18 intramuscularly. The control group pigs reached the humane endpoint on the ninth day (0/5) and were euthanized. Two pigs in the 102 TCID50(2/5) deletion virus group survived on the twenty-first day, and one in the 105 TCID50(1/5) deletion virus group survived. On the twenty-first day, the surviving pigs were euthanized, which was the end of the experiment. The necropsies of the survival group and control groups' necropsies showed that the surviving pigs' liver, spleen, lungs, kidneys, and submaxillary lymph nodes did not show significant lesions associated with the ASFV. ASFV-specific antibodies were first detected on the seventh day after immunization; (4) Conclusions: This is the first study to complete the replication and virulence functional exploration of the C84L gene of SY18. In this study, C84L gene was preliminarily found not a necessary gene for replication, gene deletion strain SY18ΔC84L has similar growth characteristics to SY18 in porcine primary alveolar macrophages. The C84L gene affects the virulence of the SY18 strain.
Collapse
Affiliation(s)
- Jinjin Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Rongnian Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Yanyan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Xintao Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Huixian Yue
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Qixuan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Junnan Ke
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Faming Miao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Teng Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Fei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Shoufeng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| | - Aidong Qian
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun 130000, China
| |
Collapse
|
12
|
Pérez-Núñez D, García-Belmonte R, Riera E, Fernández-Sesma MH, Vigara-Astillero G, Revilla Y. Signal peptide and N-glycosylation of N-terminal-CD2v determine the hemadsorption of African swine fever virus. J Virol 2023; 97:e0103023. [PMID: 37768082 PMCID: PMC10617588 DOI: 10.1128/jvi.01030-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE African swine fever virus (ASFV) is the cause of the current major animal epidemic worldwide. This disease affects domestic pigs and wild boars, has spread since 2007 through Russia, Eastern Europe, and more recently to Western European countries, and since 2018 emerged in China, from where it spread throughout Southeast Asia. Recently, outbreaks have appeared in the Caribbean, threatening the Americas. It is estimated that more than 900,000 animals have died directly or indirectly from ASFV since 2021 alone. One of the features of ASFV infection is hemoadsorption (HAD), which has been linked to virulence, although the molecular and pathological basis of this hypothesis remains largely unknown. In this study, we have analyzed and identified the key players responsible of HAD, contributing to the identification of new determinants of ASFV virulence, the understanding of ASFV pathogenesis, and the rational development of new vaccines.
Collapse
Affiliation(s)
- Daniel Pérez-Núñez
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel García-Belmonte
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Elena Riera
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Marta H. Fernández-Sesma
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Gonzalo Vigara-Astillero
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Yolanda Revilla
- Microbes in Health and Welfare Department, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
13
|
Ramirez-Medina E, Velazquez-Salinas L, Rai A, Espinoza N, Valladares A, Silva E, Burton L, Spinard E, Meyers A, Risatti G, Calvelage S, Blome S, Gladue DP, Borca MV. Evaluation of the Deletion of the African Swine Fever Virus Gene O174L from the Genome of the Georgia Isolate. Viruses 2023; 15:2134. [PMID: 37896911 PMCID: PMC10612027 DOI: 10.3390/v15102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
African swine fever virus (ASFV) is a structurally complex, double-stranded DNA virus, which causes African swine fever (ASF), a contagious disease affecting swine. ASF is currently affecting pork production in a large geographical region, including Eurasia and the Caribbean. ASFV has a large genome, which harbors more than 160 genes, but most of these genes' functions have not been experimentally characterized. One of these genes is the O174L gene which has been experimentally shown to function as a small DNA polymerase. Here, we demonstrate that the deletion of the O174L gene from the genome of the virulent strain ASFV Georgia2010 (ASFV-G) does not significantly affect virus replication in vitro or in vivo. A recombinant virus, having deleted the O174L gene, ASFV-G-∆O174L, was developed to study the effect of the O174L protein in replication in swine macrophages cultures in vitro and disease production when inoculated in pigs. The results demonstrated that ASFV-G-∆O174L has similar replication kinetics to parental ASFV-G in swine macrophage cultures. In addition, animals intramuscularly inoculated with 102 HAD50 of ASFV-G-∆O174L presented a clinical form of the disease that is indistinguishable from that induced by the parental virulent strain ASFV-G. All animals developed a lethal disease, being euthanized around day 7 post-infection. Therefore, although O174L is a well-characterized DNA polymerase, its function is apparently not critical for the process of virus replication, both in vitro and in vivo, or for disease production in domestic pigs.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Alyssa Valladares
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Leeanna Burton
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Edward Spinard
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Amanda Meyers
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Guillermo Risatti
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA;
| | - Sten Calvelage
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.C.); (S.B.)
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.C.); (S.B.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| |
Collapse
|
14
|
Yang J, Yang B, Hao Y, Shi X, Yang X, Zhang D, Zhao D, Yan W, Chen L, Bie X, Chen G, Zhu Z, Li D, Shen C, Li G, Liu X, Zheng H, Zhang K. African swine fever virus MGF360-9L promotes viral replication by degrading the host protein HAX1. Virus Res 2023; 336:199198. [PMID: 37640268 PMCID: PMC10507221 DOI: 10.1016/j.virusres.2023.199198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
African swine fever virus (ASFV) infection causes African swine fever (ASF), a virulent infectious disease that threatens the safety of livestock worldwide. Studies have shown that MGF360-9 L is important for the virulence of ASFV and the host protein HS1-associated protein X-1 (HAX1) plays an important role in viral pathogenesis. This study aimed to clarify the mechanism by which HAX1 mediates ASFV replication through interactions with MGF360-9 L. The regions of interaction between MGF360-9 L and HAX1 were predicted and validated. HAX1 overexpression and RNA interference studies revealed that HAX1 is a host restriction factor that suppresses ASFV replication. Moreover, HAX1 expression was inhibited in ASFV-infected mature bone marrow-derived macrophages, and infection with the virulent MGF360-9 L gene deletion strain (∆MGF360-9 L) attenuated the inhibitory effect of the wild-type strain (WT) on HAX1 expression, suggesting a complex regulatory relationship between MGF360-9 L and HAX1. Furthermore, the E3 ubiquitin ligase RNF114 interacted with MGF360-9 L and HAX1, MGF360-9 L degraded HAX1 through the ubiquitin-proteasome pathway, and RNF114 facilitated the degradation of HAX1 by MGF360-9L-linked K48 ubiquitin chains through the ubiquitin-proteasome pathway, thereby facilitating ASFV replication. In conclusion, this study has enriched our understanding of the regulatory networks between ASFV proteins and host proteins and provided a reference for investigation into the pathogenesis and immune escape mechanism of ASFV.
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Bo Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dengshuai Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xintian Bie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Guohui Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Chaochao Shen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Guoli Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| |
Collapse
|
15
|
Truong QL, Wang L, Nguyen TA, Nguyen HT, Tran SD, Vu AT, Le AD, Nguyen VG, Hoang PT, Nguyen YT, Le TL, Van TN, Huynh TML, Lai HTL, Madera R, Li Y, Shi J, Nguyen LT. A Cell-Adapted Live-Attenuated Vaccine Candidate Protects Pigs against the Homologous Strain VNUA-ASFV-05L1, a Representative Strain of the Contemporary Pandemic African Swine Fever Virus. Viruses 2023; 15:2089. [PMID: 37896866 PMCID: PMC10612049 DOI: 10.3390/v15102089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
African swine fever (ASF) is a lethal and highly contagious transboundary animal disease with the potential for rapid international spread. Currently, there is no ASF vaccine commercially available. All infected animals must be isolated and culled immediately upon the confirmation of the presence of the virus. Studies leading to the rational development of protective ASF vaccines are urgently needed. Here, we generated a safe and efficacious live-attenuated vaccine (LAV) VNUA-ASFV-LAVL2 by serially passaging a field isolate (VNUA-ASFV-05L1, genotype II) in porcine alveolar macrophages (PAMs, 65 passages) and an immortalized porcine alveolar macrophage cell line (3D4/21, 55 passages). VNUA-ASFV-LAVL2 can efficiently replicate in both PAMs and 3D4/21 cells. It provides 100% protection, even with the low dose of 102 HAD50, to the vaccinated pigs against the challenge of contemporary pandemic ASFV field isolate. Pigs vaccinated with this LAV in a dose range of 102 to 105 HAD50 remained clinically healthy during both the 28-day observation period of immunization and the 28-day observation period of challenge. VNUA-ASFV-LAVL2 was eliminated from blood by 28 days post-inoculation (DPI), and from feces or oral fluids by 17 DPI. Although the vaccine strain in serum remained a safe and attenuated phenotype after five passages in swine, a reversion-to-virulence study using blood or tissue homogenates at peak viremia will be conducted in the future. ASFV-specific IgG antibodies and significant cellular immunity were detected in vaccinated pigs before the ASFV challenge. These results indicate that the VNUA-ASFV-LAVL2 strain is a safe and efficacious LAV against the genotype II ASFV strain responsible for current ASF outbreaks in Asia.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Lihua Wang
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Tuan Anh Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Son Danh Tran
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Anh Thi Vu
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Anh Dao Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Van Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (V.G.N.); (T.M.L.H.)
| | - Phuong Thi Hoang
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Yen Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Thi Luyen Le
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Thang Nguyen Van
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Thi My Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (V.G.N.); (T.M.L.H.)
| | - Huong Thi Lan Lai
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| | - Rachel Madera
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Yuzhen Li
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Jishu Shi
- Center on Vaccine Evaluation and Alternatives for Antimicrobials, Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (L.W.); (R.M.); (Y.L.)
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Ha Noi 12406, Vietnam; (T.A.N.); (H.T.N.); (S.D.T.); (A.T.V.); (A.D.L.); (P.T.H.); (Y.T.N.); (T.L.L.); (T.N.V.); (H.T.L.L.)
| |
Collapse
|
16
|
Borca MV, Rai A, Espinoza N, Ramirez-Medina E, Spinard E, Velazquez-Salinas L, Valladares A, Silva E, Burton L, Meyers A, Gay CG, Gladue DP. African Swine Fever Vaccine Candidate ASFV-G-ΔI177L Produced in the Swine Macrophage-Derived Cell Line IPKM Remains Genetically Stable and Protective against Homologous Virulent Challenge. Viruses 2023; 15:2064. [PMID: 37896841 PMCID: PMC10612016 DOI: 10.3390/v15102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
ASFV vaccine candidate ASFV-G-ΔI177L has been shown to be highly efficacious in inducing protection against challenges with the parental virus, the Georgia 2010 isolate, as well as against field strains isolated from Vietnam. ASFV-G-ΔI177L has been shown to produce protection even when used at low doses (102 HAD50) and shows no residual virulence even when administered at high doses (106 HAD50) or evaluated for a relatively long period of time (6 months). ASFV-G-ΔI177L stocks can only be massively produced in primary cell macrophages. Alternatively, its modified version (ASFV-G-ΔI177L/ΔLVR) grows in a swine-derived cell line (PIPEC), acquiring significant genomic modifications. We present here the development of ASFV-G-ΔI177L stocks in a swine macrophage cell line, IPKM, and its protective efficacy when evaluated in domestic pigs. Successive passing of ASFV-G-ΔI177L in IPKM cells produces minimal genomic changes. Interestingly, a stock of ASFV-G-ΔI177L obtained after 10 passages (ASFV-G-ΔI177Lp10) in IPKM cells showed very small genomic changes when compared with the original virus stock. ASFV-G-ΔI177Lp10 conserves similar growth kinetics in primary swine macrophage cultures than the original parental virus ASFV-G-ΔI177L. Pigs infected with 103 HAD50 of ASFV-G-ΔI177Lp10 developed a strong virus-specific antibody response and were completely protected against the challenge with the parental virulent field isolate Georgia 2010. Therefore, IPKM cells could be an effective alternative for the production of ASFV vaccine stocks for those vaccine candidates exclusively growing in swine macrophages.
Collapse
Affiliation(s)
- Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (A.R.); (N.E.); (E.R.-M.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- National Bio and Agro-Defense Facility, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (E.S.); (L.B.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (A.R.); (N.E.); (E.R.-M.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (A.R.); (N.E.); (E.R.-M.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- National Bio and Agro-Defense Facility, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (E.S.); (L.B.)
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (A.R.); (N.E.); (E.R.-M.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- National Bio and Agro-Defense Facility, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (E.S.); (L.B.)
| | - Edward Spinard
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (A.R.); (N.E.); (E.R.-M.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- National Bio and Agro-Defense Facility, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (E.S.); (L.B.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (A.R.); (N.E.); (E.R.-M.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- National Bio and Agro-Defense Facility, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (E.S.); (L.B.)
| | - Alyssa Valladares
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (A.R.); (N.E.); (E.R.-M.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ediane Silva
- National Bio and Agro-Defense Facility, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (E.S.); (L.B.)
| | - Leeanna Burton
- National Bio and Agro-Defense Facility, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (E.S.); (L.B.)
| | - Amanda Meyers
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (A.R.); (N.E.); (E.R.-M.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Cyril G. Gay
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA;
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Orient, NY 11957, USA; (A.R.); (N.E.); (E.R.-M.); (E.S.); (L.V.-S.); (A.V.); (A.M.)
- National Bio and Agro-Defense Facility, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (E.S.); (L.B.)
| |
Collapse
|
17
|
Duan X, Wen Y, Wu P, Peng J, Zhou Y, Zhu G, Li D, Ru Y, Yang W, Zheng H. Functional characterization of African swine fever virus I329L gene by transcriptome analysis. Vet Microbiol 2023; 284:109836. [PMID: 37574636 DOI: 10.1016/j.vetmic.2023.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
African swine fever (ASF) is an acute, severe, and highly contagious disease caused by the African swine fever virus (ASFV), which infects domestic pigs and wild boars. The incidence and mortality rates of swine infected with virulent strains of ASFV can reach up to 100%. The large genome, its complex structure, multiple genotypes, and a lack of understanding regarding ASFV gene function are serious obstacles to the development of safe and effective vaccines. Here, ASFV I329L was identified as a relatively conserved gene that is expressed during the late stage of infection. A recombinant virus with I329L gene deletion (ASFV CN/GS/2018-ΔI329L) was produced by replacing I329L with an enhanced green fluorescent protein (EGFP) cassette. In order to explore the function of the ASFV I329L gene, transcriptome sequencing (RNA-seq) was performed on porcine alveolar macrophages (PAMs) infected with ASFV CN/GS/2018 and ASFV CN/GS/2018-ΔI329L. GO functional and KEGG pathway analyses were performed to analyze differentially expressed genes, and different alternative splicing (AS) events were also analyzed. We compared the sequencing data for each sample with the ASFV CN/GS/2018 reference sequence. Interestingly, we found 3 and 1 up-regulated genes and 12 and 19 down-regulated genes at 12 and 24 h post-infection, respectively. In addition, we verified the expression of 5 up-regulated and 5 down-regulated genes by RT-qPCR, and the results were consistent with those obtained based on RNA-seq. In summary, the results obtained in this study provide new insights for further elucidation of ASFV proteins and ASFV-host interactions. These findings will contribute to implementing a comprehensive strategy for controlling the spread of ASF.
Collapse
Affiliation(s)
- Xianghan Duan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuan Wen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Panxue Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiangling Peng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanlong Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guoqiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
18
|
Li D, Peng J, Wu J, Yi J, Wu P, Qi X, Ren J, Peng G, Duan X, Ru Y, Liu H, Tian H, Zheng H. African swine fever virus MGF-360-10L is a novel and crucial virulence factor that mediates ubiquitination and degradation of JAK1 by recruiting the E3 ubiquitin ligase HERC5. mBio 2023; 14:e0060623. [PMID: 37417777 PMCID: PMC10470787 DOI: 10.1128/mbio.00606-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023] Open
Abstract
African swine fever virus (ASFV) causes acute hemorrhagic infectious disease in pigs. The ASFV genome encodes various proteins that enable the virus to escape innate immunity; however, the underlying mechanisms are poorly understood. The present study found that ASFV MGF-360-10L significantly inhibits interferon (IFN)-β-triggered STAT1/2 promoter activation and the production of downstream IFN-stimulated genes (ISGs). ASFV MGF-360-10L deletion (ASFV-Δ10L) replication was impaired compared with the parental ASFV CN/GS/2018 strain, and more ISGs were induced by the ASFV-Δ10L in porcine alveolar macrophages in vitro. We found that MGF-360-10L mainly targets JAK1 and mediates its degradation in a dose-dependent manner. Meanwhile, MGF-360-10L also mediates the K48-linked ubiquitination of JAK1 at lysine residues 245 and 269 by recruiting the E3 ubiquitin ligase HERC5 (HECT and RLD domain-containing E3 ubiquitin protein ligase 5). The virulence of ASFV-Δ10L was significantly lower than that of the parental strain in vivo, which indicates that MGF-360-10L is a novel virulence factor of ASFV. Our findings elaborate the novel mechanism of MGF-360-10L on the STAT1/2 signaling pathway, expanding our understanding of the inhibition of host innate immunity by ASFV-encoded proteins and providing novel insights that could contribute to the development of African swine fever vaccines. IMPORTANCE African swine fever outbreaks remain a concern in some areas. There is no effective drug or commercial vaccine to prevent African swine fever virus (ASFV) infection. In the present study, we found that overexpression of MGF-360-10L strongly inhibited the interferon (IFN)-β-induced STAT1/2 signaling pathway and the production of IFN-stimulated genes (ISGs). Furthermore, we demonstrated that MGF-360-10L mediates the degradation and K48-linked ubiquitination of JAK1 by recruiting the E3 ubiquitin ligase HERC5. The virulence of ASFV with MGF-360-10L deletion was significantly less than parental ASFV CN/GS/2018. Our study identified a new virulence factor and revealed a novel mechanism by which MGF-360-10L inhibits the immune response, thus providing new insights into the vaccination strategies against ASFV.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiangling Peng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junhuang Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiamin Yi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Panxue Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolan Qi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Gaochuang Peng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xianghan Duan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
19
|
Yang J, Zhu R, Zhang Y, Fan J, Zhou X, Yue H, Li Q, Miao F, Chen T, Mi L, Zhang F, Zhang S, Qian A, Hu R. SY18ΔL60L: a new recombinant live attenuated African swine fever virus with protection against homologous challenge. Front Microbiol 2023; 14:1225469. [PMID: 37621401 PMCID: PMC10445127 DOI: 10.3389/fmicb.2023.1225469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction African swine fever (ASF) is an acute and highly contagious disease and its pathogen, the African swine fever virus (ASFV), threatens the global pig industry. At present, management of ASF epidemic mainly relies on biological prevention and control methods. Moreover, due to the large genome of ASFV, only half of its genes have been characterized in terms of function. Methods Here, we evaluated a previously uncharacterized viral gene, L60L. To assess the function of this gene, we constructed a deletion strain (SY18ΔL60L) by knocking out the L60L gene of the SY18 strain. To evaluate the growth characteristics and safety of the SY18ΔL60L, experiments were conducted on primary macrophages and pigs, respectively. Results The results revealed that the growth trend of the recombinant strain was slower than that of the parent strain in vitro. Additionally, 3/5 (60%) pigs intramuscularly immunized with a 105 50% tissue culture infectious dose (TCID50) of SY18ΔL60L survived the 21-day observation period. The surviving pigs were able to protect against the homologous lethal strain SY18 and survive. Importantly, there were no obvious clinical symptoms or viremia. Discussion These results suggest that L60L could serve as a virulence- and replication-related gene. Moreover, the SY18ΔL60L strain represents a new recombinant live-attenuated ASFV that can be employed in the development of additional candidate vaccine strains and in the elucidation of the mechanisms associated with ASF infection.
Collapse
Affiliation(s)
- Jinjin Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Rongnian Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Yanyan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Jiaqi Fan
- Life Science College, Ningxia University, Yinchuan, China
| | - Xintao Zhou
- Life Science College, Ningxia University, Yinchuan, China
| | - Huixian Yue
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Qixuan Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Faming Miao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Teng Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Lijuan Mi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Fei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Shoufeng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Aidong Qian
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun, China
| |
Collapse
|
20
|
Zuo X, Peng G, Xia Y, Xu L, Zhao Q, Zhu Y, Wang C, Liu Y, Zhao J, Wang H, Zou X. A quadruple fluorescence quantitative PCR method for the identification of wild strains of african swine fever and gene-deficient strains. Virol J 2023; 20:150. [PMID: 37452402 PMCID: PMC10347796 DOI: 10.1186/s12985-023-02111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Originating in Africa, African swine fever (ASF) was introduced to China in 2018. This acute and highly virulent infectious disease affects domestic pigs. The World Organization for Animal Health has listed it as a statutory reportable disease, and China has listed it as a category A infectious disease. METHODS Primers and probes were designed for four ASFV genes (B646L, EP402R, MGF505-3R, and A137R). The primers/probes were highly conserved compared with the gene sequences of 21 ASFV strains. RESULTS After optimization, the calibration curve showed good linearity (R2 > 0.99), the minimum concentration of positive plasmids that could be detected was 50 copies/µL, and the minimum viral load detection limit was 102 HAD50/mL. Furthermore, quadruple quantitative polymerase chain reaction (qPCR) with nucleic acids from three porcine-derived DNA viruses and cDNAs from eight RNA viruses did not show amplification curves, indicating that the method was specific. In addition, 1 × 106, 1 × 105, and 1 × 104 copies/µL of mixed plasmids were used for the quadruple qPCR; the coefficient of variation for triplicate determination between groups was < 2%, indicating the method was reproducible. CONCLUSIONS The results obtained by testing clinical samples containing detectable EP402R, MGF505-3R, and A137R strains with different combinations of gene deletions were as expected. Therefore, the established quadruple qPCR method was validated for the molecular diagnosis of ASF using gene-deleted ASFV strains.
Collapse
Affiliation(s)
- Xuezhi Zuo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Guorui Peng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Yingju Xia
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Lu Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Qizu Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Yuanyuan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Cheng Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China
| | - Yebing Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Junjie Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
| | - Xingqi Zou
- China/WOAH Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, China.
| |
Collapse
|
21
|
Ramirez-Medina E, Rai A, Espinoza N, Valladares A, Silva E, Velazquez-Salinas L, Borca MV, Gladue DP. Deletion of the H240R Gene in African Swine Fever Virus Partially Reduces Virus Virulence in Swine. Viruses 2023; 15:1477. [PMID: 37515164 PMCID: PMC10384018 DOI: 10.3390/v15071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
African swine fever (ASF) is a highly contagious disease that affects wild and domestic swine. Currently, the disease is present as a pandemic affecting pork production in Eurasia and the Caribbean region. The etiological agent of ASF is a large, highly complex structural virus (ASFV) harboring a double-stranded genome encoding for more than 160 proteins whose functions, in most cases, have not been experimentally characterized. We show here that deletion of the ASFV gene H240R from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) isolate partially decreases virus virulence when experimentally inoculated in domestic swine. ASFV-G-∆H240R, a recombinant virus harboring the deletion of the H240R gene, was produced to evaluate the function of the gene in the development of disease in pigs. While all animals intramuscularly inoculated with 102 HAD50 of ASFV-G developed a fatal form of the disease, forty percent of pigs receiving a similar dose of ASFV-G-∆H240R survived the infection, remaining healthy during the 28-day observational period, and the remaining sixty percent developed a protracted but fatal form of the disease compared to that induced by ASFV-G. Additionally, all animals inoculated with ASFV-G-∆H240R presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G. Animals surviving infection with ASFV-G-∆H240R developed a strong virus-specific antibody response and were protected against the challenge of the virulent parental ASFV-G.
Collapse
Affiliation(s)
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Alyssa Valladares
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | | | - Manuel V Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Douglas P Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| |
Collapse
|
22
|
Kholod N, Koltsov A, Krutko S, Tulman ER, Namsrayn S, Kutish GF, Belov S, Korotin A, Sukher M, Koltsova G. Comparison of Attenuated and Virulent Strains of African Swine Fever Virus Genotype I and Serogroup 2. Viruses 2023; 15:1373. [PMID: 37376672 DOI: 10.3390/v15061373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
African swine fever (ASF) is a contagious disease of pigs caused by the ASF virus (ASFV). The main problem in the field of ASF control is the lack of vaccines. Attempts to obtain vaccines by attenuating the ASFV on cultured cell lines led to the production of attenuated viruses, some of which provided protection against infection with a homologous virus. Here we report on the biological and genomic features of the attenuated Congo-a (KK262) virus compared to its virulent homologue Congo-v (K49). Our results showed differences in in vivo replication and virulence of Congo-a. However, the attenuation of the K49 virus did not affect its ability to replicate in vitro in the primary culture of pig macrophages. Complete genome sequencing of the attenuated KK262 strain revealed an 8,8 kb deletion in the left variable region of the genome compared to the virulent homologue K49. This deletion concerned five genes of MGF360 and three genes of MGF505. In addition, three inserts in the B602L gene, genetic changes in intergenic regions and missense mutations in eight genes were detected. The data obtained contribute to a better understanding of ASFV attenuation and identification of potential virulence genes for further development of effective vaccines.
Collapse
Affiliation(s)
- Natalia Kholod
- Laboratory of Viral Genomics, Federal Research Center for Virology and Microbiology, 601125 Pokrov, Russia
| | - Andrey Koltsov
- Laboratory of Viral Genomics, Federal Research Center for Virology and Microbiology, 601125 Pokrov, Russia
| | - Sergey Krutko
- Laboratory of Viral Genomics, Federal Research Center for Virology and Microbiology, 601125 Pokrov, Russia
| | - Edan R Tulman
- Department of Pathobiology and Veterinary Science, Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06269, USA
| | - Sanzhi Namsrayn
- Laboratory of Viral Genomics, Federal Research Center for Virology and Microbiology, 601125 Pokrov, Russia
| | - Gerald F Kutish
- Department of Pathobiology and Veterinary Science, Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT 06269, USA
| | - Sergey Belov
- Laboratory of Viral Genomics, Federal Research Center for Virology and Microbiology, 601125 Pokrov, Russia
| | - Alexey Korotin
- Laboratory of Viral Genomics, Federal Research Center for Virology and Microbiology, 601125 Pokrov, Russia
| | - Mikhail Sukher
- Laboratory of Viral Genomics, Federal Research Center for Virology and Microbiology, 601125 Pokrov, Russia
| | - Galina Koltsova
- Laboratory of Viral Genomics, Federal Research Center for Virology and Microbiology, 601125 Pokrov, Russia
| |
Collapse
|
23
|
Ren J, Li D, Zhu G, Yang W, Ru Y, Feng T, Qin X, Hao R, Duan X, Liu X, Zheng H. Deletion of MGF-110-9L gene from African swine fever virus weakens autophagic degradation of TBK1 as a mechanism for enhancing type I interferon production. FASEB J 2023; 37:e22934. [PMID: 37144880 DOI: 10.1096/fj.202201856r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
African swine fever (ASF) caused by African swine fever virus (ASFV) is a devastating disease for the global pig industry and economic benefit. The limited knowledge on the pathogenesis and infection mechanisms of ASF restricts progress toward vaccine development and ASF control. Previously, we illustrated that deletion of the MGF-110-9L gene from highly virulent ASFV CN/GS/2018 strains (ASFV∆9L) results in attenuated virulence in swine, but the underlying mechanism remains unclear. In this study, we found that the difference in virulence between wild-type ASFV (wt-ASFV) and ASFV∆9L strains was mainly caused by the difference in TANK Binding Kinase 1 (TBK1) reduction. TBK1 reduction was further identified to be mediated by the autophagy pathway and this degradative process requires the up-regulation of a positive autophagy regulation molecule- Phosphatidylinositol-4-Phosphate 3-Kinase Catalytic Subunit Type 2 Beta (PIK3C2B). Moreover, TBK1 over-expression was confirmed to inhibit ASFV replication in vitro. In summary, these results indicate that wt-ASFV counteracts type I interferon (IFN) production by degrading TBK1, while ASFVΔ9L enhanced type I IFN production by weakening TBK1 reduction, clarifying the mechanism that ASFVΔ9L present the attenuated virulence in vitro.
Collapse
Affiliation(s)
- Jingjing Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guoqiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xianghan Duan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
24
|
Li D, Ren J, Zhu G, Wu P, Yang W, Ru Y, Feng T, Liu H, Zhang J, Peng J, Tian H, Liu X, Zheng H. Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge. J Biol Chem 2023; 299:104767. [PMID: 37142221 PMCID: PMC10236468 DOI: 10.1016/j.jbc.2023.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
African swine fever, caused by a large icosahedral DNA virus (African swine fever virus, ASFV), is a highly contagious disease in domestic and feral swine, thus posing a significant economic threat to the global swine industry. Currently, there are no effective vaccines or the available methods to control ASFV infection. Attenuated live viruses with deleted virulence factors are considered to be the most promising vaccine candidates; however, the mechanism by which these attenuated viruses confer protection is unclear. Here, we used the Chinese ASFV CN/GS/2018 as a backbone and used homologous recombination to generate a virus in which MGF110-9L and MGF360-9L, two genes antagonize host innate antiviral immune response, were deleted (ASFV-ΔMGF110/360-9L). This genetically modified virus was highly attenuated in pigs and provided effective protection of pigs against parental ASFV challenge. Importantly, we found ASFV-ΔMGF110/360-9L infection induced higher expression of Toll-like receptor 2 (TLR2) mRNA compared with parental ASFV as determined by RNA-Seq and RT-PCR analysis. Further immunoblotting results showed that parental ASFV and ASFV-ΔMGF110/360-9L infection inhibited Pam3CSK4-triggered activating phosphorylation of proinflammatory transcription factor NF-κB subunit p65 and phosphorylation of NF-κB inhibitor IκBα levels, although NF-κB activation was higher in ASFV-ΔMGF110/360-9L-infected cells compared with parental ASFV-infected cells. Additionally, we show overexpression of TLR2 inhibited ASFV replication and the expression of ASFV p72 protein, whereas knockdown of TLR2 had the opposite effect. Our findings suggest that the attenuated virulence of ASFV-ΔMGF110/360-9L might be mediated by increased NF-κB and TLR2 signaling.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guoqiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Panxue Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiangling Peng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
25
|
Zhu G, Ren J, Li D, Ru Y, Qin X, Feng T, Tian H, Lu B, Shi D, Shi Z, Yang W, Zheng H. Combinational Deletions of MGF110-9L and MGF505-7R Genes from the African Swine Fever Virus Inhibit TBK1 Degradation by an Autophagy Activator PIK3C2B To Promote Type I Interferon Production. J Virol 2023; 97:e0022823. [PMID: 37162350 DOI: 10.1128/jvi.00228-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
African swine fever (ASF), caused by the African swine fever virus (ASFV), is a transboundary infectious disease of domestic pigs and wild boars, resulting in significant swine production losses. Currently, no effective commercial ASF vaccines or therapeutic options are available. A previous study has shown that deletions of ASFV MGF110-9L and MGF505-7R genes (ASFV-Δ110-9L/505-7R) attenuated virulence in pigs and provided complete protection against parental lethal ASFV CN/GS/2018 (wild-type ASFV [ASFV-WT]) challenge, but the underlying mechanism is unclear. This study found that ASFV-Δ110-9L/505-7R weakened TBK1 degradation compared with ASFV-WT through RNA sequencing (RNA-seq) and Western blotting analyses. Furthermore, we confirmed that ASFV-Δ110-9L/505-7R blocked the degradation of TBK1 through the autophagy pathway. We also identified that the downregulation of an autophagy-related protein PIK3C2B was involved in the inhibition of TBK1 degradation induced by ASFV-Δ110-9L/505-7R. Additionally, we also confirmed that PIK3C2B promoted ASFV-Δ110-9L/505-7R replication in vitro. Together, this study elucidated a novel mechanism of virulence change of ASFV-Δ110-9L/505-7R, revealing a new mechanism of ASF live attenuated vaccines (LAVs) and providing theoretical guidance for the development of ASF vaccines. IMPORTANCE African swine fever (ASF) is a contagious and lethal hemorrhagic disease of pigs caused by the African swine fever virus (ASFV), leading to significant economic consequences for the global pig industry. The development of an effective and safe ASF vaccine has been unsuccessful. Previous studies have shown that live attenuated vaccines (LAVs) of ASFV are the most effective vaccine candidates to prevent ASF. Understanding the host responses caused by LAVs of ASFV is important in optimizing vaccine design and diversifying the resources available to control ASF. Recently, our laboratory found that the live attenuated ASFV-Δ110-9L/505-7R provided complete protection against parental ASFV-WT challenge. This study further demonstrated that ASFV-Δ110-9L/505-7R inhibits TBK1 degradation mediated by an autophagy activator PIK3C2B to increase type I interferon production. These results revealed an important mechanism for candidate vaccine ASFV-Δ110-9L/505-7R, providing strategies for exploring the virulence of multigene-deleted live attenuated ASFV strains and the development of vaccines.
Collapse
Affiliation(s)
- Guoqiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingjing Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bingzhou Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dongfang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhengwang Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
26
|
Tamás V, Righi C, Mészáros I, D'Errico F, Olasz F, Casciari C, Zádori Z, Magyar T, Petrini S, Feliziani F. Involvement of the MGF 110-11L Gene in the African Swine Fever Replication and Virulence. Vaccines (Basel) 2023; 11:vaccines11040846. [PMID: 37112759 PMCID: PMC10145817 DOI: 10.3390/vaccines11040846] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
African swine fever (ASF) is a highly lethal hemorrhagic viral disease that causes extensive economic and animal welfare losses in the Eurasian pig (Sus scrofa) population. To date, no effective and safe vaccines have been marketed against ASF. A starting point for vaccine development is using naturally occurring attenuated strains as a vaccine base. Here, we aimed to remove the multigene family (MGF) 110 gene of unknown function from the Lv17/WB/Rie1 genome to improve the usability of the virus as a live-attenuated vaccine, reducing unwanted side effects. The MGF 110-11L gene was deleted using the CRISPR/Cas9 method, and the safety and efficacy of the virus were tested in pigs after isolation. The vaccine candidates administered at high doses showed reduced pathogenicity compared to the parental strain and induced immunity in vaccinated animals, although several mild clinical signs were observed. Although Lv17/WB/Rie1/d110-11L cannot be used as a vaccine in its current form, it was encouraging that the undesirable side effects of Lv17/WB/Rie1 at high doses can be reduced by additional mutations without a significant reduction in its protective capacity.
Collapse
Affiliation(s)
- Vivien Tamás
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Cecilia Righi
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - István Mészáros
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Federica D'Errico
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Cristina Casciari
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Tibor Magyar
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Stefano Petrini
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| |
Collapse
|
27
|
Huang Z, Cao H, Zeng F, Lin S, Chen J, Luo Y, You J, Kong C, Mai Z, Deng J, Guo W, Chen X, Wang H, Zhou P, Zhang G, Gong L. African Swine Fever Virus MGF505-7R Interacts with Interferon Regulatory Factor 9 to Evade the Type I Interferon Signaling Pathway and Promote Viral Replication. J Virol 2023; 97:e0197722. [PMID: 36815839 PMCID: PMC10062159 DOI: 10.1128/jvi.01977-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
African swine fever (ASF) is an acute and severe infectious disease caused by the ASF virus (ASFV). The mortality rate of ASF in pigs can reach 100%, causing huge economic losses to the pig industry. Here, we found that ASFV protein MGF505-7R inhibited the beta interferon (IFN-β)-mediated Janus-activated kinase-signal transducer and activation of transcription (JAK-STAT) signaling. Our results demonstrate that MGF505-7R inhibited interferon-stimulated gene factor 3 (ISGF3)-mediated IFN-stimulated response element (ISRE) promoter activity. Importantly, we observed that MGF505-7R inhibits ISGF3 heterotrimer formation by interacting with interferon regulatory factor 9 (IRF9) and inhibits the nuclear translocation of ISGF3. Moreover, to demonstrate the role of MGF505-7R in IFN-I signal transduction during ASFV infection, we constructed and evaluated ASFV-ΔMGF505-7R recombinant viruses. ASFV-ΔMGF505-7R restored STAT2 and STAT1 phosphorylation, alleviated the inhibition of ISGF3 nuclear translocation, and showed increased susceptibility to IFN-β, unlike the parental GZ201801 strain. In conclusion, our study shows that ASFV protein MGF505-7R plays a key role in evading IFN-I-mediated innate immunity, revealing a new mode of evasion for ASFV. IMPORTANCE ASF, caused by ASFV, is currently prevalent in Eurasia, with mortality rates reaching 100% in pigs. At present, there are no safe or effective vaccines against ASFV. In this study, we found that the ASFV protein MGF505-7R hinders IFN-β signaling by interacting with IRF9 and inhibiting the formation of ISGF3 heterotrimers. Of note, we demonstrated that MGF505-7R plays a role in the immune evasion of ASFV in infected hosts and that recombinant viruses alleviated the effect on type I IFN (IFN-I) signaling and exhibited increased susceptibility to IFN-β. This study provides a theoretical basis for developing vaccines against ASFV using strains with MGF505-7R gene deletions.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Haoxuan Cao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Fanliang Zeng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Sizhan Lin
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Jianglin Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yi Luo
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianyi You
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Cuiying Kong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhanzhuo Mai
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Jie Deng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiting Guo
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Xiongnan Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Pei Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| |
Collapse
|
28
|
Li YH, Peng JL, Xu ZS, Xiong MG, Wu HN, Wang SY, Li D, Zhu GQ, Ran Y, Wang YY. African Swine Fever Virus Cysteine Protease pS273R Inhibits Type I Interferon Signaling by Mediating STAT2 Degradation. J Virol 2023; 97:e0194222. [PMID: 36856422 PMCID: PMC10062137 DOI: 10.1128/jvi.01942-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023] Open
Abstract
African swine fever virus (ASFV) is a large DNA virus that causes African swine fever (ASF), an acute and hemorrhagic disease in pigs with lethality rates of up to 100%. To date, how ASFV efficiently suppress the innate immune response remains enigmatic. In this study, we identified ASFV cysteine protease pS273R as an antagonist of type I interferon (IFN). Overexpression of pS273R inhibited JAK-STAT signaling triggered by type I IFNs. Mechanistically, pS273R interacted with STAT2 and recruited the E3 ubiquitin ligase DCST1, resulting in K48-linked polyubiquitination at K55 of STAT2 and subsequent proteasome-dependent degradation of STAT2. Furthermore, such a function of pS273R in JAK-STAT signaling is not dependent on its protease activity. These findings suggest that ASFV pS273R is important to evade host innate immunity. IMPORTANCE ASF is an acute disease in domestic pigs caused by infection with ASFV. ASF has become a global threat with devastating economic and ecological consequences. To date, there are no commercially available, safe, and efficacious vaccines to prevent ASFV infection. ASFV has evolved a series of strategies to evade host immune responses, facilitating its replication and transmission. Therefore, understanding the immune evasion mechanism of ASFV is helpful for the development of prevention and control measures for ASF. Here, we identified ASFV cysteine protease pS273R as an antagonist of type I IFNs. ASFV pS273R interacted with STAT2 and mediated degradation of STAT2, a transcription factor downstream of type I IFNs that is responsible for induction of various IFN-stimulated genes. pS273R recruited the E3 ubiquitin ligase DCST1 to enhance K48-linked polyubiquitination of STAT2 at K55 in a manner independent of its protease activity. These findings suggest that pS273R is important for ASFV to escape host innate immunity, which sheds new light on the mechanisms of ASFV immune evasion.
Collapse
Affiliation(s)
- Yu-Hui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiang-Ling Peng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhi-Sheng Xu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, China
| | - Mei-Guang Xiong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huang-Ning Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Su-Yun Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guo-Qiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yong Ran
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
29
|
Han N, Qu H, Xu T, Hu Y, Zhang Y, Ge S. Summary of the Current Status of African Swine Fever Vaccine Development in China. Vaccines (Basel) 2023; 11:vaccines11040762. [PMID: 37112673 PMCID: PMC10145671 DOI: 10.3390/vaccines11040762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
African swine fever (ASF) is a highly lethal and contagious disease of domestic pigs and wild boars. There is still no credible commercially available vaccine. The only existing one, issued in Vietnam, is actually used in limited quantities in limited areas, for large-scale clinical evaluation. ASF virus is a large complex virus, not inducing full neutralizing antibodies, with multiple genotypes and a lack of comprehensive research on virus infection and immunity. Since it was first reported in China in August 2018, ASF has spread rapidly across the country. To prevent, control, further purify and eradicate ASF, joint scientific and technological research on ASF vaccines has been carried out in China. In the past 4 years (2018–2022), several groups in China have been funded for the research and development of various types of ASF vaccines, achieving marked progress and reaching certain milestones. Here, we have provided a comprehensive and systematic summary of all of the relevant data regarding the current status of the development of ASF vaccines in China to provide a reference for further progress worldwide. At present, the further clinical application of the ASF vaccine still needs a lot of tests and research accumulation.
Collapse
Affiliation(s)
- Naijun Han
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Hailong Qu
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Tiangang Xu
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (South), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 369 Nanjing Road, Qingdao 266032, China
| | - Yongxin Hu
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Yongqiang Zhang
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (South), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, No. 369 Nanjing Road, Qingdao 266032, China
- Correspondence: ; Tel.: +86-53-2856-21552
| |
Collapse
|
30
|
Design of a Replicative-Competent MGF110 (1L-5-6L) Deleted African Swine Fever Virus (Genotype II). ACTA VET-BEOGRAD 2023. [DOI: 10.2478/acve-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract
Viral individual genes functions and their role in the interaction with the host cells remain the main area in the study of African swine fever virus (ASFV) biology. The extreme heterogeneity of the ASFV makes it difficult to develop vaccines against this pathogen. In this work, we generated the ASFV deletion mutant virus Volgograd/D(1L-5-6L) with the six genes deletion in multigenic family 110 (MGF110) (1L-5-6L) and studied its characteristics in vitro. The homologous recombination method was used for the deletion in ASFV parental strain Volgograd/14с. A series of six passages was carried out in the COS-1 cell culture using the limiting dilution method. The recombinant strain Volgograd/D(1L-5-6L) MGF110 was selected by the plaque formation method. Performed study of viral replication showed no changes in viral growth kinetics in comparison with the parental strain. The ASFV Volgograd/D(1L-5-6L) MGF110 is a great tool available to test the importance of MGF110 for virus virulence and vaccine development.
Collapse
|
31
|
Identification of African swine fever virus MGF505-2R as a potent inhibitor of innate immunity in vitro. Virol Sin 2023; 38:84-95. [PMID: 36442611 PMCID: PMC10006314 DOI: 10.1016/j.virs.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
African swine fever (ASF) is etiologically an acute, highly contagious and hemorrhagic disease caused by African swine fever virus (ASFV). Due to its genetic variation and phenotypic diversity, until now, no efficient commercial vaccines or therapeutic options are available. The ASFV genome contains a conserved middle region and two flexible ends that code for five multigene families (MGFs), while the biological functions of the MGFs are not fully characterized. Here, ASFV MGF505-2R-deficient mutant ASFV-Δ2R was constructed based on a highly virulent genotype II field isolate ASFV CN/GS/2018 currently circulating in China. Transcriptomic profiling demonstrated that ASFV-Δ2R was capable of inducing a larger number of differentially expressed genes (DEGs) compared with ASFV CN/GS/2018. Hierarchical clustering of up-regulated DEGs revealed that ASFV-Δ2R induced the most dramatic expression of interferon-related genes and inflammatory and innate immune genes, as further validated by RT-qPCR. The GO and KEGG pathway analysis identified significantly enriched pathways involved in pathogen recognition and innate antiviral immunity. Conversely, pharmacological activation of those antiviral immune responses by exogenous cytokines, including type I/II IFNs, TNF-α and IL-1β, exerted combinatory effects and synergized in antiviral capacity against ASFV replication. Collectively, MGF505-2R is a newly identified inhibitor of innate immunity potentially implicated in immune evasion.
Collapse
|
32
|
Zhang X, Wang Z, Ge S, Zuo Y, Lu H, Lv Y, Han N, Cai Y, Wu X, Wang Z. Attenuated African swine fever virus through serial passaging of viruses in cell culture: a brief review on the knowledge gathered during 60 years of research. Virus Genes 2023; 59:13-24. [PMID: 36229722 PMCID: PMC9560881 DOI: 10.1007/s11262-022-01939-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/01/2022] [Indexed: 01/13/2023]
Abstract
African swine fever virus (ASFV) is a highly pathogenic double-stranded DNA virus. It affects various breeds of pigs, causing serious economic losses and health threats because of its rapid spread and high pathogenicity and infectivity. This situation is not helped by the lack of a validated vaccine or effective therapies. Since the 1960s, different strains of ASFV have been subjected to serial passage in a variety of cell lines. The attenuated ASFV strains obtained through serial passage are not only candidates for ASF vaccine research, but also are useful to study the molecular genetic characteristics and pathogenic mechanism of the virus. This review summarizes related studies on the attenuated strains of ASFV acquired through cell passage over the last 60 years, with the aim of providing inspiration for the rational design of vaccines in future.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Zhenzhong Wang
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
- MOE Joint International Research Laboratory for Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shengqiang Ge
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Yuanyuan Zuo
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Haodong Lu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China
| | - Yan Lv
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Naijun Han
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China
| | - Yumei Cai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, Shandong Province, China.
| | - Xiaodong Wu
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China.
| | - Zhiliang Wang
- China Animal Health and Epidemiology Centre, Qingdao, 266032, Shandong Province, China.
| |
Collapse
|
33
|
Zhang H, Zhao S, Zhang H, Qin Z, Shan H, Cai X. Vaccines for African swine fever: an update. Front Microbiol 2023; 14:1139494. [PMID: 37180260 PMCID: PMC10173882 DOI: 10.3389/fmicb.2023.1139494] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
African swine fever (ASF) is a fatal infectious disease of swine caused by the African swine fever virus (ASFV). Currently, the disease is listed as a legally notifiable disease that must be reported to the World Organization for Animal Health (WOAH). The economic losses to the global pig industry have been insurmountable since the outbreak of ASF. Control and eradication of ASF are very critical during the current pandemic. Vaccination is the optimal strategy to prevent and control the ASF epidemic, but since inactivated ASFV vaccines have poor immune protection and there aren't enough cell lines for efficient in vitro ASFV replication, an ASF vaccine with high immunoprotective potential still remains to be explored. Knowledge of the course of disease evolution, the way of virus transmission, and the breakthrough point of vaccine design will facilitate the development of an ASF vaccine. In this review, the paper aims to highlight the recent advances and breakthroughs in the epidemic and transmission of ASF, virus mutation, and the development of vaccines in recent years, focusing on future directions and trends.
Collapse
Affiliation(s)
- Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Saisai Zhao
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Haojie Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Qin
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Hu Shan,
| | - Xiulei Cai
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Xiulei Cai,
| |
Collapse
|
34
|
Zhong H, Fan S, Du Y, Zhang Y, Zhang A, Jiang D, Han S, Wan B, Zhang G. African Swine Fever Virus MGF110-7L Induces Host Cell Translation Suppression and Stress Granule Formation by Activating the PERK/PKR-eIF2α Pathway. Microbiol Spectr 2022; 10:e0328222. [PMID: 36377947 PMCID: PMC9769596 DOI: 10.1128/spectrum.03282-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a highly contagious and often lethal disease of pigs caused by ASF virus (ASFV) and recognized as the biggest killer in global swine industry. Despite exhibiting incredible self-sufficiency, ASFV remains unconditionally dependent on the host translation machinery for its mRNA translation. However, less is yet known regarding how ASFV-encoded proteins regulate host translation machinery in infected cells. Here, we examined how ASFV interacts with the eukaryotic initiation factor 2α (eIF2α) signaling axis, which directs host translation control and adaptation to cellular stress. We found that ASFV MGF110-7L, a previously uncharacterized member of the multigene family 110, remarkably enhanced the phosphorylation level of eIF2α. In porcine alveolar macrophage 3D4/21 and porcine kidney-15 cells, MGF110-7L triggered eIF2α signaling and the integrated stress response, resulting in the suppression of host translation and the formation of stress granules (SGs). Mechanistically, MGF110-7L-induced phosphorylation of eIF2α was mediated via protein kinase R (PKR) and PKR-like endoplasmic reticulum (ER) kinase (PERK), and this process was essential for host translation repression and SG formation. Notably, our subsequent analyses confirmed that MGF110-7L was overwhelmingly retained in the ER and caused a specific reorganization of the secretory pathway. Further proteomic analyses and biochemical experiments revealed that MGF110-7L could trigger ER stress and activate the unfolded protein response, thus contributing to eIF2α phosphorylation and translation reprogramming. Overall, our study both identifies a novel mechanism by which ASFV MGF110-7L subverts the host protein synthesis machinery and provides further insights into the translation regulation that occurs during ASFV infection. IMPORTANCE African swine fever (ASF) has become a socioeconomic burden and a threat to food security and biodiversity, but no commercial vaccines or antivirals are available currently. Understanding the viral strategies to subvert the host translation machinery during ASF virus (ASFV) infection could potentially lead to new vaccines and antiviral therapies. In this study, we dissected how ASFV MGF110-7L interacts with the eIF2α signaling axis controlling translational reprogramming, and we addressed the role of MGF110-7L in induction of cellular stress responses, eIF2α phosphorylation, translation suppression, and stress granule formation. These results define several molecular interfaces by which ASFV MGF110-7L subverts host cell translation, which may guide research on antiviral strategies and dissection of ASFV pathogenesis.
Collapse
Affiliation(s)
- Han Zhong
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Shuai Fan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Yongkun Du
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- Henan Engineering Laboratory of Animal Biological Products, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Angke Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Dawei Jiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- Henan Engineering Laboratory of Animal Biological Products, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Shichong Han
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- Henan Engineering Laboratory of Animal Biological Products, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People’s Republic of China
- Longhu Laboratory, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
35
|
Deletion of an African Swine Fever Virus ATP-Dependent RNA Helicase QP509L from the Highly Virulent Georgia 2010 Strain Does Not Affect Replication or Virulence. Viruses 2022; 14:v14112548. [PMID: 36423157 PMCID: PMC9694930 DOI: 10.3390/v14112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
African swine fever virus (ASFV) produces a lethal disease (ASF) in domestic pigs, which is currently causing a pandemic deteriorating pig production across Eurasia. ASFV is a large and structurally complex virus with a large genome harboring more than 150 genes. ASFV gene QP509L has been shown to encode for an ATP-dependent RNA helicase, which appears to be important for efficient virus replication. Here, we report the development of a recombinant virus, ASFV-G-∆QP509L, having deleted the QP509L gene in the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). It is shown that ASFV-G-∆QP509L replicates in primary swine macrophage cultures as efficiently as the parental virus ASFV-G. In addition, the experimental inoculation of pigs with 102 HAD50 by the intramuscular route produced a slightly protracted but lethal clinical disease when compared to that of animals inoculated with virulent parental ASFV-G. Viremia titers in animals infected with ASFV-G-∆QP509L also had slightly protracted kinetics of presentation. Therefore, ASFV gene QP509L is not critical for the processes of virus replication in swine macrophages, nor is it clearly involved in virus replication and virulence in domestic pigs.
Collapse
|
36
|
Detection of a Novel African Swine Fever Virus with Three Large-Fragment Deletions in Genome, China. Microbiol Spectr 2022; 10:e0215522. [PMID: 36000903 PMCID: PMC9603391 DOI: 10.1128/spectrum.02155-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We reported a novel African swine fever virus (ASFV) strain that had a three-large-fragment deletion and unique variations in genome. This isolate displayed a nonhemadsorbing phenotype and had homogeneous proliferation compared with the wild-type ASFV strain. Our findings highlighted the urgent need for further investigation of ASFV variations in China. IMPORTANCE African swine fever virus (ASFV) has been circulating in China for 5 years, and low virulent strains with changes in the genome have been reported. Nevertheless, there is still a lack of knowledge about the epidemic strains at the whole-genome level. This study reported a novel strain and further analyzed its genomic and biological characteristics. In addition, our study also suggests that whole-genome sequencing plays a key role in the epidemiology investigation of ASFV variations.
Collapse
|
37
|
Zhenzhong W, Chuanxiang Q, Shengqiang G, Jinming L, Yongxin H, Xiaoyue Z, Yan L, Naijun H, Xiaodong W, Zhiliang W, Yingjuan Q. Genetic variation and evolution of attenuated African swine fever virus strain isolated in the field: A review. Virus Res 2022; 319:198874. [PMID: 35872281 DOI: 10.1016/j.virusres.2022.198874] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
It has been reported that there were several "mutant isolated in the field " of African swine fever virus (ASFV) since ASFV was reported, which may be the result of the continuous adaptation and evolution of ASFV. The emergence of ASFV field mutants may lead to chronic or asymptomatic "atypical clinical symptoms" in pigs and hinder the development of porcine industry. Here we analyzed the published ASFV "field attenuated strain" gene sequences and reviewed the genetic differences between field attenuated and virulent ASFV strains, hoping for providing a reference for the scientific prevention and control of ASF and the development of new vaccines. In this study we found the deletion of EP153R and EP402R occurred in 4 field attenuated strains, and all the differential genes of field attenuated strains mainly range in regions with low GC content. The evolution of MGF110 family genes was identified by analysis of two field attenuated ASFV strains from Portugal. We also found that some tandem repeat sequence plays an important role in the evolution of strains of NH/P68 and OURT 88/3 but not in strains Estonia 2014, HuB20 and Pig/Heilongjiang/HRB1/2020.
Collapse
Affiliation(s)
- Wang Zhenzhong
- MOE Joint International Research Laboratory for Animal Health and Food Safety/Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Qi Chuanxiang
- MOE Joint International Research Laboratory for Animal Health and Food Safety/Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Ge Shengqiang
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Li Jinming
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | - Hu Yongxin
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Zhang Xiaoyue
- Shandong Agricultural University, Tai'an, Shandong 271001, China.
| | - Lv Yan
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Han Naijun
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Wu Xiaodong
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Wang Zhiliang
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Qian Yingjuan
- MOE Joint International Research Laboratory for Animal Health and Food Safety/Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
38
|
Zhang C, Cheng T, Li D, Yu X, Chen F, He Q. Low-host double MDA workflow for uncultured ASFV positive blood and serum sample sequencing. Front Vet Sci 2022; 9:936781. [PMID: 36204298 PMCID: PMC9531595 DOI: 10.3389/fvets.2022.936781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is a highly lethal and contagious disease caused by African swine fever virus (ASFV). Whole-genome sequencing of ASFV is necessary to study its mutation, recombination, and trace its transmission. Uncultured samples have a considerable amount of background DNA, which causes waste of sequencing throughput, storage space, and computing resources. Sequencing methods attempted for uncultured samples have various drawbacks. In this study, we improved C18 spacer MDA (Multiple Displacement Amplification)-combined host DNA exhaustion strategy to remove background DNA and fit NGS and TGS sequencing. Using this workflow, we successfully sequenced two uncultured ASFV positive samples. The results show that this method can significantly reduce the percentage of background DNA. We also developed software that can perform real-time base call and analyses in set intervals of ASFV TGS sequencing reads on a cloud server.
Collapse
Affiliation(s)
- Chengjun Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tangyu Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dongfan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Xuexiang Yu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fangzhou Chen
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Qigai He
| |
Collapse
|
39
|
Ramirez-Medina E, Vuono E, Pruitt S, Rai A, Espinoza N, Valladares A, Spinard E, Silva E, Velazquez-Salinas L, Gladue DP, Borca MV. ASFV Gene A151R Is Involved in the Process of Virulence in Domestic Swine. Viruses 2022; 14:v14081834. [PMID: 36016456 PMCID: PMC9413758 DOI: 10.3390/v14081834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a swine pandemic affecting a large geographical area extending from Central Europe to Asia. The viral disease was also recently identified in the Dominican Republic and Haiti. ASFV is a structurally complex virus with a large dsDNA genome that encodes for more than 150 genes. Most of these genes have not been experimentally characterized. One of these genes, A151R, encodes for a nonstructural protein and has been reported to be required for the replication of a Vero-cell-adapted ASFV strain. Here, we evaluated the role of the A151R gene in the context of the highly virulent field isolate Georgia 2010 (ASFV-G) during virus replication in swine macrophage cell cultures and during experimental infection in swine. We show that the recombinant virus ASFV-G-∆A151R, harboring a deletion of the A151R gene, replicated in swine macrophage cultures as efficiently as the parental virus ASFV-G, indicating that the A151R gene is not required for ASFV replication in swine macrophages. Interestingly, experimental infection of domestic pigs demonstrated that ASFV-G-∆A151R had a decreased replication rate and produced a drastic reduction in virus virulence. Animals were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A151R and compared with pigs receiving a similar dose of virulent ASFV-G. All ASFV-G-infected pigs developed an acute lethal form of the disease, while those inoculated with ASFV-G-∆A151R remained healthy during the 28-day observational period, with the exception of only one showing a protracted, but fatal, form of the disease. All ASFV-G-∆A151R surviving animals presented protracted viremias with lower virus titers than those detected in ASFV-G-infected animals. In addition, three out of the four animals surviving the infection with ASFV-G-∆A151R were protected against the challenge with the virulent parental virus ASFV-G. This is the first report indicating that the ASFV A151R gene is involved in virus virulence in domestic swine, suggesting that its deletion may be used to increase the safety profile of currently experimental vaccines.
Collapse
Affiliation(s)
| | - Elizabeth Vuono
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39762, USA
| | - Sarah Pruitt
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Alyssa Valladares
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Edward Spinard
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | | | - Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
- Correspondence: (D.P.G.); (M.V.B.)
| |
Collapse
|
40
|
Vuono EA, Ramirez-Medina E, Pruitt S, Rai A, Espinoza N, Spinard E, Valladares A, Silva E, Velazquez-Salinas L, Borca MV, Gladue DP. Deletion of the EP296R Gene from the Genome of Highly Virulent African Swine Fever Virus Georgia 2010 Does Not Affect Virus Replication or Virulence in Domestic Pigs. Viruses 2022; 14:1682. [PMID: 36016304 PMCID: PMC9415450 DOI: 10.3390/v14081682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
African swine fever virus (ASFV) causes a lethal disease (ASF) in domestic pigs, African swine fever (ASF). ASF is currently producing a pandemic affecting pig production across Eurasia, leading to a shortage of food accessibility. ASFV is structurally complex, harboring a large genome encoding over 150 genes. One of them, EP296R, has been shown to encode for an endonuclease that is necessary for the efficient replication of the virus in swine macrophages, the natural ASFV target cell. Here, we report the development of a recombinant virus, ASFV-G-∆EP296R, harboring the deletion of the EP296R gene from the genome of the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). The recombinant ASFV-G-∆EP296R replicates in primary swine macrophages with similar kinetics as the parental virus ASFV-G. Pigs experimentally infected by the intramuscular route with 102 HAD50 show a slightly protracted, although lethal, presentation of the disease when compared to that of animals inoculated with parental ASFV-G. Viremia titers in the ASFV-G-∆EP296R-infected animals closely followed the kinetics of presentation of clinical disease. Results presented here demonstrate that ASFV-G-∆EP296R is not essential for the processes of ASFV replication in swine macrophages, nor is it radically involved in the process of virus replication or disease production in domestic pigs.
Collapse
Affiliation(s)
- Elizabeth A. Vuono
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Oxford, MS 39762, USA
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Sarah Pruitt
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Edward Spinard
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Alyssa Valladares
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, New York, NY 11944, USA; (E.A.V.); (E.R.-M.); (S.P.); (A.R.); (N.E.); (E.S.); (A.V.); (E.S.); (L.V.-S.)
| |
Collapse
|
41
|
Evaluation of the Deletion of MGF110-5L-6L on Swine Virulence from the Pandemic Strain of African Swine Fever Virus and Use as a DIVA Marker in Vaccine Candidate ASFV-G-ΔI177L. J Virol 2022; 96:e0059722. [PMID: 35862688 PMCID: PMC9327674 DOI: 10.1128/jvi.00597-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
African swine fever virus (ASFV) is responsible for an ongoing pandemic that is affecting central Europe, Asia, and recently the Dominican Republic, the first report of the disease in the Western Hemisphere in over 40 years. ASFV is a large, complex virus with a double-stranded DNA (dsDNA) genome that carries more than 150 genes, most of which have not been studied. Here, we assessed the role of the MGF110-5L-6L gene during virus replication in cell cultures and experimental infection in swine. A recombinant virus with MGF110-5L-6L deleted (ASFV-G-ΔMGF110-5L-6L) was developed using the highly virulent ASFV Georgia (ASFV-G) isolate as a template. ASFV-G-ΔMGF110-5L-6L replicates in swine macrophage cultures as efficiently as the parental virus ASFV-G, indicating that the MGF110-5L-6L gene is nonessential for virus replication. Similarly, domestic pigs inoculated with ASFV-G-ΔMGF110-5L-6L presented with a clinical disease undistinguishable from that caused by the parental ASFV-G, confirming that the MGF110-5L-6L gene is not involved in producing disease in swine. Sera from animals inoculated with an efficacious vaccine candidate, ASFV-G-ΔMGF, strongly recognized the protein encoded by the MGF110-5L-6L gene as a potential target for the development of an antigenic marker differentiation of infected from vaccinated animals (DIVA) vaccine. To test this hypothesis, the MGF110-5L-6L gene was deleted from the highly efficacious ASFV vaccine candidate ASFV-G-ΔI177L, generating the recombinant ASFV-G-ΔI177L/ΔMGF110-5L-6L. Animals inoculated with ASFV-G-ΔI177L/ΔMGF110-5L-6L developed an ASFV-specific antibody response detected by enzyme-linked immunosorbent assay (ELISA). The sera strongly recognized ASFV p30 expressed in eukaryotic cells but did not recognize ASFV MGF110-5L-6L protein, demonstrating that deletion of the MGF110-5L-6L gene can enable DIVA capabilities in preexisting vaccine candidates. IMPORTANCE Currently, there are no African swine fever (ASF) commercial vaccines that can be used to prevent or control the spread of ASF. The only effective experimental vaccines against ASF are live-attenuated vaccines. However, these experimental vaccines, which rely on a deletion of a specific gene of the current circulating strain of ASF, make it hard to tell the difference between a vaccinated and an infected animal. In our search for a serological marker, we identified that the virus protein encoded by the MGF110-5L-6L gene induced an immune response, making a virus lacking this gene a vaccine candidate that allows the differentiation of infected from vaccinated animals (DIVA). Here, we show that deletion of MGF110-5L-6L does not affect virulence or virus replication. However, when the deletion of MGF110-5L-6L was added to vaccine candidate ASFV-G-ΔI177L, a reduction in the effectiveness of the vaccine occurred.
Collapse
|
42
|
Combinational Deletions of MGF360-9L and MGF505-7R Attenuated Highly Virulent African Swine Fever Virus and Conferred Protection against Homologous Challenge. J Virol 2022; 96:e0032922. [PMID: 35867564 PMCID: PMC9327683 DOI: 10.1128/jvi.00329-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multigene family (MGF) gene products are increasingly reported to be implicated in African swine fever virus (ASFV) virulence and attenuation of host defenses, among which the MGF360-9L and MGF505-7R gene products are characterized by convergent but distinct mechanisms of immune evasion. Herein, a recombinant ASFV mutant, ASFV-Δ9L/Δ7R, bearing combinational deletions of MGF360-9L and MGF505-7R, was constructed from the highly virulent ASFV strain CN/GS/2018 of genotype II that is currently circulating in China. Pigs inoculated intramuscularly with 104 50% hemadsorption doses (HAD50) of the mutant remained clinically healthy without any serious side effects. Importantly, in a virulence challenge, all four within-pen contact pigs demonstrated clinical signs and pathological findings consistent with ASF. In contrast, vaccinated pigs (5/6) were protected and clinical indicators tended to be normal, accompanied by extensive tissue repairs. Similar to most viral infections, innate immunity and both humoral and cellular immune responses appeared to be vital for protection. Notably, transcriptome sequencing (RNA-seq) and quantitative PCR (qPCR) analysis revealed a regulatory function of the mutant in dramatic and sustained expression of type I/III interferons and inflammatory and innate immune genes in vitro. Furthermore, infection with the mutant elicited an early and robust p30-specific IgG response, which coincided and was strongly correlated with the protective efficacy. Analysis of the cellular response revealed a strong ASFV-specific interferon gamma (IFN-γ) response and immunostaining of CD4+ T cells coupled with a high level of CD163+ macrophage infiltration in spleens of vaccinated pigs. Our study identifies a new mechanism of immunological regulation by ASFV MGFs that rationalizes the design of live attenuated vaccine for implementation of improved control strategies to eradicate ASFV. IMPORTANCE Currently, the deficiency in commercially available vaccines or therapeutic options against African swine fever constitutes a matter of major concern in the swine industry globally. Here, we report the design and construction of a recombinant ASFV mutant harboring combinational deletions of interferon inhibitors MGF360-9L and MGF505-7R based on a genotype II ASFV CN/GS/2018 strain currently circulating in China. The mutant was completely attenuated when inoculated at a high dose of 104 HAD50. In the virulence challenge with homologous virus, sterile immunity was achieved, demonstrating the mutant’s potential as a promising vaccine candidate. This sufficiency of effectiveness supports the claim that this live attenuated virus may be a viable vaccine option with which to fight ASF.
Collapse
|
43
|
Deletion of the H108R Gene Reduces Virulence of the Pandemic Eurasia Strain of African Swine Fever Virus with Surviving Animals Being Protected against Virulent Challenge. J Virol 2022; 96:e0054522. [DOI: 10.1128/jvi.00545-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Currently, there is no commercial vaccine available to prevent ASF. ASFV-Georgia2007 (ASFV-G) and its field isolate derivatives are producing a large pandemic which is drastically affecting pork production in Eurasia.
Collapse
|
44
|
Ramirez-Medina E, Vuono EA, Pruitt S, Rai A, Espinoza N, Valladares A, Silva E, Velazquez-Salinas L, Borca MV, Gladue DP. Deletion of African Swine Fever Virus Histone-like Protein, A104R from the Georgia Isolate Drastically Reduces Virus Virulence in Domestic Pigs. Viruses 2022; 14:v14051112. [PMID: 35632853 PMCID: PMC9146580 DOI: 10.3390/v14051112] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a frequently lethal disease, ASF, affecting domestic and wild swine. Currently, ASF is causing a pandemic affecting pig production in Eurasia. There are no vaccines available, and therefore control of the disease is based on culling infected animals. We report here that deletion of the ASFV gene A104R, a virus histone-like protein, from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) strain induces a clear decrease in virus virulence when experimentally inoculated in domestic swine. A recombinant virus lacking the A104R gene, ASFV-G-∆A104R, was developed to assess the role of the A104R gene in disease production in swine. Domestic pigs were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A104R, and compared with animals that received a similar dose of virulent ASFV-G. While all ASFV-G inoculated animals developed a fatal form of the disease, animals receiving ASFV-G-∆A104R survived the challenge, remaining healthy during the 28-day observational period, with the exception of only one showing a protracted but fatal form of the disease. ASFV-G-∆A104R surviving animals presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G, and all of them developed a strong virus-specific antibody response. This is the first report demonstrating that the A104R gene is involved in ASFV virulence in domestic swine, suggesting that A104R deletion may be used to increase the safety profile of currently experimental vaccines.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Elizabeth A. Vuono
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39762, USA
| | - Sarah Pruitt
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Alyssa Valladares
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Correspondence: (M.V.B.); (D.P.G.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Correspondence: (M.V.B.); (D.P.G.)
| |
Collapse
|
45
|
Gladue DP, Borca MV. Recombinant ASF Live Attenuated Virus Strains as Experimental Vaccine Candidates. Viruses 2022; 14:v14050878. [PMID: 35632620 PMCID: PMC9146452 DOI: 10.3390/v14050878] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is causing a pandemic affecting swine in a large geographical area of the Eastern Hemisphere, from Central Europe to East and Southeast Asia, and recently in the Americas, the Dominican Republic and Haiti. The etiological agent, ASF virus (ASFV), infects both domestic and wild swine and produces a variety of clinical presentations depending on the virus strain and the genetics of the pigs infected. No commercial vaccines are currently available, although experimental recombinant live attenuated vaccine candidates have been shown to be efficacious in protecting animals against disease when challenged with homologous virulent strains. This review attempts to systematically provide an overview of all the live attenuated strains that have been shown to be experimental vaccine candidates. Moreover, it aims to analyze the development of these vaccine candidates, obtained by deleting specific genes or group of genes, and their efficacy in preventing virus infection and clinical disease after being challenged with virulent isolates. This report summarizes all the experimental vaccine strains that have shown promise against the contemporary pandemic strain of African swine fever.
Collapse
|
46
|
Zhou G, Shi Z, Luo J, Cao L, Yang B, Wan Y, Wang L, Song R, Ma Y, Tian H, Zheng H. Preparation and epitope mapping of monoclonal antibodies against African swine fever virus P30 protein. Appl Microbiol Biotechnol 2022; 106:1199-1210. [PMID: 35089400 DOI: 10.1007/s00253-022-11784-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
African swine fever virus (ASFV) causes acute, febrile, and highly contagious diseases in swine. Early diagnosis is critically important for African swine fever (ASF) prevention and control in the absence of an effective vaccine. P30 is one of the most immunogenic proteins that are produced during the early stage of an ASFV infection. This makes P30 a good serological target for ASF detection and surveillance. In this study, two P30-reactive monoclonal antibodies (mAbs), 2H2 and 5E8, were generated from mice immunized with recombinant P30 protein (rP30). Epitope mapping was performed with overlapping polypeptides, alanine mutants, and synthetic peptides. The mapping results revealed that 2H2 recognized a region located in the N-terminal, 16-48 aa. In contrast, 5E8 recognized a linear epitope in the C-terminal, 122-128 aa. Further analysis indicated that the epitope recognized by 2H2 was highly conserved in genotypes I and II, while the 5E8 epitope was conserved in most genotypes and the Ser to Pro change at position 128 in genotypes IV, V, and VI did not affect recognition. Overall, the results of this study provide valuable information on the antigenic regions of ASFV P30 and lay the foundation for the serological diagnosis of ASF and vaccine research. KEY POINTS: • Two specific and reactive mAbs were prepared and their epitopes were identified. • 2H2 recognized a novel epitope highly conserved in genotypes I and II. • 5E8 recognized a seven-amino acid linear epitope highly conserved in most genotypes.
Collapse
Affiliation(s)
- Gaijing Zhou
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China
| | - Zhengwang Shi
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China
| | - Juncong Luo
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China
| | - Liyan Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China
| | - Ying Wan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China
| | - Lijuan Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China
| | - Rui Song
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China
| | - Yuan Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China
| | - Hong Tian
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 730046, China.
| |
Collapse
|
47
|
African Swine Fever Virus and host response - transcriptome profiling of the Georgia 2007/1 strain and porcine macrophages. J Virol 2022; 96:e0193921. [PMID: 35019713 PMCID: PMC8906413 DOI: 10.1128/jvi.01939-21] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
African swine fever virus (ASFV) has a major global economic impact. With a case fatality in domestic pigs approaching 100%, it currently presents the largest threat to animal farming. Although genomic differences between attenuated and highly virulent ASFV strains have been identified, the molecular determinants for virulence at the level of gene expression have remained opaque. Here, we characterize the transcriptome of ASFV genotype II Georgia 2007/1 (GRG) during infection of the physiologically relevant host cells, porcine macrophages. In this study, we applied cap analysis gene expression sequencing (CAGE-seq) to map th0e 5′ ends of viral mRNAs at 5 and 16 h postinfection. A bioinformatics analysis of the sequence context surrounding the transcription start sites (TSSs) enabled us to characterize the global early and late promoter landscape of GRG. We compared transcriptome maps of the GRG isolate and the lab-attenuated BA71V strain that highlighted GRG virulence-specific transcripts belonging to multigene families, including two predicted MGF 100 genes, I7L and I8L. In parallel, we monitored transcriptome changes in the infected host macrophage cells. Of the 9,384 macrophage genes studied, transcripts for 652 host genes were differentially regulated between 5 and 16 h postinfection compared with only 25 between uninfected cells and 5 h postinfection. NF-κB activated genes and lysosome components such as S100 were upregulated, and chemokines such as CCL24, CXCL2, CXCL5, and CXCL8 were downregulated. IMPORTANCE African swine fever virus (ASFV) causes hemorrhagic fever in domestic pigs, with case fatality rates approaching 100% and no approved vaccines or antivirals. The highly virulent ASFV Georgia 2007/1 strain (GRG) was the first isolated when ASFV spread from Africa to the Caucasus region in 2007, then spreading through Eastern Europe and, more recently, across Asia. We used an RNA-based next-generation sequencing technique called CAGE-seq to map the starts of viral genes across the GRG DNA genome. This has allowed us to investigate which viral genes are expressed during early or late stages of infection and how this is controlled, comparing their expression to the nonvirulent ASFV-BA71V strain to identify key genes that play a role in virulence. In parallel, we investigated how host cells respond to infection, which revealed how the ASFV suppresses components of the host immune response to ultimately win the arms race against its porcine host.
Collapse
|
48
|
Ran Y, Li D, Xiong MG, Liu HN, Feng T, Shi ZW, Li YH, Wu HN, Wang SY, Zheng HX, Wang YY. African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity. PLoS Pathog 2022; 18:e1010270. [PMID: 35089988 PMCID: PMC8827485 DOI: 10.1371/journal.ppat.1010270] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/09/2022] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
ASFV is a large DNA virus that is highly pathogenic in domestic pigs. How this virus is sensed by the innate immune system as well as why it is so virulent remains enigmatic. In this study, we show that the ASFV genome contains AT-rich regions that are recognized by the DNA-directed RNA polymerase III (Pol-III), leading to viral RNA sensor RIG-I-mediated innate immune responses. We further show that ASFV protein I267L inhibits RNA Pol-III-RIG-I-mediated innate antiviral responses. I267L interacts with the E3 ubiquitin ligase Riplet, disrupts Riplet-RIG-I interaction and impairs Riplet-mediated K63-polyubiquitination and activation of RIG-I. I267L-deficient ASFV induces higher levels of interferon-β, and displays compromised replication both in primary macrophages and pigs compared with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These findings suggest that ASFV I267L is an important virulence factor by impairing innate immune responses mediated by the RNA Pol-III-RIG-I axis. African swine fever virus (ASFV) is a large DNA virus that is highly contagious and pathogenic in domestic pigs with a lethality rate up to 100%. Infection of ASFV has become a global threat with devastating economic and ecological consequences. Unfortunately, commercially available, safe and efficacious vaccines are still lacking so far. How this virus is sensed by the host innate immune system as well as why this virus is so virulent remains enigmatic. Understanding some basic aspects of ASFV-host interaction is helpful for vaccine development. In this study, we found that the highly AT-enriched ASFV genomic DNA is sensed by DNA-directed RNA polymerase III (Pol-III) that transcribes the AT-rich genomic DNA into RNA, which is then recognized by the pattern recognition receptor RIG-I, leading to innate immune responses. This represents one of few examples whereby a DNA virus is primarily sensed by the Pol-III-RIG-I axis. ASFV early gene-encoded protein I267L antagonizes RIG-I-mediated innate immune responses. I267L interacts with Riplet, an E3 ligase essential for RIG-I activation. This disrupts the interaction of Riplet with RIG-I, and impairs Riplet-mediated K63-linked polyubiquitination and activation of RIG-I. Consistently, I267L-deficient ASFV induces higher levels of IFN-β and displays compromised replication both in primary porcine alveolar macrophages (PAMs) and pigs comparing with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These results reveal a critical mechanism responsible for the virulence of ASFV, and suggest that deletion of I267L may serve as a strategy to develop attenuated vaccines for ASFV.
Collapse
Affiliation(s)
- Yong Ran
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei-Guang Xiong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences Beijing, China
| | - Hua-Nan Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Feng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zheng-Wang Shi
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu-Hui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences Beijing, China
| | - Huang-Ning Wu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences Beijing, China
| | - Su-Yun Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hai-Xue Zheng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- African Swine Fever Regional Laboratory of China, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail: (HXZ); (YYW)
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- African Swine Fever Regional Laboratory of China, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (HXZ); (YYW)
| |
Collapse
|
49
|
African Swine Fever Virus Bearing an I226R Gene Deletion Elicits Robust Immunity in Pigs to African Swine Fever. J Virol 2021; 95:e0119921. [PMID: 34495696 PMCID: PMC8577359 DOI: 10.1128/jvi.01199-21] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
African swine fever (ASF) is a severe hemorrhagic infectious disease in pigs caused by African swine fever virus (ASFV), leading to devastating economic losses in epidemic regions. Its control currently depends on thorough culling and clearance of the diseased and surrounding suspected pigs. An ASF vaccine has been extensively explored for years worldwide, especially in hog-intensive areas where it is highly desired, but it is still unavailable for numerous reasons. Here, we report another ASF vaccine candidate, named SY18ΔI226R, bearing a deletion of the I226R gene with a replacement of an enhanced green fluorescent protein (eGFP) expression cassette at the right end of the viral genome. This deletion results in the complete loss of virulence of SY18 as the gene-deleted strain does not cause any clinical symptoms in all pigs inoculated with a dosage of either 104.0 or 107.0 50% tissue culture infective doses (TCID50). Apparent viremia with a gradual decline was monitored, while virus shedding was detected only occasionally in oral or anal swabs. ASFV-specific antibody appeared at 9 days postinoculation. After intramuscular challenge with its parental strain ASFV SY18 at 21 days postinoculation, all the challenged pigs survived, without obvious febrile or abnormal clinical signs. No viral DNA could be detected upon the dissection of any tissue when viremia disappeared. These results indicated that SY18ΔI226R is safe in swine and elicits robust immunity to virulent ASFV infection. IMPORTANCE Outbreaks of African swine fever have resulted in devastating losses to the swine industry worldwide, but there is currently no commercial vaccine available. Although several vaccine candidates have been reported, none has been approved for use for several reasons, especially ones concerning biosafety. Here, we identified a new undescribed functional gene, I226R. When deleted from the ASFV genome, the virus completely loses its virulence in swine. Importantly, pigs infected with this gene-deleted virus were resistant to infection by intramuscular challenge with 102.5 or 104.0 TCID50 of its virulent parental virus. Furthermore, the nucleic acid of the gene-deleted virus and its virulent parental virus was rarely detected from oral or anal swabs. Viruses could not be detected in any tissues after necropsy when viremia became negative, indicating that robust immunity was achieved. Therefore, SY18ΔI226R is a novel, ideal, and efficacious vaccine candidate for genotype II ASF.
Collapse
|
50
|
Deletion of E184L, a putative DIVA target from the pandemic strain of African swine fever virus, produces a reduction in virulence and protection against virulent challenge. J Virol 2021; 96:e0141921. [PMID: 34668772 DOI: 10.1128/jvi.01419-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
African swine fever (ASF) is currently causing a major pandemic affecting the swine industry and protein availability from Central Europe to East and South Asia. No commercial vaccines are available, making disease control dependent on the elimination of affected animals. Here, we show that the deletion of the ASFV E184L gene from the highly virulent ASFV-Georgia2010 (ASFV-G) isolate produces a reduction in virus virulence during the infection in swine. Forty percent (40%) of domestic pigs intramuscularly inoculated with a recombinant virus lacking the E184L gene (ASFV-G-ΔE184L) experienced a significantly (5 days) delayed presentation of clinical disease and, overall, had a 60% rate of survival when compared to animals inoculated with the virulent parental ASFV-G. Importantly, all animals surviving ASFV-G-ΔE184L infection developed a strong antibody response and were protected when challenged with ASFV-G. As expected, a pool of sera from ASFV-G-ΔE184L-inoculated animals lacked any detectable antibody response to peptides partially representing the E184L protein, while sera from animals inoculated with an efficacious vaccine candidate, ASFV-G-ΔMGF, strongly recognize the same set of peptides. These results support the potential use of the E184L deletion for the development of vaccines able to differentiate infected from vaccinated animals (DIVA). Therefore, it is shown here that the E184L gene is a novel ASFV determinant of virulence that can potentially be used to increase safety in pre-existing vaccine candidates as well as to provide them with DIVA capabilities. To our knowledge, E184L is the first ASFV gene product experimentally shown to be a functional DIVA antigenic marker. Importance: No commercial vaccines are available to prevent African swine fever. The ASF pandemic caused by the Georgia (ASFV-G) strain is seriously affecting pork production in a contiguous geographical area from Central Europe to East Asia. The only effective experimental vaccines are viruses attenuated by deleting ASFV genes associated with virus virulence. Therefore, identification of such genes is of critical importance for vaccine development. Here we report the discovery of a novel determinant of ASFV virulence, the E184L gene. Deletion of the E184L gene from the ASFV-G genome (ASFV-G-ΔE184L) produced a reduction in virus virulence and, importantly, animals surviving infection with ASFV-G-ΔE184L were protected from developing ASF after challenge with the virulent parental virus ASFV-G. Importantly, the virus protein encoded by E184L is highly immunogenic, making a virus lacking this gene a DIVA vaccine candidate that allows the differentiation of infected from vaccinated animals. Here we show that unlike what is observed in animals inoculated with the vaccine candidate ASFV-G-ΔMGF, ASFV-G-ΔE184L-inoculated animals do not mount a E184L-specific antibody response, indicating the feasibility of using the E184L deletion as the antigenic marker for the development of a DIVA vaccine in ASFV.
Collapse
|