1
|
Khalifa AM, Abd-ElShafy E, Abu-Khudir R, Gaafar RM. Influence of gamma radiation and phenylalanine on secondary metabolites in callus cultures of milk thistle (Silybum marianum L.). J Genet Eng Biotechnol 2022; 20:166. [PMID: 36520239 PMCID: PMC9755409 DOI: 10.1186/s43141-022-00424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND A useful technique for growing large amounts of plant material is in vitro propagation of important medicinal plants. The present investigation deals with the enhancement of secondary metabolite production via elicitation using gamma (γ)-radiation and phenylalanine (Phe) precursor feeding in callus cultures of Silybum marianum L. RESULTS Seeds were exposed to two doses of γ-radiation (25 and 50 Gy) and the calli derived from stem explants obtained from seedlings of these radiated seeds were treated with different concentrations of Phe. The biosynthesis of phenols and flavonoids was evaluated. It was found that callus cultures derived from explants of the seeds exposed to 25 Gy γ-radiation and treated with 4 mg/l Phe accumulated the maximum phenolic content (34.27±0.02 mg/g d.wt.), while the highest flavonoid content (9.56±0.12 mg/g d.wt.) was found in callus cultures derived from explants of seeds radiated with 25 Gy γ-radiation and subjected to 1 mg/l Phe. Similarly, HPLC quantification revealed that the production of flavonoids was highly accumulated (1343.06 μg/mg d.wt.) in callus cultures from explants of seeds exposed to 25 Gy γ-radiation and grown at 1 mg/l Phe compared to the other treatments. In addition, a total of 11 important flavonoids have been determined in all callus cultures, except for acacetin-7-O-rutinoside, which was not found in the callus culture of the control. CONCLUSIONS These findings suggest that γ-radiation combined with Phe can improve the metabolism of S. marianum L. and could be used to produce such valuable metabolites on a commercial scale.
Collapse
Affiliation(s)
- Asmaa M. Khalifa
- grid.411303.40000 0001 2155 6022Botany and Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Cairo, Egypt
| | - Eman Abd-ElShafy
- grid.411303.40000 0001 2155 6022Botany and Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Cairo, Egypt
| | - Rasha Abu-Khudir
- grid.412140.20000 0004 1755 9687Chemistry Department, College of Science, King Faisal University, Al-Hofuf, Al-Ahsa, 31982 Saudi Arabia ,grid.412258.80000 0000 9477 7793Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, P.O. Box 31527, Tanta, Egypt
| | - Reda M. Gaafar
- grid.412258.80000 0000 9477 7793Botany Department, Faculty of Science, Tanta University, P.O. Box 31527, Tanta, Egypt
| |
Collapse
|
2
|
Ullah MA, Gul FZ, Khan T, Bajwa MN, Drouet S, Tungmunnithum D, Giglioli-Guivarc'h N, Liu C, Hano C, Abbasi BH. Differential induction of antioxidant and anti-inflammatory phytochemicals in agitated micro-shoot cultures of Ajuga integrifolia Buch. Ham. ex D.Don with biotic elicitors. AMB Express 2021; 11:137. [PMID: 34661766 PMCID: PMC8523646 DOI: 10.1186/s13568-021-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
Ajuga integrifolia Buch. Ham. ex D.Don, a member of Lamiaceae family is pharmaceutically an active perennial herb widely spread in China, Afghanistan and Pakistan Himalayan region. The application of biotic elicitors is a promising approach to cover limitations of in vitro cell technology and challenges faced by pharmaceuticals industry for bulk up production. The current study involved the induction of agitated micro-shoot cultures with the aim to investigate the growth-promoting as well as phytochemicals enhancement role of yeast extract (YE) and pectin (PE). The results showed that both elicitors induced a considerable physiological response. Biomass accumulation was observed maximum (DW: 18.3 g/L) against PE (10 mg/L) compared to YE and control. Eleven secondary phytocompounds were quantified using high-performance liquid chromatography. PE (50 mg/L) was found to be effective in elicitation of rosmarinic acid (680.20 µg/g), chlorogenic acid (294.12 µg/g), apigenin (579.61 µg/g) and quercetin (596.89 µg/g). However, maximum caffeic acid (359.52 µg/g) and luteolin (546.12 µg/g accumulation was noted in PE (1 mg/L) treatment. Harpagide, aucubin, harpagoside and 8-O-acetyl-harpagoside production was suppressed by both elicitors except for YE (100 mg/L). Catalpol accumulation in micro-shoot cultures was also downregulated except in response to YE (50 and 100 mg/L). Antioxidant activity and anti-inflammatory activity remained higher under PE (50 mg/L) and YE (100 mg/L) respectively. Therefore, results suggested that Ajuga integrifolia micro-shoot cultures treated with yeast extract and pectin might be an efficient bio-factory to produce commercially potent specific secondary metabolites.
Collapse
Affiliation(s)
- Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, Brisbane, 4343, Australia
| | - Faiza Zareen Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Taimoor Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Sultanate of Oman
| | - Muhammad Naeem Bajwa
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Chunzhao Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France.
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
3
|
Cao DM, Vu PTB, Hoang MTT, Bui AL, Quach PND. Developing a Sufficient Protocol for the Enhancement of α-Glucosidase Inhibitory Activity by Urena lobata L. Aeroponic Hairy Roots Using Exogenous Factors, a Precursor, and an Elicitor. PLANTS (BASEL, SWITZERLAND) 2020; 9:E548. [PMID: 32340249 PMCID: PMC7238967 DOI: 10.3390/plants9040548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 11/27/2022]
Abstract
Aeroponics is considered as a potential method for the culture of herbal plants due to the high growth rate, quantity and quality enhancement of secondary metabolites, and substantial environmental progress associated with this method. The aim of this study was to develop a sufficient protocol for successful Urena lobata hairy root induction by Agrobacterium rhizogenes ATCC 15834, using a precursor and elicitor to enhance α-glucosidase inhibitory activity (GIA) of aeroponic hairy roots (AHRs) in greenhouse conditions. In this study, we found that the optimized procedure (10 min, Woody plant medium (WPM), 1/25 salt strength) had an outstanding effect with a reduction in the rooting time (RT), promotion of the rooting rate (RR), and increase in the fresh weight (FW) and dry weight (DW) compared with the original procedure (30 min, Murashige and Skoog (MS) medium, 1/25 salt strength) after 30 days of culture. The highest DW, GIA, flavonoid (FLA) and phenolic (PHEL) contents were observed for individual addition of 10 mM phenylalanine (PA) or 50 mM chitosan (CS) in the late exponential phase (eighth week) with 15 days of elicitation compared to the control AHRs. However, individual treatment was less effective than the combination of the two. Positive correlations among the GIA, FLA and PHEL indicate that AHRs accumulated phenolic compounds, leading to an increase in the GIA by a synergistic effect. In conclusion, the culture of Urena lobata AHRs with PA and CS is an efficient procedure to produce GIA material in greenhouse conditions.
Collapse
Affiliation(s)
- Dai Minh Cao
- Laboratory of Plant Biotechnology, Department of Plant Biotechnology and Biotransformation, University of Sciences, Ho Chi Minh City 7000, Vietnam; (D.M.C.); (P.T.B.V.); (M.T.T.H.); (A.L.B.)
- Vietnam National University, Ho Chi Minh City 7000, Vietnam
| | - Phuong Thi Bach Vu
- Laboratory of Plant Biotechnology, Department of Plant Biotechnology and Biotransformation, University of Sciences, Ho Chi Minh City 7000, Vietnam; (D.M.C.); (P.T.B.V.); (M.T.T.H.); (A.L.B.)
- Vietnam National University, Ho Chi Minh City 7000, Vietnam
| | - Minh Thi Thanh Hoang
- Laboratory of Plant Biotechnology, Department of Plant Biotechnology and Biotransformation, University of Sciences, Ho Chi Minh City 7000, Vietnam; (D.M.C.); (P.T.B.V.); (M.T.T.H.); (A.L.B.)
- Vietnam National University, Ho Chi Minh City 7000, Vietnam
| | - Anh Lan Bui
- Laboratory of Plant Biotechnology, Department of Plant Biotechnology and Biotransformation, University of Sciences, Ho Chi Minh City 7000, Vietnam; (D.M.C.); (P.T.B.V.); (M.T.T.H.); (A.L.B.)
- Vietnam National University, Ho Chi Minh City 7000, Vietnam
| | - Phuong Ngo Diem Quach
- Laboratory of Plant Biotechnology, Department of Plant Biotechnology and Biotransformation, University of Sciences, Ho Chi Minh City 7000, Vietnam; (D.M.C.); (P.T.B.V.); (M.T.T.H.); (A.L.B.)
- Vietnam National University, Ho Chi Minh City 7000, Vietnam
| |
Collapse
|
4
|
|
5
|
Badiali C, De Angelis G, Simonetti G, Brasili E, Tobaruela EDC, Purgatto E, Yin H, Valletta A, Pasqua G. Chitosan oligosaccharides affect xanthone and VOC biosynthesis in Hypericum perforatum root cultures and enhance the antifungal activity of root extracts. PLANT CELL REPORTS 2018; 37:1471-1484. [PMID: 29955918 DOI: 10.1007/s00299-018-2317-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Water-soluble chitosan oligosaccharides (COS) affect xanthone and volatile organic compound content, as well as antifungal activity against human pathogenic fungi of extracts obtained from Hypericum perforatum root cultures. Several studies have demonstrated the elicitor power of chitosan on xanthone biosynthesis in root cultures of H. perforatum. One of the major limitations to the use of chitosan, both for basic and applied research, is the need to use acidified water for solubilization. To overcome this problem, the elicitor effect of water-soluble COS on the biosynthesis of both xanthones and volatile organic compounds (VOCs) was evaluated in the present study. The analysis of xanthones and VOCs was performed by HPLC and GC-MS headspace analysis. The obtained results showed that COS are very effective in enhancing xanthone biosynthesis. With 400 mg L-1 COS, a xanthone content of about 30 mg g-1 DW was obtained. The antifungal activity of extracts obtained with 400 mg L-1 COS was the highest, with MIC50 of 32 µg mL-1 against Candida albicans and 32-64 µg mL-1 against dermatophytes, depending on the microorganism. Histochemical investigations suggested the accumulation of isoprenoids in the secretory ducts of H. perforatum roots. The presence of monoterpenes and sesquiterpenes was confirmed by the headspace analysis. Other volatile hydrocarbons have been identified. The biosynthesis of most VOCs showed significant changes in response to COS, suggesting their involvement in plant-fungus interactions.
Collapse
Affiliation(s)
- Camilla Badiali
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giulia De Angelis
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giovanna Simonetti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Department of Food Sciences and Experimental Nutrition/FORC-Food Research Center, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Eric de Castro Tobaruela
- Department of Food Sciences and Experimental Nutrition/FORC-Food Research Center, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Eduardo Purgatto
- Department of Food Sciences and Experimental Nutrition/FORC-Food Research Center, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo, 05508-000, Brazil
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
6
|
D'Angiolillo F, Noccioli C, Ruffoni B, Scarpato R, Pistelli L, Pistelli L. Daidzein Production and HeLa Cytotoxicity of Bituminaria bituminosa Hairy Root Cultures. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bituminaria bituminosa (L.) C.H. Stirt is a perennial species widely distributed in the Mediterranean basin and the Canary Islands. This species is used in folk medicine and currently has considerable pharmaceutical interest for its content in phenylpropanoids, furanocoumarins and pterocarpans. In vitro cultures (shoots and hairy roots) have been performed to obtain plant material useful for the production of these metabolites. Hairy root cultures were successfully established after inoculation of hypocotyls with the LBA 9402 A. rhizogenes strain. The HRPB3 line was selected for further analysis and elicited with chitosan and salicylic acid. All the HRPB3 cultures showed higher polyphenol content and greater DPPH-antioxidant activity than shoots cultured in vitro. The presence of isoflavone daidzein was detected in the hairy root extracts. The cytotoxic effect of HR extracts has been further tested on HeLa cells: the salicylic acid elicited HR exhibited good antiproliferative effects.
Collapse
Affiliation(s)
| | | | - Barbara Ruffoni
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, CRA FSO Ornamental Plants Research Unit, 18038 Sanremo (IM) – Italy
| | | | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, 56126 Pisa – Italy
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa - Italy
| | - Laura Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa – Italy
- Interdepartmental Research Center Nutrafood—Nutraceuticals and Food for Health, University of Pisa, 56124 Pisa - Italy
| |
Collapse
|
7
|
Kochan E, Szymczyk P, Kuźma Ł, Lipert A, Szymańska G. Yeast Extract Stimulates Ginsenoside Production in Hairy Root Cultures of American Ginseng Cultivated in Shake Flasks and Nutrient Sprinkle Bioreactors. Molecules 2017; 22:molecules22060880. [PMID: 28587128 PMCID: PMC6152677 DOI: 10.3390/molecules22060880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
One of the most effective strategies to enhance metabolite biosynthesis and accumulation in biotechnological systems is the use of elicitation processes. This study assesses the influence of different concentrations of yeast extract (YE) on ginsenoside biosynthesis in Panax quinquefolium (American ginseng) hairy roots cultivated in shake flasks and in a nutrient sprinkle bioreactor after 3 and 7 days of elicitation. The saponin content was determined using HPLC. The maximum yield (20 mg g−1 d.w.) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was achieved after application of YE at 50 mg L−1 concentration and 3 day exposure time. The ginsenoside level was 1.57 times higher than that attained in control medium. The same conditions of elicitation (3 day time of exposure and 50 mg L−1 of YE) also favourably influenced the biosynthesis of studied saponins in bioreactor cultures. The total ginsenoside content was 32.25 mg g−1 d.w. and was higher than that achieved in control medium and in shake flasks cultures. Obtained results indicated that yeast extract can be used to increase ginsenoside production in hairy root cultures of P. quinquefolium.
Collapse
Affiliation(s)
- Ewa Kochan
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| | - Piotr Szymczyk
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego l, Lodz 90-151, Poland.
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Lodz, Pomorska 251, Lodz 92-213, Poland.
| | - Grażyna Szymańska
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszyńskiego 1, Lodz 90-151, Poland.
| |
Collapse
|
8
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
9
|
Mehrotra S, Srivastava V, Ur Rahman L, Kukreja AK. Hairy root biotechnology--indicative timeline to understand missing links and future outlook. PROTOPLASMA 2015; 252:1189-201. [PMID: 25626898 DOI: 10.1007/s00709-015-0761-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/12/2015] [Indexed: 05/13/2023]
Abstract
Agrobacterium rhizogenes-mediated hairy roots (HR) were developed in the laboratory to mimic the natural phenomenon of bacterial gene transfer and occurrence of disease syndrome. The timeline analysis revealed that during 90 s, the research expanded to the hairy root-based secondary metabolite production and different yield enhancement strategies like media optimization, up-scaling, metabolic engineering etc. An outlook indicates that much emphasis has been given to the strategies that are helpful in making this technology more practical in terms of high productivity at low cost. However, a sequential analysis of literature shows that this technique is upgraded to a biotechnology platform where different intra- and interdisciplinary work areas were established, progressed, and diverged to provide scientific benefits of various hairy root-based applications like phytoremediation, molecular farming, biotransformation, etc. In the present scenario, this biotechnology research platform includes (a) elemental research like hairy root-mediated secondary metabolite production coupled with productivity enhancement strategies and (b) HR-based functional research. The latter comprised of hairy root-based applied aspects such as generation of agro-economical traits in plants, production of high value as well as less hazardous molecules through biotransformation/farming and remediation, respectively. This review presents an indicative timeline portrayal of hairy root research reflected by a chronology of research outputs. The timeline also reveals a progressive trend in the state-of-art global advances in hairy root biotechnology. Furthermore, the review also discusses ideas to explore missing links and to deal with the challenges in future progression and prospects of research in all related fields of this important area of plant biotechnology.
Collapse
Affiliation(s)
- Shakti Mehrotra
- Plant Biotechnology Division, Central Institute of Medicinal & Aromatic Plants, PO: CIMAP, Picnic Spot Road, Lucknow, 226015, India,
| | | | | | | |
Collapse
|
10
|
Zaheer M, Reddy VD, Giri CC. Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae). Nat Prod Res 2015; 30:1542-7. [PMID: 26156378 DOI: 10.1080/14786419.2015.1054823] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Daidzin (7-O-glucoside of daidzein) has several pharmacological benefits in herbal remedy, as antioxidant and shown antidipsotropic activity. Hairy root culture of Psoralea corylifolia L. was developed for biomass and enhanced daidzin production using signalling compounds such as jasmonic acid (JA) and acetyl salicylic acid (ASA). Best response of 2.8-fold daidzin (5.09% DW) with 1 μM JA treatment after second week and 7.3-fold (3.43% DW) with 10 μM JA elicitation after 10th week was obtained from hairy roots compared to untreated control. ASA at 10 μM promoted 1.7-fold increase in daidzin (1.49% DW) content after seventh week compared to control (0.83% DW). Addition of 25 μM ASA resulted in 1.44% DW daidzin (1.5-fold increase) with 0.91% DW in control after fifth week and 1.44% DW daidzin (2.3-fold increase) after eighth week when compared to untreated control (0.62% DW). Reduced biomass with increased daidzin content was facilitated by elicited hairy root cultures.
Collapse
Affiliation(s)
- Mohd Zaheer
- a Centre for Plant Molecular Biology (CPMB) , Osmania University , Hyderabad 500007 , Telangana , India
| | - Vudem Dashavantha Reddy
- a Centre for Plant Molecular Biology (CPMB) , Osmania University , Hyderabad 500007 , Telangana , India
| | - Charu Chandra Giri
- a Centre for Plant Molecular Biology (CPMB) , Osmania University , Hyderabad 500007 , Telangana , India
| |
Collapse
|
11
|
Ko S, Yang YH, Choi KY, Kim BG. rational design and directed evolution of CYP102A1 (BM3) for regio-specific hydroxylation of isoflavone. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0718-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Tian L. Using Hairy Roots for Production of Valuable Plant Secondary Metabolites. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:275-324. [PMID: 25583225 DOI: 10.1007/10_2014_298] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plants synthesize a wide variety of natural products, which are traditionally termed secondary metabolites and, more recently, coined specialized metabolites. While these chemical compounds are employed by plants for interactions with their environment, humans have long since explored and exploited plant secondary metabolites for medicinal and practical uses. Due to the tissue-specific and low-abundance accumulation of these metabolites, alternative means of production in systems other than intact plants are sought after. To this end, hairy root culture presents an excellent platform for producing valuable secondary metabolites. This chapter will focus on several major groups of secondary metabolites that are manufactured by hairy roots established from different plant species. Additionally, the methods for preservations of hairy roots will also be reviewed.
Collapse
Affiliation(s)
- Li Tian
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA,
| |
Collapse
|
13
|
Dewanjee S, Gangopadhyay M, Das U, Sahu R, Khanra R. Enhanced rosmarinic acid biosynthesis in Solenostemon scutellarioides culture: a precursor-feeding strategy. Nat Prod Res 2014; 28:1691-8. [PMID: 25051064 DOI: 10.1080/14786419.2014.939973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/14/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
The aim of this study was to employ precursor-feeding strategy for the improved production of rosmarinic acid (RA) in Solenostemon scutellarioides in vitro. The cultures were fed with precursors, namely l-phenylalanine (Phe), l-tyrosine (Tyr) and cucumber juice (CJ), at different concentrations. Phe (100 mg L(-1)) and Tyr (400 mg L(-1)) caused ∼1.5- and 2.1-fold increase in RA accumulation within 48 h. CJ (50 mg L(-1)) feeding displayed highest RA content (∼1.6-fold) in 72 h. In this study, we focused on the function of individual precursor on key enzymes involved in RA biosynthesis. The phenylalanine ammonia lyase activity was significantly upregulated after Phe (100 mg L(-1)) feeding, while tyrosine aminotransferase and hydroxyphenylpyruvate reductase activities were improved with Tyr (400 mg L(-1)) treatment. However, rosmarinic acid synthase activity was significantly enhanced by all three precursors. In synergy study, Phe (100 mg L(-1)) + Tyr (400 mg L(-1)) could enhance (∼3.1-fold) RA biosynthesis within 48 h.
Collapse
Affiliation(s)
- Saikat Dewanjee
- a Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Raja S. C. Mullik Road, Kolkata , 700032 , West Bengal India
| | | | | | | | | |
Collapse
|
14
|
Akitha Devi MK, Giridhar P. Isoflavone Augmentation in Soybean Cell Cultures Is Optimized Using Response Surface Methodology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3143-3149. [PMID: 24678665 DOI: 10.1021/jf500207x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glycine max contains potential therapeutic isoflavones, and its productivity in plants is considerably influenced worldwide by several biotic and abiotic factors. Optimization of soybean cell suspension cultures (Indian variety, JS 335) to maximize the cell growth and isoflavone production in the present study was performed using response surface methodology (RSM) with three independent variables of plant growth regulators, 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthalene acetic acid (α-NAA), and kinetin (Kn). The maximum biomass achieved was 70.62 g/L dry weight (dw) using the optimized medium of 2.10 mg/L 2,4-D, 5.52 mg/L α-NAA, and 0.35 mg/L Kn supplemented in the Murashige and Skoog (MS) basal medium. The total isoflavone content of 38.59 mg/g of dw was obtained in the medium with optimized conditions of 1.33 mg/L 2,4-D, 1.76 mg/L α-NAA, and 0.15 mg/L Kn. In comparison to field-grown soybean seeds, the cell suspension cultures profoundly augmented isoflavone concentrations. The optimized conditions for both biomass and total isoflavone content were evaluated by superimposing the contour plots. The results suggested that the optimized medium of cell suspension cultures possibly be used for scale-up studies in bioreactors to offer a high content of bioactive isoflavones.
Collapse
Affiliation(s)
- M K Akitha Devi
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI) , Mysore 570 020, India
| | - P Giridhar
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI) , Mysore 570 020, India
| |
Collapse
|
15
|
Manipulation of culture strategies to enhance capsaicin biosynthesis in suspension and immobilized cell cultures of Capsicum chinense Jacq. cv. Naga King Chili. Bioprocess Biosyst Eng 2013; 37:1055-63. [PMID: 24141419 DOI: 10.1007/s00449-013-1076-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
Manipulation of culture strategies was adopted to study the influence of nutrient stress, pH stress and precursor feeding on the biosynthesis of capsaicin in suspension and immobilized cell cultures of C. chinense. Cells cultured in the absence of one of the four nutrients (ammonium and potassium nitrate for nitrate and potassium stress, potassium dihydrogen orthophosphate for phosphorus stress, and sucrose for sugar stress) influenced the accumulation of capsaicin. Among the stress factors studied, nitrate stress showed maximal capsaicin production on day 20 (505.9 ± 2.8 μg g(-1) f.wt) in immobilized cell, whereas in suspension cultures the maximum accumulation (345.5 ± 2.9 μg g(-1) f.wt) was obtained on day 10. Different pH affected capsaicin accumulation; enhanced accumulation of capsaicin (261.6 ± 3.4 μg g(-1) f.wt) was observed in suspension cultures at pH 6 on day 15, whereas in case of immobilized cultures the highest capsaicin content (433.3 ± 3.3 μg g(-1) f.wt) was obtained at pH 5 on day 10. Addition of capsaicin precursors and intermediates significantly enhanced the biosynthesis of capsaicin, incorporation of vanillin at 100 μM in both suspension and immobilized cell cultures resulted in maximum capsaicin content with 499.1 ± 5.5 μg g(-1) f.wt on day 20 and 1,315.3 ± 10 μg g(-1) f.wt on day 10, respectively. Among the different culture strategies adopted to enhance capsaicin biosynthesis in cell cultures of C. chinense, cells fed with vanillin resulted in the maximum capsaicin accumulation. The rate of capsaicin production was significantly higher in immobilized cells as compared to freely suspended cells.
Collapse
|
16
|
Wang JW, Wu JY. Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 134:55-89. [PMID: 23467807 DOI: 10.1007/10_2013_183] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This chapter reviews the various biotic and abiotic elicitors applied to hairy root cultures and their stimulating effects on the accumulation of secondary metabolites. Elicitors generally refer to the agents that stimulate the defense responses of plants. As a major response of plants to biotic and abiotic stress, the accumulation of secondary metabolites in plant tissue cultures can be stimulated by the elicitors. Among the many elicitors applied to hairy root cultures as well as plant cell suspension cultures, the most common and effective elicitors are fungal cell extracts, polysaccharides from fungal and plant cells, and heavy metal salts. With the crude fungal cell extracts, it is essential to observe the preparation conditions carefully for achieving reproducible effects. In addition to the chemical agents, UV-radiation, hyperosmotic stress and temperature shift have been shown effective for some plant species/metabolites. Elicitor type, dose, and treatment schedule are major factors determining the effects on the secondary metabolite production. In addition to the accumulation of products in roots, elicitor treatments often stimulate the release of intracellular products. Although elicitation is mainly effective to increase specific product yield on per unit mass of roots, the incorporation of nutrient feeding strategies can be applied to enhance the volumetric product yield. The integration of in situ product recovery from the roots/liquid medium is another synergistic strategy with the elicitor treatment to improve the process.
Collapse
Affiliation(s)
- Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China,
| | | |
Collapse
|
17
|
Taha H, Abd El-Kawy A, Fathalla MAEK. A new approach for achievement of inulin accumulation in suspension cultures of Jerusalem artichoke (Helianthus tuberosus) using biotic elicitors. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2012. [DOI: 10.1016/j.jgeb.2012.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Lim EK, Bowles D. Plant production systems for bioactive small molecules. Curr Opin Biotechnol 2012; 23:271-7. [DOI: 10.1016/j.copbio.2011.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/18/2011] [Accepted: 12/15/2011] [Indexed: 10/24/2022]
|
19
|
Cai Z, Kastell A, Knorr D, Smetanska I. Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. PLANT CELL REPORTS 2012; 31:461-477. [PMID: 21987121 DOI: 10.1007/s00299-011-1165-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 09/24/2011] [Accepted: 09/25/2011] [Indexed: 05/31/2023]
Abstract
This review addresses methods of obtaining secondary metabolites from plant cell suspension and hairy root cultures and their exudates, particularly the physiological mechanisms of secondary metabolites release and trafficking. The efficiency for product recovery of metabolites can be increased by various methods, based on the principle of continuous product release into the cultivation medium. The most common methods for metabolite recovery are elicitation, influencing membrane permeability, and in situ product removal. The biosynthetic pathways can be influenced by cultivation conditions, transformation, or application of elicitors. The membrane permeability can be altered through the application of chemical or physical treatments. Product removal can be greatly increased through a two-phase system and the introduction of absorbents into the cultivation medium. In this review, we describe some improved approaches that have proven useful in these efforts.
Collapse
Affiliation(s)
- Zhenzhen Cai
- Institute of Food Biotechnology and Food Chemistry, Berlin University of Technology, Königin-Luise Str. 22, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
20
|
Martin KP, Sabovljevic A, Madassery J. High-frequency transgenic plant regeneration and plumbagin production through methyl jasmonate elicitation from hairy roots of Plumbago indica L. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12892-010-0123-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Chandra S. Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 2011; 34:407-15. [DOI: 10.1007/s10529-011-0785-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/18/2011] [Indexed: 11/24/2022]
|
22
|
Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl Microbiol Biotechnol 2011; 90:1229-39. [DOI: 10.1007/s00253-011-3228-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/27/2011] [Accepted: 02/28/2011] [Indexed: 02/05/2023]
|
23
|
Sharma M, Sharma A, Kumar A, Kumar Basu S. Enhancement of Secondary Metabolites in Cultured Plant Cells Through Stress Stimulus. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajpp.2011.50.71] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Improved isoflavonoid production in Pueraria candollei hairy root cultures using elicitation. Biotechnol Lett 2010; 33:369-74. [PMID: 20872158 DOI: 10.1007/s10529-010-0417-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
The effect of abiotic and biotic elicitors (methyl jasmonate, chitosan, salicylic acid, Agrobacterium, and yeast extract) at various concentrations on total isoflavonoid accumulation was studied in the hairy root cultures of Pueraria candollei. All elicitors stimulated isoflavonoid production. Yeast extract (0.5 mg/ml) was the most efficient giving total isoflavonoids at 60 ± 1 mg/g dry wt, which was 4.5-fold higher than control hairy roots on day 3 of elicitation.
Collapse
|