1
|
Genomic and Transcriptional Characteristics of Strain Rum-meliibacillus sp. TYF-LIM-RU47 with an Aptitude of Directly Producing Acetoin from Lignocellulose. FERMENTATION 2022. [DOI: 10.3390/fermentation8080414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rummeliibacillus sp. TYF-LIM-RU47, isolated from the fermentation substrate of grain vinegar, could produce acetoin using a variety of carbon sources, including pentose, hexose and lignocellulose. The draft genome of TYF-LIM-RU47 was constructed and the genomic information revealed that TYF-LIM-RU47 contains genes related to starch and sucrose metabolism, pyruvate metabolism, the oxidative phosphorylation metabolic pathway and lignocellulosic metabolism. The acetoin anabolic pathway of TYF-LIM-RU47 has been deduced from the sequencing results, and acetoin is produced from α-acetolactate via decarboxylation and diacetyl reductase catalytic steps. The results of quantitative real-time PCR tests showed that the synthesis and degradation of acetoin had a dynamic balance in acetoin metabolism, and the transcription of the α-acetolactate synthase gene might exist to the extent of feedback regulation. This study can help researchers to better understand the bioinformation of thermophilic-lignocellulosic bacteria and the mechanisms of the acetoin biosynthesis pathway.
Collapse
|
2
|
Tong Z, Tong Y, Wang D, Shi Y. Whole Maize Flour and Isolated Maize Starch for Production of Citric Acid by
Aspergillus niger
: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202000014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhenyu Tong
- Department of Grain Science and Industry Kansas State University Manhattan KS 66506 USA
| | - Yi Tong
- COFCO Biochemical (Anhui) Co., Ltd Bengbu 233000 P. R. China
| | - Donghai Wang
- Department of Biological and Agricultural Engineering Kansas State University Manhattan KS 66506 USA
| | - Yong‐Cheng Shi
- Department of Grain Science and Industry Kansas State University Manhattan KS 66506 USA
| |
Collapse
|
3
|
Lee CG, Jo CY, Lee KB, Mun S. Improving the performances of a simulated-moving-bed process for separation of acetoin and 2,3-butanediol by the use of an adsorbent for minimizing the extent of 2,3-butanediol isomerism. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Taiwo AE, Madzimbamuto TN, Ojumu TV. Optimization of process variables for acetoin production in a bioreactor using Taguchi orthogonal array design. Heliyon 2020; 6:e05103. [PMID: 33072908 PMCID: PMC7548929 DOI: 10.1016/j.heliyon.2020.e05103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 09/25/2020] [Indexed: 02/02/2023] Open
Abstract
Microbial production of acetoin is eco-friendly and inexpensive when compared with its synthetic methods of production. In the present findings, bioproduction of acetoin in a typical bioreactor was discussed with a view to ascertain the seemingly comparative advantage of bioreactor system over shake flask, and more importantly, to confirm that corn steep liquor can indeed adequately be used as a replacement for other organic nitrogen sources. Taguchi design was statistically used to optimized the fermentation process which resulted in a 3-fold increase in molar yield (83%) corresponding to a six-fold increase in acetoin concentration (63.43 g/L), as compared to a similar study conducted in a shake flask. Although agitation rate was observed to be the most controlling, the bioreactor may underperform at agitation rate greater than 300 rpm. The optimum parameters for acetoin production in this study were 300 rpm agitation, 1.5 slpm aeration, 2 days fermentation time, and pH 6.5. The results show that the commercial production of acetoin can be envisioned using a biological approach that may be of economic advantage.
Collapse
Affiliation(s)
- Abiola Ezekiel Taiwo
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O Box 1609, Bellville, 7535, South Africa
| | | | - Tunde Victor Ojumu
- Department of Chemical Engineering, Cape Peninsula University of Technology, P.O Box 1609, Bellville, 7535, South Africa
| |
Collapse
|
5
|
Lu L, Mao Y, Kou M, Cui Z, Jin B, Chang Z, Wang Z, Ma H, Chen T. Engineering central pathways for industrial-level (3R)-acetoin biosynthesis in Corynebacterium glutamicum. Microb Cell Fact 2020; 19:102. [PMID: 32398078 PMCID: PMC7216327 DOI: 10.1186/s12934-020-01363-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/05/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Acetoin, especially the optically pure (3S)- or (3R)-enantiomer, is a high-value-added bio-based platform chemical and important potential pharmaceutical intermediate. Over the past decades, intense efforts have been devoted to the production of acetoin through green biotechniques. However, efficient and economical methods for the production of optically pure acetoin enantiomers are rarely reported. Previously, we systematically engineered the GRAS microorganism Corynebacterium glutamicum to efficiently produce (3R)-acetoin from glucose. Nevertheless, its yield and average productivity were still unsatisfactory for industrial bioprocesses. RESULTS In this study, cellular carbon fluxes in the acetoin producer CGR6 were further redirected toward acetoin synthesis using several metabolic engineering strategies, including blocking anaplerotic pathways, attenuating key genes of the TCA cycle and integrating additional copies of the alsSD operon into the genome. Among them, the combination of attenuation of citrate synthase and inactivation of phosphoenolpyruvate carboxylase showed a significant synergistic effect on acetoin production. Finally, the optimal engineered strain CGS11 produced a titer of 102.45 g/L acetoin with a yield of 0.419 g/g glucose at a rate of 1.86 g/L/h in a 5 L fermenter. The optical purity of the resulting (3R)-acetoin surpassed 95%. CONCLUSION To the best of our knowledge, this is the highest titer of highly enantiomerically enriched (3R)-acetoin, together with a competitive product yield and productivity, achieved in a simple, green processes without expensive additives or substrates. This process therefore opens the possibility to achieve easy, efficient, economical and environmentally-friendly production of (3R)-acetoin via microbial fermentation in the near future.
Collapse
Affiliation(s)
- Lingxue Lu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Mengyun Kou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhenzhen Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Biao Jin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhishuai Chang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering of Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Qiao MF, Wu HC, Liu Y, Lu Y, Deng J. Effect of Salt Stress on Acetoin Metabolism of an Aroma-producing Strain Bacillus subtilis. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Lee CG, Jo CY, Song YJ, Park H, Mun S. Optimal design of a simulated-moving-bed chromatographic process for high-purity separation of acetoin from 2,3-butanediol in a continuous mode. J Chromatogr A 2019; 1607:460394. [PMID: 31400841 DOI: 10.1016/j.chroma.2019.460394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
For the high-purity production of acetoin or 2,3-butanediol (BD) from related fermentation processes, it is essential to accomplish a detailed separation between acetoin and BD in an economical mode. To address this issue, we aimed to develop a highly-efficient simulated-moving-bed (SMB) process for the continuous-mode separation of acetoin from BD with high purity and small loss. As a first step for this task, the adsorption and mass-transfer parameters of acetoin and BD on a proven adsorbent were estimated while assuming that BD isomers (meso-BD and DL-BD) would be identical in adsorption and mass-transfer behaviors. The resultant parameters from such estimation were applied to the optimal design of the acetoin-BD separation SMB. The designed SMB was then experimentally investigated, which revealed that some sign of BD isomerism occurred in the SMB column-profile data and thus had an adverse effect on the SMB separation performance. To resolve this problem, the individual parameters of BD isomers were determined on the basis of the SMB column-profile data and an inverse-method principle. The resulting parameters of BD isomers were used in the re-design of the target SMB, which was then experimentally checked for its separation performance. It was confirmed that such SMB re-designed in consideration of BD isomerism was quite effective in the continuous-mode separation of acetoin from BD with high purity (> 99.2%) and small loss (< 1.52%).
Collapse
Affiliation(s)
- Chung-Gi Lee
- Department of Chemical Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 04763, South Korea
| | - Cheol Yeon Jo
- Department of Chemical Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 04763, South Korea
| | - Ye Jin Song
- Department of Chemical Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 04763, South Korea
| | - Hangil Park
- Department of Chemical Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 04763, South Korea
| | - Sungyong Mun
- Department of Chemical Engineering, Hanyang University, Haengdang-dong, Seongdong-gu, Seoul, 04763, South Korea.
| |
Collapse
|
8
|
Yuan H, Xu Y, Chen Y, Zhan Y, Wei X, Li L, Wang D, He P, Li S, Chen S. Metabolomics analysis reveals global acetoin stress response of Bacillus licheniformis. Metabolomics 2019; 15:25. [PMID: 30830499 DOI: 10.1007/s11306-019-1492-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Acetoin serves as a high value-added platform with a broad range of applications, and can be effectively produced by Bacillus licheniformis. However, its toxicity to the producing strain hinders the higher acetoin production, and current knowledge about the acetoin resistance mechanisms of B. licheniformis is quite limited. OBJECTIVES To comprehensively investigate the metabolic changes in B. licheniformis under acetoin stress. METHODS We used gas chromatography-mass spectrometry based untargeted metabolomics approach to measure the metabolic profiles of B. licheniformis under 20, 40 and 80 g/L acetoin stress. Transcriptional analysis was conducted to verify the metabolomics results. RESULTS A total of 119 metabolites were identified in our experiment. The metabolic responses of B. licheniformis to acetoin stress were as follows: (i) pentose phosphate pathway and tricarboxylic acid (TCA) cycle were negatively affected by acetoin stress. In turn, glyoxylate cycle was activated to supply malic acid. (ii) Acetoin stress induced the accumulation of serine, valine, leucine and protective osmolytes (glycine and proline). (iii) Acetoin stress induced a higher saturated fatty acid ratio, which indicated a lower fluidity of cell membrane that could inhibit the entry of acetoin into cytoplasm. (iv) Synthesis of phosphatidylserine was enhanced, and phosphatidylethanolamine content was probably increased under acetoin stress. CONCLUSIONS This study revealed the metabolic perturbations of B. licheniformis to acetoin stress. In response to acetoin stress, glyoxylate cycle was activated, protective osmolytes were accumulated, saturated fatty acid ratio was elevated and synthesis of phosphatidylserine was enhanced in B. licheniformis.
Collapse
Affiliation(s)
- Honglun Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yong Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yaozhong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shengqing Li
- College of Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shouwen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
9
|
Screening of a biological control bacterium to fight avocado diseases: From agroecosystem to bioreactor. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Jang JW, Jung HM, Im DK, Jung MY, Oh MK. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation. Enzyme Microb Technol 2017; 106:114-118. [DOI: 10.1016/j.enzmictec.2017.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
|
11
|
Li L, Wei X, Yu W, Wen Z, Chen S. Enhancement of acetoin production from Bacillus licheniformis by 2,3-butanediol conversion strategy: Metabolic engineering and fermentation control. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Wang B, Li H, Zhu L, Tan F, Li Y, Zhang L, Ding Z, Shi G. High-efficient production of citric acid by Aspergillus niger from high concentration of substrate based on the staged-addition glucoamylase strategy. Bioprocess Biosyst Eng 2017; 40:891-899. [DOI: 10.1007/s00449-017-1753-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
|
13
|
Lv X, Dai L, Bai F, Wang Z, Zhang L, Shen Y. Metabolic engineering of Serratia marcescens MG1 for enhanced production of ( 3R)-acetoin. BIORESOUR BIOPROCESS 2016; 3:52. [PMID: 27942437 PMCID: PMC5124605 DOI: 10.1186/s40643-016-0128-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 12/02/2022] Open
Abstract
Background Optically pure acetoin (AC) is an important platform chemical which has been widely used to synthesize novel optically active α-hydroxyketone derivatives and liquid crystal composites. Results In this study, slaC and gldA encoding meso-2,3-butanediol dehydrogenase (meso-2,3-BDH) and glycerol dehydrogenase (GDH), respectively, in S. marcescens MG1 were knocked out to block the conversion from AC to 2,3-butanediol (2,3-BD). The resulting strain MG14 was found to produce a large amount of optically pure (3R)-AC with a little 2,3-BD, indicating that another enzyme responsible for 2,3-BD formation except meso-2,3-BDH and GDH existed in the strain MG1. Furthermore, SlaR protein, a transcriptional activator of AC cluster, was overexpressed using PC promoter in the strain MG14, leading to enhancement of the (3R)-AC yield by 29.91%. The recombinant strain with overexpression of SlaR, designated as S. marcescens MG15, was used to perform medium optimization for improving (3R)-AC production. Conclusion Under the optimized conditions, 39.91 ± 1.35 g/l (3R)-AC was produced by strain MG15 with the productivity of 1.11 g/l h and the conversion rate of 80.13%.
Collapse
Affiliation(s)
- Xin Lv
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237 China
| | - Lu Dai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237 China
| | - Fangmin Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237 China
| | - Zhanqing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237 China
| | - Liaoyuan Zhang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237 China
| |
Collapse
|
14
|
Zhang B, Li XL, Fu J, Li N, Wang Z, Tang YJ, Chen T. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. PLoS One 2016; 11:e0159298. [PMID: 27467131 PMCID: PMC4965033 DOI: 10.1371/journal.pone.0159298] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Glucose, xylose and arabinose are the three most abundant monosaccharide found in lignocellulosic biomass. Effectively and simultaneously utilization of these sugars by microorganisms for production of the biofuels and bio-chemicals is essential toward directly fermentation of the lignocellulosic biomass. In our previous study, the recombinant Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain was already shown to efficiently utilize xylose for production of acetoin, with a yield of 0.36 g/g xylose. In the current study, the Bacillus subtilis168ARSRCPΔacoAΔbdhA strain was further engineered to produce acetoin from a glucose, xylose, and arabinose mixtures. To accomplish this, the endogenous xylose transport protein AraE, the exogenous xylose isomerase gene xylA and the xylulokinase gene xylB from E. coli were co-overexpressed in the Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain, which enabled the resulting strain, denoted ZB02, to simultaneously utilize glucose and xylose. Unexpectedly, the ZB02 strain could simultaneously utilize glucose and arabinose also. Further results indicated that the transcriptional inhibition of the arabinose transport protein gene araE was the main limiting factor for arabinose utilization in the presence of glucose. Additionally, the arabinose operon in B. subtilis could be activated by the addition of arabinose, even in the presence of glucose. Through fed-batch fermentation, strain ZB02 could simultaneously utilize glucose, xylose, and arabinose, with an average sugar consumption rate of 3.00 g/l/h and an average production of 62.2 g/l acetoin at a rate of 0.864 g/l/h. Finally, the strain produced 11.2 g/l acetoin from lignocellulosic hydrolysate (containing 20.6g/l glucose, 12.1 g/l xylose and 0.45 g/l arabinose) in flask cultivation, with an acetoin yield of 0.34 g/g total sugar. The result demonstrates that this strain has good potential for the utilization of lignocellulosic hydrolysate for production of acetoin.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xin-li Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jing Fu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ning Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- * E-mail: (TC); (ZW)
| | - Ya-jie Tang
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
- * E-mail: (TC); (ZW)
| |
Collapse
|
15
|
Bao T, Zhang X, Zhao X, Rao Z, Yang T, Yang S. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Biotechnol J 2016; 10:1298-306. [PMID: 26129872 DOI: 10.1002/biot.201400577] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/30/2015] [Accepted: 06/26/2015] [Indexed: 01/07/2023]
Abstract
Bacillus subtilis produces acetoin as a major product along with several NADH-dependent byproducts, especially 2,3-butanediol. In this study, the down-regulation of the NADH pool and the redistribution of NADH/NADPH were targeted using external and genetic processes, as a means by which to redistribute the metabolic flux in favor of acetoin synthesis. First, it was found that the use of carbon sources of different oxidation states resulted in very different intracellular NADH/NAD(+) ratios that dictated the total process yield of acetoin. A mixture of glucose and gluconate as substrate produced a relatively low NADH/NAD(+) ratio, and resulted in an increase in acetoin production while byproducts significantly decreased. Metabolic engineering methods using glucose as a substrate could yield a similar effect. Acetoin production was significantly enhanced by overexpression of the oxidative pentose phosphate pathway: increased expression of glucose-6-phosphate dehydrogenase resulted in a decrease in the intracellular NADH/NADPH ratio (1.9-fold) and NADH/NAD(+) ratio (1.7-fold). In fed-batch culture the engineered strain yielded an acetoin concentration of 43.3 g L(-1) , while the production of 2,3-butanediol was only 1.7 g L(-1) . The concept of the manipulation of cofactor levels to redistribute carbon flux by external and genetic means as explored in this paper provides a novel strategy for improving industrial acetoin fermentation.
Collapse
Affiliation(s)
- Teng Bao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Zhao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shangtian Yang
- Department of Chemical Engineering, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Qiu Y, Zhang J, Li L, Wen Z, Nomura CT, Wu S, Chen S. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:117. [PMID: 27257436 PMCID: PMC4890260 DOI: 10.1186/s13068-016-0522-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/09/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND 2,3-Butanediol (2,3-BD) can be used as a liquid fuel additive to replace petroleum oil, and as an important platform chemical in the pharmaceutical and plastic industries. Microbial production of 2,3-BD by Bacillus licheniformis presents potential advantages due to its GRAS status, but previous attempts to use this microorganism as a chassis strain resulted in the production of a mix of D-2,3-BD and meso-2,3-BD isomers. RESULTS The aim of this work was to develop an engineered strain of B. licheniformis suited to produce the high titers of the pure meso-2,3-BD isomer. Glycerol dehydrogenase (Gdh) was identified as the catalyst for D-2,3-BD biosynthesis from its precursor acetoin in B. licheniformis. The gdh gene was, therefore, deleted from the wild-type strain WX-02 to inhibit the flux of acetoin to D-2,3-BD biosynthesis. The acoR gene involved in acetoin degradation through AoDH ES was also deleted to provide adequate flux from acetoin towards meso-2,3-BD. By re-directing the carbon flux distribution, the double-deletion mutant WX-02ΔgdhΔacoR produced 28.2 g/L of meso-2,3-BD isomer with >99 % purity. The titer was 50 % higher than that of the wide type. A bench-scale fermentation by the double-deletion mutant was developed to further improve meso-2,3-BD production. In a fed-batch fermentation, meso-2,3-BD titer reached 98.0 g/L with a purity of >99.0 % and a productivity of 0.94 g/L-h. CONCLUSIONS This work demonstrates the potential of producing meso-2,3-BD with high titer and purity through metabolic engineering of B. licheniformis.
Collapse
Affiliation(s)
- Yimin Qiu
- />Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
- />Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062 China
| | - Jinyan Zhang
- />State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lu Li
- />State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhiyou Wen
- />College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- />Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011 USA
| | - Christopher T. Nomura
- />Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
- />Department of Chemistry, The State University of New York College of Environmental Science and Forestry (SUNY ESF), Syracuse, NY 13210 USA
| | - Shuilin Wu
- />Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062 China
| | - Shouwen Chen
- />Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
17
|
Tian Y, Fan Y, Liu J, Zhao X, Chen W. Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2015.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Dashti MG, Abdeshahian P. Batch culture and repeated-batch culture of Cunninghamella bainieri 2A1 for lipid production as a comparative study. Saudi J Biol Sci 2015; 23:172-80. [PMID: 26980997 PMCID: PMC4778519 DOI: 10.1016/j.sjbs.2015.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 11/29/2022] Open
Abstract
This research was performed based on a comparative study on fungal lipid production by a locally isolated strain Cunninghamella bainieri 2A1 in batch culture and repeated-batch culture using a nitrogen-limited medium. Lipid production in the batch culture was conducted to study the effect of different agitation rates on the simultaneous consumption of ammonium tartrate and glucose sources. Lipid production in the repeated-batch culture was studied by considering the effect of harvesting time and harvesting volume of the culture broth on the lipid accumulation. The batch cultivation was carried out in a 500 ml Erlenmeyer flask containing 200 ml of the fresh nitrogen-limited medium. Microbial culture was incubated at 30 °C under different agitation rates of 120, 180 and 250 rpm for 120 h. The repeated-batch culture was performed at three harvesting times of 12, 24 and 48 h using four harvesting cultures of 60%, 70%, 80% and 90%. Experimental results revealed that nitrogen source (ammonium tartrate) was fully utilized by C. bainieri 2A1 within 24 h in all agitation rates tested. It was also observed that a high amount of glucose in culture medium was consumed by C. bainieri 2A1 at 250 rpm agitation speed during the batch fermentation. Similar results showed that the highest lipid concentration of 2.96 g/L was obtained at an agitation rate of 250 rpm at 120 h cultivation time with the maximum lipid productivity of 7.0 × 10(-2) mg/ml/h. On the other hand, experimental results showed that the highest lipid concentration produced in the repeated-batch culture was 3.30 g/L at the first cycle of 48 h harvesting time using 70% harvesting volume, while 0.23 g/L gamma-linolenic acid (GLA) was produced at the last cycle of 48 h harvesting time using 80% harvesting volume.
Collapse
Affiliation(s)
- Marjan Ganjali Dashti
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia (Universiti Kebangsaan Malaysia), 43600 Bangi, Selangor, Malaysia; Enteric Diseases Research Cluster, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Penang, Malaysia
| | - Peyman Abdeshahian
- Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor, Malaysia
| |
Collapse
|
19
|
|
20
|
Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS One 2014; 9:e102951. [PMID: 25036158 PMCID: PMC4103878 DOI: 10.1371/journal.pone.0102951] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/24/2014] [Indexed: 01/19/2023] Open
Abstract
Acetoin (3-hydroxy-2-butanone), an extensively-used food spice and bio-based platform chemical, is usually produced by chemical synthesis methods. With increasingly requirement of food security and environmental protection, bio-fermentation of acetoin by microorganisms has a great promising market. However, through metabolic engineering strategies, the mixed acid-butanediol fermentation metabolizes a certain portion of substrate to the by-products of organic acids such as lactic acid and acetic acid, which causes energy cost and increases the difficulty of product purification in downstream processes. In this work, due to the high efficiency of enzymatic reaction and excellent selectivity, a strategy for efficiently converting 2,3-butandiol to acetoin using whole-cell biocatalyst by engineered Bacillus subtilis is proposed. In this process, NAD+ plays a significant role on 2,3-butanediol and acetoin distribution, so the NADH oxidase and 2,3-butanediol dehydrogenase both from B. subtilis are co-expressed in B. subtilis 168 to construct an NAD+ regeneration system, which forces dramatic decrease of the intracellular NADH concentration (1.6 fold) and NADH/NAD+ ratio (2.2 fold). By optimization of the enzymatic reaction and applying repeated batch conversion, the whole-cell biocatalyst efficiently produced 91.8 g/L acetoin with a productivity of 2.30 g/(L·h), which was the highest record ever reported by biocatalysis. This work indicated that manipulation of the intracellular cofactor levels was more effective than the strategy of enhancing enzyme activity, and the bioprocess for NAD+ regeneration may also be a useful way for improving the productivity of NAD+-dependent chemistry-based products.
Collapse
|
21
|
Characterization of acetoin production in a budC gene disrupted mutant of Serratia marcescens G12. J Ind Microbiol Biotechnol 2014; 41:1267-74. [PMID: 24879481 DOI: 10.1007/s10295-014-1464-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
The 2,3-butanediol (2,3-BD) dehydrogenase gene budC of Serratia marcescens G12 was disrupted to construct the acetoin (AC) producing strain G12M. In shake-flask cultures, AC production was enhanced by increased concentrations of glucose or sodium acetate in G12M. In fed-batch fermentation, G12M produced 47.5 g/L AC along with 9.8 g/L 2,3-BD. The expression of the key enzymes for AC synthesis was further investigated. Alpha-acetolactate synthase gene budB decreased its expression significantly in G12M compared with G12. This probably explained the moderate AC production in G12M cultures. Additionally, overexpression of budB gene and α-acetolactate decarboxylase gene budA was conducted in G12M and no significant increase of AC was observed. The results suggested that intracellular AC accumulation might inhibit the expression of budB and budA gene and induce budC gene expression in G12M. Our analyses offered the bases for further genetic manipulations in improving AC production in microbial fermentations.
Collapse
|
22
|
Zhang X, Bao T, Rao Z, Yang T, Xu Z, Yang S, Li H. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS One 2014; 9:e91187. [PMID: 24608678 PMCID: PMC3946754 DOI: 10.1371/journal.pone.0091187] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
Acetoin reductase/2,3-butanediol dehydrogenase (AR/BDH), which catalyzes the interconversion between acetoin and 2,3-butanediol, plays an important role in distribution of the products pools. This work characterized the Bacillus subtilis AR/BDH for the first time. The enzyme showed very different pH preferences of pH 6.5 for reduction and pH 8.5 for oxidation. Based on these above results, a two-stage pH control strategy was optimized for acetoin production, in which the pH was controlled at 6.5 for quickly converting glucose to acetoin and 2,3-butanediol, and then 8.0 for reversely transforming 2,3-butanediol to acetoin. By over-expression of AR/BDH in the wild-type B. subtilis JNA 3-10 and applying fed-batch fermentation based on the two-stage pH control strategy, acetoin yield of B. subtilis was improved to a new record of 73.6 g/l, with the productivity of 0.77 g/(l·h). The molar yield of acetoin was improved from 57.5% to 83.5% and the ratio of acetoin/2,3-butanediol was switched from 2.7∶1 to 18.0∶1.
Collapse
Affiliation(s)
- Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Teng Bao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- * E-mail: (ZR); (HL)
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhenghong Xu
- School of Medicine and Pharmaceuticals, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Shangtian Yang
- Department of Chemical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Huazhong Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- * E-mail: (ZR); (HL)
| |
Collapse
|
23
|
Xiao Z, Lu JR. Strategies for enhancing fermentative production of acetoin: A review. Biotechnol Adv 2014; 32:492-503. [DOI: 10.1016/j.biotechadv.2014.01.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/30/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023]
|
24
|
The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng 2014; 23:34-41. [PMID: 24525333 DOI: 10.1016/j.ymben.2014.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/11/2014] [Accepted: 02/03/2014] [Indexed: 01/26/2023]
Abstract
Bacillus subtilis produces acetoin as a major extracellular product. However, the by-products of 2,3-butanediol, lactic acid and ethanol were accompanied in the NADH-dependent pathways. In this work, metabolic engineering strategies were proposed to redistribute the carbon flux to acetoin by manipulation the NADH levels. We first knocked out the acetoin reductase gene bdhA to block the main flux from acetoin to 2,3-butanediol. Then, among four putative candidates, we successfully screened an active water-forming NADH oxidase, YODC. Moderate-expression of YODC in the bdhA disrupted B. subtilis weakened the NADH-linked pathways to by-product pools of acetoin. Through these strategies, acetoin production was improved to 56.7g/l with an increase of 35.3%, while the production of 2,3-butanediol, lactic acid and ethanol were decreased by 92.3%, 70.1% and 75.0%, respectively, simultaneously the fermentation duration was decreased 1.7-fold. Acetoin productivity by B. subtilis was improved to 0.639g/(lh).
Collapse
|
25
|
Tian Y, Fan Y, Zhao X, Zhang J, Yang L, Liu J. OPTIMIZATION OF FERMENTATION MEDIUM FOR ACETOIN PRODUCTION BYBacillus subtilisSF4-3 USING STATISTICAL METHODS. Prep Biochem Biotechnol 2014; 44:529-43. [DOI: 10.1080/10826068.2013.835731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Zhang X, Zhang R, Bao T, Yang T, Xu M, Li H, Xu Z, Rao Z. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis. ACTA ACUST UNITED AC 2013; 40:1067-76. [DOI: 10.1007/s10295-013-1303-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
Abstract
Abstract
Acetoin, a major extracellular catabolic product of Bacillus subtilis cultured on glucose, is widely used to add flavor to food and also serves as a precursor for chemical synthesis. The biosynthesis of acetoin from pyruvate requires the enzymes α-acetolactate synthase (ALS) and α-acetolactate decarboxylase (ALDC), both of which are encoded by the alsSD operon. The transcriptional regulator ALsR is essential for the expression of alsSD. Here we focused on enhancing the production of acetoin by B. subtilis using different promoters to express ALsR. The expression of reporter genes was much higher under the control of the HpaII promoter than under control of the PbdhA promoter. Although the HpaII promoter highly enhanced transcription of the alsSD operon through overexpression of ALsR, the production of acetoin was not significantly increased. In contrast, moderate enhancement of ALsR expression using the PbdhA promoter significantly improved acetoin production. Compared with the wild-type, the enzyme activities of ALS and ALDC in B. subtilis harboring PbdhA were increased by approximately twofold, and the molar yield of acetoin from glucose was improved by 62.9 % in shake flask fermentation. In a 5-L fermentor, the engineered B. subtilis ultimately yielded 41.5 g/L of acetoin. Based on these results, we conclude that enhanced expression of ALDC and ALS by moderately elevated expression of the transcriptional regulator ALsR could increase acetoin production in recombinant B. subtilis.
Collapse
Affiliation(s)
- Xian Zhang
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Rongzhen Zhang
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Teng Bao
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Taowei Yang
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Meijuan Xu
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Huazhong Li
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Zhenghong Xu
- grid.258151.a 0000000107081323 School of Medicine and Pharmaceuticals Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
| | - Zhiming Rao
- grid.258151.a 0000000107081323 The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu People’s Republic of China
- grid.258151.a 0000000107081323 School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| |
Collapse
|
27
|
Zhang X, Zhang R, Yang T, Zhang J, Xu M, Li H, Xu Z, Rao Z. Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2,3-butanediol dehydrogenase. World J Microbiol Biotechnol 2013; 29:1783-9. [PMID: 23549901 DOI: 10.1007/s11274-013-1339-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Bacillus subtilis mutants were obtained after the wild strain JNA 3-10 was mutagenized by UV irradiation coupled with diethyl sulfate. A visual filter assay was employed for the qualitative identification of 2,3-butanediol dehydrogenase (BDH) blocked B. subtilis. Selected mutants were tested for the activities of acetoin reductase (AR) and BDH. According to further batch fermentation, one mutant named JNA-UD-6 that produced 24.3 % more acetoin than JNA 3-10 with the corresponding byproducts of 2,3-butanediol decreased by 39.8 % was isolated. A nonsense mutation (p.Tyr118X) that precluded the synthesis of a full-length functional AR/BDH within the bdhA gene of JNA-UD-6 was detected. Acetoin production of JNA-UD-6 was further improved to about 53.9 g/L in a 5-L fermentor with 150 g/L glucose consumed. However,a small amount of 2,3-butanediol was found in late phase of JNA-UD-6 fermentation, and it was due to the existence of a putative gene that encoding a minor AR. This work proved a strategy to efficiently breeding an acetoin high producing strain by traditional mutation methods.
Collapse
Affiliation(s)
- Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang Y, Li S, Liu L, Wu J. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. BIORESOURCE TECHNOLOGY 2013; 130:256-60. [PMID: 23306133 DOI: 10.1016/j.biortech.2012.10.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 05/12/2023]
Abstract
A new strain, FMME044, exhibited a remarkable ability to synthesize acetoin and was identified as Bacillus amyloliquefaciens. The following characteristics of enzyme activity were found: 2,3-butanediol was reverse transformed to acetoin upon depletion of glucose; lower agitation speeds favored 2,3-butanediol accumulation; and higher agitation speeds favored reverse transformation of 2,3-butanediol to acetoin. In order to enhance acetoin production by manipulating the carbon flux distribution, a two-stage agitation speed control strategy was proposed: during the first 24h, the agitation speed was set to 350rpm to achieve a high 2,3-butanediol concentration and then the speed was increased to 500rpm to reverse transform 2,3-butanediol to acetoin. Following this strategy, a high titer (51.2gL(-1)), yield (0.43gg(-1)), and productivity (1.42gL(-1)h(-1)) of acetoin were achieved. The results demonstrated that B. amyloliquefaciens FMME044 is a potential industrial strain for acetoin production.
Collapse
Affiliation(s)
- Yanjie Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu Province, China
| | | | | | | |
Collapse
|