1
|
Shinto H, Kojima M, Shigaki C, Hirohashi Y, Seto H. Effect of salt concentration and exposure temperature on adhesion and cytotoxicity of positively charged nanoparticles toward yeast cells. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Ahmed B, Rizvi A, Syed A, Jailani A, Elgorban AM, Khan MS, Al-Shwaiman HA, Lee J. Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117854. [PMID: 34333267 DOI: 10.1016/j.envpol.2021.117854] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Expanding applications of metal-oxide nanoparticles (NPs) and increased environmental deposition of NPs followed by their interactions with edible crops threaten yields. This study demonstrates the effects of aging (45 days in soil) of four NPs (ZnO, CuO, Al2O3, TiO2; 3.9-34 nm) and their corresponding metal oxide bulk particles (BPs; 144-586 nm) on cucumbers (Cucumis sativus L.) cultivated in sandy-clay-loam field soil and compares these with the phytotoxic effects of readily soluble metal salts (Zn2+, Cu2+, and Al3+). Data revealed the cell-to-cell translocations of NPs, their attachments to outer and inner cell surfaces, nuclear membranes, and vacuoles, and their upward movements to aerial parts. Metal bioaccumulations in cucumbers were found in the order: (i) ZnO-NPs > ZnO-BPs > Zn2+, (ii) CuO-NPs > CuO-BPs > Cu2+, (iii) Al3+> Al2O3-NPs > Al2O3-BPs and (iv) TiO2-NPs > TiO2-BPs. Aging of NPs in soil for 45 days significantly enhanced metal uptake (P ≤ 0.05), for instance aged ZnO-NPs at 1 g kg-1 increased the uptake by 20.7 % over non-aged ZnO-NPs. Metal uptakes inhibited root (RDW) and shoot (SDW) dry weight accumulations. For Cu species, maximum negative impact (%) was exhibited by Cu2+ (RDW:SDW = 94:65) followed by CuO-NPs (RDW:SDW = 78:34) and CuO-BPs (RDW:SDW = 27:22). Aging of NPs/BPs at 1-4 g kg-1 further enhanced the toxic impact of tested materials on biomass accumulations and chlorophyll formation. NPs also induced membrane damage of root tissues and enhanced levels of antioxidant enzymes. The results of this study suggest that care is required when aged metal-oxide NPs of both essential (Zn and Cu) and non-essential (Al and Ti) metals interact with cucumber plants, especially, when they are used for agricultural purposes.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Asfa Rizvi
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Afreen Jailani
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, 202002, India
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
3
|
Abstract
The field of single nanoparticle plasmonics has grown enormously. There is no doubt that a wide diversity of the nanoplasmonic techniques and nanostructures represents a tremendous opportunity for fundamental biomedical studies as well as sensing and imaging applications. Single nanoparticle plasmonic biosensors are efficient in label-free single-molecule detection, as well as in monitoring real-time binding events of even several biomolecules. In the present review, we have discussed the prominent advantages and advances in single particle characterization and synthesis as well as new insight into and information on biomedical diagnosis uniquely obtained using single particle approaches. The approaches include the fundamental studies of nanoplasmonic behavior, two typical methods based on refractive index change and characteristic light intensity change, exciting innovations of synthetic strategies for new plasmonic nanostructures, and practical applications using single particle sensing, imaging, and tracking. The basic sphere and rod nanostructures are the focus of extensive investigations in biomedicine, while they can be programmed into algorithmic assemblies for novel plasmonic diagnosis. Design of single nanoparticles for the detection of single biomolecules will have far-reaching consequences in biomedical diagnosis.
Collapse
Affiliation(s)
- Xingyi Ma
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
4
|
Storage Behavior of “Seddik” Mango Fruit Coated with CMC and Guar Gum-Based Silver Nanoparticles. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7030044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mango fruit (cv. Seddik) is known as a delicate fruit for storage after harvest. Herein, carboxymethyl cellulose (CMC) and guar gum-based silver nanoparticles (AgNPs) were used as fruit coatings, and their effects on postharvest storage behavior and quality attributes were investigated. AgNPs were synthesized using a chemical reduction approach and then combined with CMC and guar gum as coating bases. Mango fruits were coated with the developed and pre-characterized CMC-AgNPs and guar gum-AgNPs, and then packed and stored at 13 °C for 4 weeks. The results showed an increase in weight loss, respiration rate, total soluble solids (TSS), total sugars, and total carotenoids over the storage period. However, this increase was comparatively less significant in coated fruits compared to uncoated fruits. Firmness and titratable acidity (TA) significantly decreased during storage, but this decrease was less in coated fruits. Silver traces in fruit pulp samples were not detected. These findings showed the efficacy of CMC-AgNP and guar gum-AgNP coatings in delaying mango fruit ripening and maintaining fruit quality during cold storage. Therefore, these coatings could be promising alternative materials for extending the postharvest life and marketing period of mango fruit.
Collapse
|
5
|
Shinto H, Takiguchi M, Furukawa Y, Minohara H, Kojima M, Shigaki C, Hirohashi Y, Seto H. Adhesion and cytotoxicity of positively charged nanoparticles toward budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Nomura T, Kuriyama Y, Toyoda S, Konishi Y. Direct measurements of colloidal behavior of polystyrene nanoparticles into budding yeast cells using atomic force microscopy and confocal microscopy. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.07.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Yumiyama S, Fujisawa E, Konishi Y, Nomura T. Control of colloidal behavior of polystyrene latex nanoparticles and their cytotoxicity toward yeast cells using water-soluble polymers. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Khodaeimehr R, Peighambardoust SJ, Peighambardoust SH. Preparation and Characterization of Corn Starch/Clay Nanocomposite Films: Effect of Clay Content and Surface Modification. STARCH-STARKE 2018. [DOI: 10.1002/star.201700251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rouhollah Khodaeimehr
- Faculty of Chemical and Petroleum Engineering; University of Tabriz; Tabriz 5166616471 Iran
| | - Seyed Jamaleddin Peighambardoust
- Associate Professor of Polymer Science and Technology; Faculty of Chemical and Petroleum Engineering; University of Tabriz; Tabriz 5166616471 Iran
| | - Seyed Hadi Peighambardoust
- Professor of Food Technology Department of Food Science; College of Agriculture; University of Tabriz; Tabriz 5166616471 Iran
| |
Collapse
|
9
|
Libralato G, Galdiero E, Falanga A, Carotenuto R, de Alteriis E, Guida M. Toxicity Effects of Functionalized Quantum Dots, Gold and Polystyrene Nanoparticles on Target Aquatic Biological Models: A Review. Molecules 2017; 22:molecules22091439. [PMID: 28858240 PMCID: PMC6151384 DOI: 10.3390/molecules22091439] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022] Open
Abstract
Nano-based products are widespread in several sectors, including textiles, medical-products, cosmetics, paints and plastics. Nanosafety and safe-by-design are driving nanoparticle (NP) production and applications through NP functionalization (@NPs). Indeed, @NPs frequently present biological effects that differ from the parent material. This paper reviews the impact of quantum dots (QDs), gold nanoparticles (AuNPs), and polystyrene-cored NPs (PSNPs), evidencing the role of NP functionalization in toxicity definition. Key biological models were taken into consideration for NP evaluation: Saccharomyces cerevisiae, fresh- (F) and saltwater (S) microalgae (Raphidocelis subcapitata (F), Scenedesmus obliquus (F) and Chlorella spp. (F), and Phaeodactylum tricornutum (S)), Daphnia magna, and Xenopus laevis. QDs are quite widespread in technological devices, and they are known to induce genotoxicity and oxidative stress that can drastically change according to the coating employed. For example, AuNPs are frequently functionalized with antimicrobial peptides, which is shown to both increase their activity and decrease the relative environmental toxicity. P-NPs are frequently coated with NH2− for cationic and COOH− for anionic surfaces, but when positively charged toxicity effects can be observed. Careful assessment of functionalized and non-functionalized NPs is compulsory to also understand their potential direct and indirect effects when the coating is removed or degraded.
Collapse
Affiliation(s)
- Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Annarita Falanga
- Department of Pharmacy, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy.
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia ed. 7, 80126 Naples, Italy.
| |
Collapse
|
10
|
Osibe DA, Chiejina NV, Ogawa K, Aoyagi H. Stable antibacterial silver nanoparticles produced with seed-derived callus extract of Catharanthus roseus. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1266-1273. [PMID: 28830244 DOI: 10.1080/21691401.2017.1367927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biocompatibility and ecotoxicity concerns associated with chemically produced metallic nanoparticles have led to an increasing interest in the development of environmentally benign alternatives for nanoparticle synthesis using biological platforms. Herein, we report the utilization of an extract of seed-derived callus of Catharanthus roseus for the production of stable silver nanoparticles (Ag NPs). The bioreduction of silver ions was evident from UV-Vis spectroscopy results: the absorption maxima were observed at 425 nm, indicative of elemental silver. Transmission electron micrographs revealed that the Ag NPs were well-dispersed and predominantly spherical with particle sizes in the range of 2-15 nm. The synthesized Ag NPs exhibited colloidal stability in an aqueous dispersion for a period of 120 days, as indicated by UV-Vis absorbance spectra and zeta potential measurements. Fourier transform infrared spectroscopy revealed the possible utilization of hydroxyl groups and amides in the reduction of silver ions and surface stabilization of the Ag NPs, respectively. Notably, the synthesized Ag NPs showed considerable antibacterial action against Escherichia coli even after 8 weeks of storage under ambient conditions. Thus, cell extracts of cultured callus of Catharanthus roseus could be explored as an ecofriendly platform for the synthesis of stable and functional nanoparticles.
Collapse
Affiliation(s)
- Dandy Ahamefula Osibe
- a Life Science and Bioengineering, Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan.,b Department of Plant Science and Biotechnology , University of Nigeria , Nsukka , Nigeria
| | | | - Kazuyoshi Ogawa
- a Life Science and Bioengineering, Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| | - Hideki Aoyagi
- a Life Science and Bioengineering, Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
11
|
Lau CP, Abdul-Wahab MF, Jaafar J, Chan GF, Abdul Rashid NA. Toxic effect of high concentration of sonochemically synthesized polyvinylpyrrolidone-coated silver nanoparticles on Citrobacter sp. A1 and Enterococcus sp. C1. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:427-434. [DOI: 10.1016/j.jmii.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/20/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022]
|
12
|
Lee SW, Park SY, Kim Y, Im H, Choi J. Effect of sulfidation and dissolved organic matters on toxicity of silver nanoparticles in sediment dwelling organism, Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:565-573. [PMID: 26938319 DOI: 10.1016/j.scitotenv.2016.02.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
The properties, fate, and toxicity of silver nanoparticles (AgNPs) are readily modified in the environment. Thus, in order to predict the environmental impact of AgNPs, the toxicity test should be conducted to assess the interactions of AgNPs with environmental matrices. Dissolved organic matter (DOM) is known to mitigate AgNPs toxicity in natural systems, and it is also known that silver binds strongly to sulfur. Little is known, however, about the effect of sulfidation and to what extent it could compete with DOM in the sediment. We therefore investigated the effect of sulfide on a sediment dwelling organism, Chironomus riparius using ecotoxicity endpoints. We then investigated how sulfide and a combination of sulfide and DOM affect the toxicity of AgNPs in C. riparius. We also monitored the concentrations of silver in the water and sediment compartments, as well as in C. riparius tissue, in the presence and absence of sulfide. Finally, in order to investigate how sulfide and DOM affect the release of ions from AgNPs, we also monitored released Ag(+) in each treatment. In the presence of sulfide, AgNPs were found to be less toxic to C. riparius in acute and chronic endpoints than AgNPs alone, whereas DOM treatment did not modulate the toxicity of AgNPs. Sulfide treatment reduced the release of Ag(+) from AgNPs. Water-spiked AgNPs with sulfide were found to be more slowly incorporated into both sediment and larvae as compared to the AgNP alone. Overall, the results suggest that the presence of sulfide in sediment mitigates the ecotoxicity of AgNPs in C. riparius.
Collapse
Affiliation(s)
- Si-Won Lee
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | - Sun-Young Park
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Hosub Im
- Institute for Life & Environment, Smartive Corporation, Seoul, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 130-743, Republic of Korea.
| |
Collapse
|
13
|
Nomura T, Tani S, Yamamoto M, Nakagawa T, Toyoda S, Fujisawa E, Yasui A, Konishi Y. Cytotoxicity and colloidal behavior of polystyrene latex nanoparticles toward filamentous fungi in isotonic solutions. CHEMOSPHERE 2016; 149:84-90. [PMID: 26855210 DOI: 10.1016/j.chemosphere.2016.01.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 05/21/2023]
Abstract
The effects of surface physicochemical properties of functionalized polystyrene latex (PSL) nanoparticles (NPs) and model filamentous fungi Aspergillus oryzae and Aspergillus nidulans cultivated in different environment (aqueous and atmospheric environment) on the colloidal behavior and cytotoxicity were investigated in different isotonic solutions (154 mM NaCl and 292 mM sucrose). When the liquid cultivated fungal cells were exposed to positively charged PSL NPs in 154 mM NaCl solution, the NPs were taken into A. oryzae, but not A. nidulans. Atomic force microscopy revealed that the uptake of NPs was more readily through the cell wall of A. oryzae because of its relatively softer cell wall compared with A. nidulans. In contrast, the positively charged PSL NPs entirely covered the liquid cultivated fungal cell surfaces and induced cell death in 292 mM sucrose solution because of the stronger electrostatic attractive force between the cells and NPs compared with in 154 mM NaCl. When the agar cultivated fungal cells were exposed to the positively charged PSL NPs, both fungal cells did not take the NPs inside the cells. Contact angle measurement revealed that the hydrophobin on the agar cultivated cell surfaces inhibited the uptake of NPs because of its relatively more hydrophobic cell surface compared with the liquid cultivated cells.
Collapse
Affiliation(s)
- Toshiyuki Nomura
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Makoto Yamamoto
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takumi Nakagawa
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shunsuke Toyoda
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eri Fujisawa
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akiko Yasui
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yasuhiro Konishi
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
14
|
|
15
|
ANGELOVA T, RANGELOVA N, UZUNOVA V, GEORGIEVA N, ANDREEVA T, MOMCHILOVA A, TZONEVA R, MÜLLER R. Cytotoxicity and antibiofilm activity of SiO2/cellulose derivative hybrid materials containing silver nanoparticles. Turk J Biol 2016. [DOI: 10.3906/biy-1601-68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
16
|
Assessment of the toxicity of CuO nanoparticles by using Saccharomyces cerevisiae mutants with multiple genes deleted. Appl Environ Microbiol 2015; 81:8098-107. [PMID: 26386067 DOI: 10.1128/aem.02035-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
To develop applicable and susceptible models to evaluate the toxicity of nanoparticles, the antimicrobial effects of CuO nanoparticles (CuO-NPs) on various Saccharomyces cerevisiae (S. cerevisiae) strains (wild type, single-gene-deleted mutants, and multiple-gene-deleted mutants) were determined and compared. Further experiments were also conducted to analyze the mechanisms associated with toxicity using copper salt, bulk CuO (bCuO), carbon-shelled copper nanoparticles (C/Cu-NPs), and carbon nanoparticles (C-NPs) for comparisons. The results indicated that the growth inhibition rates of CuO-NPs for the wild-type and the single-gene-deleted strains were comparable, while for the multiple-gene deletion mutant, significantly higher toxicity was observed (P < 0.05). When the toxicity of the CuO-NPs to yeast cells was compared with the toxicities of copper salt and bCuO, we concluded that the toxicity of CuO-NPs should be attributed to soluble copper rather than to the nanoparticles. The striking difference in adverse effects of C-NPs and C/Cu-NPs with equivalent surface areas also proved this. A toxicity assay revealed that the multiple-gene-deleted mutant was significantly more sensitive to CuO-NPs than the wild type. Specifically, compared with the wild-type strain, copper was readily taken up by mutant strains when cell permeability genes were knocked out, and the mutants with deletions of genes regulated under oxidative stress (OS) were likely producing more reactive oxygen species (ROS). Hence, as mechanism-based gene inactivation could increase the susceptibility of yeast, the multiple-gene-deleted mutants should be improved model organisms to investigate the toxicity of nanoparticles.
Collapse
|
17
|
Park SY, Chung J, Colman BP, Matson CW, Kim Y, Lee BC, Kim PJ, Choi K, Choi J. Ecotoxicity of bare and coated silver nanoparticles in the aquatic midge, Chironomus riparius. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2023-2032. [PMID: 25892495 DOI: 10.1002/etc.3019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/20/2014] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Although sediment is generally considered to be the major sink for nanomaterials in aquatic environments, few studies have addressed the ecotoxicity of nanomaterials in the presence of sediment. In the present study, the ecotoxicity of silver nanoparticles (AgNPs) with a range of organic coatings was examined in a freshwater sediment-dwelling organism, Chironomus riparius, using acute and chronic ecotoxicity endpoints, including molecular indicators. The toxicity of AgNPs coated with different organic materials, such as polyvinylpyrrolidone, gum arabic, and citrate, to C. riparius was compared with that of bare-AgNPs and AgNO3 (ionic silver). Total silver concentration was also measured to monitor the behavior of the AgNPs in water and sediment and to determine how ion dissolution affects the toxicity of all AgNPs. The coated- and bare-AgNPs caused DNA damage and oxidative stress-related gene expression. In addition, the bare-AgNPs and AgNO3 had a significant effect on development and reproduction. The surface coatings generally mitigated the toxicity of AgNPs to C. riparius, which can be explained by the reduced number of ions released from coated-AgNPs. Citrate-AgNPs caused the most significant alteration at the molecular level, but this did not translate to higher-level effects. Finally, comparing previously conducted studies on AgNP-induced gene expression without sediments, the authors show that the presence of sediment appears to mitigate the toxicity of AgNPs.
Collapse
Affiliation(s)
- Sun-Young Park
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul, South Korea
| | - Jiwoong Chung
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul, South Korea
| | - Benjamin P Colman
- Department of Biology, Duke University, Durham, North Carolina, USA
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina, USA
| | - Cole W Matson
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina, USA
- Department of Environmental Science and Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul, South Korea
| | - Byung-Cheon Lee
- Risk Assessment Division, National Institute of Environmental Research, Incheon, Korea
| | - Phil-Je Kim
- Risk Assessment Division, National Institute of Environmental Research, Incheon, Korea
| | - Kyunghee Choi
- Risk Assessment Division, National Institute of Environmental Research, Incheon, Korea
| | - Jinhee Choi
- School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul, South Korea
| |
Collapse
|
18
|
Bakirdere S, Yilmaz MT, Tornuk F, Keyf S, Yilmaz A, Sagdic O, Kocabas B. Molecular characterization of silver-stearate nanoparticles (AgStNPs): A hydrophobic and antimicrobial material against foodborne pathogens. Food Res Int 2015; 76:439-448. [PMID: 28455024 DOI: 10.1016/j.foodres.2015.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 01/17/2023]
Abstract
In this study, silver-stearate nanoparticles (AgStNPs) have been produced from silver nitrate solutions by replacing the nitrate by stearate ions and then reducing by thermal treatment. AgStNPs were characterized by particle size, zeta-potential, ATR-FTIR, contact angle and SEM (scanning electron microscopy) analyses. The mean particle size and zeta potential of AgStNPs were determined to be 69.22±7.30nm and +8.02±0.88mV. ATR-FTIR analysis showed characteristic IR bands of stearate, revealing the two strong peaks at 2848 and 2915cm-1 associated to symmetric (νs(CH2)) and asymmetric (νas(CH2)) stretching vibrations of methylene groups, respectively. On the other hand, the scissoring and rocking modes of methylene group were observed at 1470 and 718cm-1, respectively. Nanomorphological characterization by SEM revealed a layered morphology of AgStNPs. Contact angle measurements demonstrated that a contact angle of water drop on glass coated with AgStNPs was found to be 108.76°, which proved the strong hydrophobic properties of AgStNPs. AgStNPs seemed to be very effective in inhibiting foodborne pathogens (Salmonella Typhimurium, Escherichia coli O157:H7, Staphylococcus aureus, Listeria monocytogenes and Candida albicans). The results suggest the use of AgStNPs as a coating material to reduce biofilm or biofouling formation in terms of achieving appropriate food contact surfaces and higher hygiene/easier sanitation due to their strong hydrophobic and antimicrobial properties.
Collapse
Affiliation(s)
- Sezgin Bakirdere
- Yıldız Technical University, Art and Sciences Faculty, Chemistry Department, 34210 İstanbul Turkey.
| | - Mustafa Tahsin Yilmaz
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210 İstanbul, Turkey.
| | - Fatih Tornuk
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210 İstanbul, Turkey
| | - Seyfullah Keyf
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34210 İstanbul, Turkey
| | - Azime Yilmaz
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Bioengineering Department, 34210 İstanbul, Turkey
| | - Osman Sagdic
- Yıldız Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210 İstanbul, Turkey
| | | |
Collapse
|
19
|
Chouhan RS, Qureshi A, Niazi JH. Determining the fate of fluorescent quantum dots on surface of engineered budding S. cerevisiae cell molecular landscape. Biosens Bioelectron 2015; 69:26-33. [DOI: 10.1016/j.bios.2015.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
|
20
|
Xiao Y, De Araujo C, Sze CC, Stuckey DC. Toxicity measurement in biological wastewater treatment processes: a review. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:15-29. [PMID: 25550080 DOI: 10.1016/j.jhazmat.2014.12.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/09/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Biological wastewater treatment processes (WWTPs), by nature of their reliance on biological entities to degrade organics and sometimes remove nutrients, are vulnerable to toxicants present in their influent. Various toxicity measurement methods have been adopted for biological WWTPs, but most are performed off-line, and cannot be adapted to on-line monitoring tools to provide an early warning for WWTP operators. However, the past decade has seen a rapid expansion in the research and development of biosensors that can be used for toxicity assessment of aquatic environments. Some of these biosensors have also been shown to be effective for use in biological WWTPs. Nevertheless, more research is needed to: examine the sensitivity of assays and sensors based on single organisms to various toxicants and develop a matrix of biosensors or a biosensor incorporating multiple organisms that can protect WWTPs; test the micro fuel cell (MFC)-based biosensors with real wastewaters and correlate the results with the well-established oxygen uptake rate (OUR)-based or CH4-based toxicity assay; and, develop advanced data processing methods for interpreting the results of on-line toxicity sensors in real WWTPs to reduce the noise due to the normal fluctuation in influent quality and quantity.
Collapse
Affiliation(s)
- Yeyuan Xiao
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University,Singapore 637141, Singapore
| | - Cecilia De Araujo
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University,Singapore 637141, Singapore
| | - Chun Chau Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637141, Singapore
| | - David C Stuckey
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University,Singapore 637141, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
21
|
Zhang Z, Li M, Ren J, Qu X. Cell-imprinted antimicrobial bionanomaterials with tolerable toxic side effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1258-1264. [PMID: 25348284 DOI: 10.1002/smll.201402400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 06/04/2023]
Abstract
Taking advantage of imprinting technology, artificial antibody-microbial imprinted Ag-TiO(2) materials are fabricated for microbial inactivation using a facile and green method. Due to the induced shape and size recognition elements, the artificial antibodies specifically recognize and kill target microbes under visible-light irradiation with minimal toxic side effects toward mammalian cells.
Collapse
Affiliation(s)
- Zhijun Zhang
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | | | | | | |
Collapse
|
22
|
Miyazaki J, Kuriyama Y, Tokumoto H, Konishi Y, Nomura T. Cytotoxicity and behavior of polystyrene latex nanoparticles to budding yeast. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0071-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Miyazaki J, Kuriyama Y, Miyamoto A, Tokumoto H, Konishi Y, Nomura T. Adhesion and internalization of functionalized polystyrene latex nanoparticles toward the yeast Saccharomyces cerevisiae. ADV POWDER TECHNOL 2014. [DOI: 10.1016/j.apt.2014.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Antibacterial effect and proteomic analysis of graphene-based silver nanoparticles on a pathogenic bacterium Pseudomonas aeruginosa. Biometals 2014; 27:673-82. [DOI: 10.1007/s10534-014-9756-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|
26
|
Sucrose density gradient centrifugation separation of gold and silver nanoparticles synthesized using Magnolia kobus plant leaf extracts. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0561-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Xiong Y, Brunson M, Huh J, Huang A, Coster A, Wendt K, Fay J, Qin D. The role of surface chemistry on the toxicity of ag nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2628-2638. [PMID: 23468386 DOI: 10.1002/smll.201202476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/30/2012] [Indexed: 05/27/2023]
Abstract
The role of surface chemistry on the toxicity of Ag nanoparticles is investigated using Saccharomyces cerevisiae yeast as a platform for evaluation. Combining the shape-controlled synthesis of Ag nanoparticles with a comprehensive characterization of their physicochemical properties, an understanding is formed of the correlation between the physicochemical parameters of nanoparticles and the inhibition growth of yeast cells upon the introduction of nanoparticles into the cell culture system. Capping agents, surface facets, and sample stability--the three experimental parameters that are inherent from the wet--chemical synthesis of Ag nanoparticles-have a strong impact on toxicity evaluation. Hence, it is important to characterize surface properties of Ag nanoparticles in the nature of biological media and to understand the role that surface chemistry may interplay to correlate the physicochemical properties of nanoparticles with their biological response upon exposure. This work demonstrates the great importance of surface chemistry in designing experiments for reliable toxicity evaluation and in mitigating the toxicity of Ag nanoparticles for their safe use in future commercialization.
Collapse
Affiliation(s)
- Yujie Xiong
- Nano Research Facility, School of Engineering and Applied Science, Washington University, St. Louis, Missouri 63130, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nomura T, Miyazaki J, Miyamoto A, Kuriyama Y, Tokumoto H, Konishi Y. Exposure of the yeast Saccharomyces cerevisiae to functionalized polystyrene latex nanoparticles: influence of surface charge on toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3417-23. [PMID: 23448545 DOI: 10.1021/es400053x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Novel nanoparticles with unique physicochemical characteristics are being developed with increasing frequency, leading to higher probability of nanoparticle release and environmental accumulation. Therefore, it is important to assess the potential environmental and biological adverse effects of nanoparticles. In this study, we investigated the toxicity and behavior of surface-functionalized nanoparticles toward yeast (Saccharomyces cerevisiae). The colony count method and confocal microscopy were used to examine the cytotoxicity of manufactured polystyrene latex (PSL) nanoparticles with various functional groups (amine, carboxyl, sulfate, and nonmodified). S. cerevisiae were exposed to PSL nanoparticles (40 mg/L) dispersed in 5-154 mM NaCl solutions for 1 h. Negatively charged nanoparticles had little or no toxic effect. Interestingly, nanoparticles with positively charged amine groups (p-Amine) were not toxic in 154 mM NaCl, but highly toxic in 5 mM NaCl. Confocal microscopy indicated that in 154 mM NaCl, the p-Amine nanoparticles were internalized by endocytosis, whereas in 5 mM NaCl they covered the dead cell surfaces. This demonstrates that nanoparticle-induced cell death might to be related to their adhesion to cells rather than their internalization. Together, these findings identify important factors in determining nanoparticle toxicity that might affect their impact on the environment and human health.
Collapse
Affiliation(s)
- Toshiyuki Nomura
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Costa C, Conte A, Buonocore G, Lavorgna M, Del Nobile M. Calcium-alginate coating loaded with silver-montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.03.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Shin YJ, Kwak JI, An YJ. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. CHEMOSPHERE 2012; 88:524-9. [PMID: 22513336 DOI: 10.1016/j.chemosphere.2012.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 03/04/2012] [Accepted: 03/05/2012] [Indexed: 05/23/2023]
Abstract
Silver nanoparticles (AgNPs) are well known to have antimicrobial ability, but very little is known about the effect of AgNPs on soil exoenzyme activities, which reflect the potential of a soil to support biochemical processes. This study provides evidence of the inhibitory effects of AgNPs on the activities of soil exoenzymes. Six exoenzymes related to nutrient cycles (urease, acid phosphatase, arylsulfatase, β-glucosidase) and the overall microbial activity (dehydrogenase, fluorescein diacetate hydrolase) were tested in soils treated with AgNPs (1, 10, 100 and 1000 μg g(-1)) and silver ion (0.035, 0.175, 0.525, 1 and 1.5 μg g(-1)). AgNPs were capable of inhibiting the activities of all the exoenzymes tested in this study. Especially, the urease and dehydrogenase activities were significantly related to the presence of AgNPs. The effects of silver ions dissolved from the AgNPs were not significant, indicating the adverse effects caused by AgNPs themselves. This study suggested that AgNPs negatively affect soil exoenzyme activities, with the urease activity especially sensitive to AgNPs.
Collapse
Affiliation(s)
- Yu-Jin Shin
- Department of Environmental Science, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | |
Collapse
|
31
|
Shi JP, Ma CY, Xu B, Zhang HW, Yu CP. Effect of light on toxicity of nanosilver to Tetrahymena pyriformis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1630-8. [PMID: 22553075 DOI: 10.1002/etc.1864] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/16/2012] [Accepted: 03/04/2012] [Indexed: 05/16/2023]
Abstract
More and more silver nanoparticles (AgNPs) have been released into the aquatic environment due to their widespread use, which may result in harmful effects on aquatic organisms. Environmental risk assessments of AgNPs on aquatic organisms in the natural environment (including light, sound, etc.) are indispensable. The aim of the present study was to elucidate the influence of light on the toxicity of AgNPs to Tetrahymena pyriformis. Silver nanoparticles, which were synthesized by reduction of silver nitrate with sodium borohydride, ranged in size from 5 to 20 nm with most particles approximately 10 nm. The authors performed AgNPs toxicity assays under a simulated natural environment with sunlight. The results indicated that the toxicity of AgNPs is higher than silver ion in the environment without light, but under the light condition, the toxicity of AgNPs decreased greatly. After 24 h of incubation with AgNPs, the inhibition ratio was 69.2 ± 7% in the dark and 35.5 ± 2% in the light, and the degree of inhibition was reduced by 33.7%. However, the effect of light on Ag(+) could be negligible. Further investigation indicated that the light irradiation could induce the growth of AgNPs and sequentially form bulk agglomeration. This decreased the surface area and the number of bare Ag atoms, resulting in a slower release rate and less Ag(+) ions released from AgNPs. At the same time, bulk agglomeration induced the deposition of part of the AgNPs to the aquatic bottom, which decreased the amount of AgNPs existing in water. All these phenomena led to the weakened toxicity of AgNPs in a light irradiation environment.
Collapse
Affiliation(s)
- Jun-Peng Shi
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | | | | | | | | |
Collapse
|
32
|
Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 2011; 92:1045-52. [DOI: 10.1007/s00253-011-3611-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/05/2011] [Accepted: 09/28/2011] [Indexed: 11/26/2022]
|
33
|
Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011; 2011:546074. [PMID: 21912532 PMCID: PMC3170698 DOI: 10.1155/2011/546074] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of Ag and Au nanoparticles (NPs) was investigated using an extremophilic yeast strain isolated from acid mine drainage in Portugal. Three distinct studies were performed, namely, the growth of yeast strain in presence of metal ions, the use of yeast biomass for the metal nanoparticles synthesis, and of the supernatant obtained after 24-hour incubation of yeast biomass in water. The extremophilic strain under study was able to grow up to an Ag ion concentration of 1.5 mM whereas an increase of Au ion concentration over 0.09 mM caused a strong inhibitory effect. A successful route for the metal NPs synthesis was obtained using the yeast biomass. When the washed yeast cells were in contact with Ag or Au solutions, AgNPs smaller than 20 nm were produced, as for the AuNPs diameter ranged from 30 to 100 nm, as determined through transmission electron microscopy and confirmed by energy-dispersive X-ray spectra. The supernatant-based strategy provided evidence that proteins were released to the medium by the yeasts, which could be responsible for the formation and stabilisation of the Ag NPs, although the involvement of the cell wall seems fundamental for AuNPs synthesis.
Collapse
|
34
|
Costa C, Conte A, Buonocore GG, Del Nobile MA. Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol 2011; 148:164-7. [PMID: 21684619 DOI: 10.1016/j.ijfoodmicro.2011.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/07/2011] [Accepted: 05/22/2011] [Indexed: 10/18/2022]
Abstract
In this work, silver-montmorillonite (Ag-MMT) antimicrobial nanoparticles have been obtained by allowing silver ions from nitrate solutions to replace the Na(+) of natural montmorillonite and then to be reduced by a thermal treatment. Ag-MMT were used as active antimicrobial compounds to improve the shelf life of fresh fruit salad. In order to assess their influence on product shelf life, sensorial and microbiological quality has been monitored during the storage. The microbiological quality was determined by monitoring the principal spoilage microorganisms (mesophilic and psychrotrophic bacteria, coliforms, lactic acid bacteria, yeasts and molds). Additionally, the evolution of sensorial quality was assessed by monitoring color, odor, firmness and product overall quality. The Ag-MMT nanoparticles seemed to be effective in inhibiting microbial growth, above all at the highest tested concentration. Consequently, the sensorial quality of samples stored in the active packaging appeared to be better preserved. Thus, experimental results showed that a significant shelf life prolongation of fresh fruit salad can be obtained by a straightforward new packaging system.
Collapse
Affiliation(s)
- C Costa
- Department of Food Science, University of Foggia, Foggia, Italy
| | | | | | | |
Collapse
|
35
|
Incoronato A, Conte A, Buonocore G, Del Nobile M. Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. J Dairy Sci 2011; 94:1697-704. [DOI: 10.3168/jds.2010-3823] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
|