1
|
Wang K, Yu S, Sun R, Xu K, Zhao X, Zhou J, Rao Y, Wang X. Biosynthesis of a Functional Fragment of Human Collagen II in Pichia pastoris. ACS Synth Biol 2024; 13:2567-2576. [PMID: 39092670 DOI: 10.1021/acssynbio.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Collagen II (COL2) is the major component of cartilage tissue and is widely applied in pharmaceuticals, food, and cosmetics. In this study, COL fragments were extracted from human COL2 for secretory expression in Pichia pastoris. Three variants were successfully secreted by shake flask cultivation with a yield of 73.3-100.7 mg/L. The three COL2 variants were shown to self-assemble into triple-helix at 4 °C and capable of forming higher order assembly of nanofiber and hydrogel. The bioactivities of the COL2 variants were validated, showing that sample 205 exhibited the best performance for inducing fibroblast differentiation and cell migration. Meanwhile, sample 205 and 209 exhibited higher capacity for inducing in vitro blood clotting than commercial mouse COL1. To overexpress sample 205, the expression cassettes were constructed with different promoters and signal peptides, and the fermentation condition was optimized, obtaining a yield of 172 mg/L for sample 205. Fed-batch fermentation was carried out using a 5 L bioreactor, and the secretory protease Pep4 was knocked out to avoid sample degradation, finally obtaining a yield of 3.04 g/L. Here, a bioactive COL2 fragment was successfully identified and can be overexpressed in P. pastoris; the variant may become a potential biomaterial for skin care.
Collapse
Affiliation(s)
- Kun Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shuyao Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruoxi Sun
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinyi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yijian Rao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Song X, Chu T, Shi W, He J. Expression, characterization, and application of human-like recombinant gelatin. BIORESOUR BIOPROCESS 2024; 11:69. [PMID: 39014092 PMCID: PMC11252100 DOI: 10.1186/s40643-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Gelatin is a product obtained through partial hydrolysis and thermal denaturation of collagen, belonging to natural biopeptides. With irreplaceable biological functions in the field of biomedical science and tissue engineering, it has been widely applied. The amino acid sequence of recombinant human-like gelatin was constructed through a newly designed hexamer composed of six protein monomer sequences in series, with the minimum repeating unit being the characteristic Gly-X-Y sequence found in type III human collagen α1 chain. The nucleotide sequence was subsequently inserted into the genome of Pichia pastoris to enable soluble secretion expression of recombinant gelatin. At the shake flask fermentation level, the yield of recombinant gelatin is up to 0.057 g/L, and its purity can rise up to 95% through affinity purification. It was confirmed in the molecular weight determination and amino acid analysis that the amino acid composition of the obtained recombinant gelatin is identical to that of the theoretically designed. Furthermore, scanning electron microscopy revealed that the freeze-dried recombinant gelatin hydrogel exhibited a porous structure. After culturing cells continuously within these gelatin microspheres for two days followed by fluorescence staining and observation through confocal laser scanning microscopy, it was observed that cells clustered together within the gelatin matrix, exhibiting three-dimensional growth characteristics while maintaining good viability. This research presents promising prospects for developing recombinant gelatin as a biomedical material.
Collapse
Affiliation(s)
- Xiaoping Song
- Department of Pharmacy, Anhui Medical College, Hefei, Anhui, 230061, China.
| | - Tao Chu
- Department of Pharmacy, Anhui Medical College, Hefei, Anhui, 230061, China
| | - Wanru Shi
- Department of Pharmacy, Anhui Medical College, Hefei, Anhui, 230061, China
| | - Jingyan He
- Department of Pharmacy, Anhui Medical College, Hefei, Anhui, 230061, China
- Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Hefei, Anhui, 230022, China
| |
Collapse
|
3
|
Yan L, Zhang Y, Zhang Y, Chen Q, Zhang L, Han X, Yang Y, Zhang C, Liu Y, Yu R. Preparation and characterization of a novel humanized collagen III with repeated fragments of Gly300-Asp329. Protein Expr Purif 2024; 219:106473. [PMID: 38508543 DOI: 10.1016/j.pep.2024.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Recombinant human collagens have attracted intensive interest in the past two decades, demonstrating considerable potential in medicine, tissue engineering, and cosmetics. Several humanized recombinant collagens have been produced, exhibiting similar characteristics as the native species. To get insight into the structural and bioactive properties of different parts of collagen, in this study, the segment of Gly300-Asp329 of type III collagen was first adopted and repeated 18 times to prepare a novel recombinant collagen (named rhCLA). RhCLA was successfully expressed in E. coli, and a convenient separation procedure was established through reasonably combining alkaline precipitation and acid precipitation, yielding crude rhCLA with a purity exceeding 90%. Additionally, a polishing purification step utilizing cation exchange chromatography was developed, achieving rhCLA purity surpassing 98% and an overall recovery of approximately 120 mg/L culture. Simultaneously, the contents of endotoxin, nucleic acids, and host proteins were reduced to extremely low levels. This fragmented type III collagen displayed a triple-helical structure and gel-forming capability at low temperatures. Distinct fibrous morphology was also observed through TEM analysis. In cell experiments, rhCLA exhibited excellent biocompatibility and cell adhesion properties. These results provide valuable insights for functional studies of type III collagen and a reference approach for the large-scale production of recombinant collagens.
Collapse
Affiliation(s)
- Lingying Yan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuxiang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiexin Chen
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Luyao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiao Han
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yumo Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Rong Yu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Zhao Z, Deng J, Fan D. Green biomanufacturing in recombinant collagen biosynthesis: trends and selection in various expression systems. Biomater Sci 2023; 11:5439-5461. [PMID: 37401335 DOI: 10.1039/d3bm00724c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Collagen, classically derived from animal tissue, is an all-important protein material widely used in biomedical materials, cosmetics, fodder, food, etc. The production of recombinant collagen through different biological expression systems using bioengineering techniques has attracted significant interest in consideration of increasing market demand and the process complexity of extraction. Green biomanufacturing of recombinant collagen has become one of the focus topics. While the bioproduction of recombinant collagens (type I, II, III, etc.) has been commercialized in recent years, the biosynthesis of recombinant collagen is extremely challenging due to protein immunogenicity, yield, degradation, and other issues. The rapid development of synthetic biology allows us to perform a heterologous expression of proteins in diverse expression systems, thus optimizing the production and bioactivities of recombinant collagen. This review describes the research progress in the bioproduction of recombinant collagen over the past two decades, focusing on different expression systems (prokaryotic organisms, yeasts, plants, insects, mammalian and human cells, etc.). We also discuss the challenges and future trends in developing market-competitive recombinant collagens.
Collapse
Affiliation(s)
- Zilong Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
5
|
Ma L, Liang X, Yu S, Zhou J. Expression, characterization, and application potentiality evaluation of recombinant human-like collagen in Pichia pastoris. BIORESOUR BIOPROCESS 2022; 9:119. [PMID: 38647896 PMCID: PMC10992492 DOI: 10.1186/s40643-022-00606-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Collagen is a biofunctional protein that has been widely used in many fields, including but not limited to biomedical, cosmetics and skin care, food, and novel materials. Recombinant collagen has great potential as an alternative to collagen extracted from animals because it avoids the immune response, and the yield and properties are stable. However, challenges remain in the industrial application of recombinant collagen, including improving the expression yield, reducing the cost of purification for industry and expanding applications. In this study, a cloning and recombination method was used to heterologously express the recombinant human-like collagen (RHLC) in Pichia pastoris GS115 using the pPIC9k expression vector. The RHLC expression titre was 2.33 g/L via a 5-L fermenter, and the purification was completed within 48 h and was 98% pure. The characteristics of RHLC were investigated. Furthermore, potential applications for RHLC were explored, such as basal collagen sponge preparation, forming films with chitosan and production of collagen hydrolysed peptides. RHLC has various potential applications due to its triple helical structure, thermostability, good biocompatibility and film-forming ability.
Collapse
Affiliation(s)
- Lingling Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiaolin Liang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Xiang ZX, Gong JS, Shi JH, Liu CF, Li H, Su C, Jiang M, Xu ZH, Shi JS. High-efficiency secretory expression and characterization of the recombinant type III human-like collagen in Pichia pastoris. BIORESOUR BIOPROCESS 2022; 9:117. [PMID: 38647563 PMCID: PMC10992891 DOI: 10.1186/s40643-022-00605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Collagen, the highest content protein in the body, has irreplaceable biological functions, and it is widespread concerned in food, beauty, and medicine with great market demand. The gene encoding the recombinant type III human-like collagen α1 chain fragment was integrated into P. pastoris genome after partial amino acids were substituted. Combined with promoter engineering and high-density fermentation technology, soluble secretory expression with the highest yield of 1.05 g L-1 was achieved using two-stage feeding method, and the purity could reach 96% after affinity purification. The determination of N/C-terminal protein sequence were consistent with the theoretical expectation and showed the characteristics of Gly-X-Y repeated short peptide sequence. In amino acid analysis, glycine shared 27.02% and proline 23.92%, which were in accordance with the characteristics of collagen. Ultraviolet spectrum combined with Fourier transform infrared spectroscopy as well as mass spectrometry demonstrated that the target product conformed to the characteristics of collagen spectrums and existed as homologous dimer and trimer in the broth. This work provided a sustainable and economically viable source of the recombinant type III human-like collagen.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.
| | - Jin-Hao Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Chun-Fang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| |
Collapse
|
7
|
Liu S, Li Y, Wang M, Ma Y, Wang J. Efficient co-expression of recombinant human fusion collagen with prolyl 4-hydroxylase from Bacillus anthracis in Escherichia coli. Biotechnol Appl Biochem 2022; 70:761-772. [PMID: 35959739 DOI: 10.1002/bab.2396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 11/09/2022]
Abstract
Collagen family members, the most abundant proteins in the human body, are widely used in biomedical fields and tissue engineering industries. However, the applications of collagen remain mostly relying on material derived from native tissues due to its extremely complex post-translational modifications like proline hydroxylation, which hinder the large-scale exogenous production of collagen. In the current study, we propose a novel prolyl hydroxylated recombinant human fusion collagen containing multiple native cell-interaction sites derived from human type Ⅰ and Ⅲ collagen with good biocompatibility and thermal stability. To obtain prolyl hydroxylated collagen, prolyl 4-hydroxylases from Bacillus anthracis, Arabidopsis thaliana, and Dactylosporangium sp. RH1 were co-expressed with collagen in Escherichia coli (E. coli), respectively. Among of which, prolyl 4-hydroxylase (P4H) from Bacillus anthracis showed the highest hydroxyl rate with 63.6%. Furthermore, a yield of hydroxylated collagen at 0.8 g/L was achieved by fed-batch fermentation in a 5 L fermenter with the productivity of 0.0267 g·L-1 ·h-1 . Compared with non-hydroxylated recombinant collagen, hydroxylated recombinant collagen showed significant improvements in thermal stability and biocompatibility. Taken this together, our studies provide a promising method for further development of collagen application in biomaterials engineering. A novel recombinant human fusion collagen with multiple motifs derived from both human type I and Ⅲ collagen exhibits good biocompatibility and thermal stability as higher molecular weight of ∼120kDa. By co-expression recombinant collagen and P4H genes in Escherichia coli, the maximum hyp in the recombinant collagen reached 63.6%, and a yield of hydroxylated collagen at 0.8 g/L was achieved by fed-batch fermentation in a 5 L fermenter. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Su Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Meng Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.,Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.,Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Xiang ZX, Gong JS, Li H, Shi WT, Jiang M, Xu ZH, Shi JS. Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34907819 DOI: 10.1080/10408398.2021.2016599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a kind of high macromolecular protein with unique tissue distribution and distinctive functions in the body. At present, most collagen products are extracted from the tissues and organs of mammals or marine fish. However, this method exhibits several disadvantages, including low efficiency and serious waste generation, which makes it difficult to meet the current market demand. With the rapid development of synthetic biology and the deepening of high-density fermentation technology, the collagen preparation by biosynthesis strategy emerges as the times require. Co-expression with the proline hydroxylase gene can solve the problem of non-hydroxylated collagen, but the yield may be affected. Therefore, improving the expression through molecular modification and dynamic regulation of synthesis is an entry point for future research. Due to the defects in certain properties of the natural collagen, modification of properties would be benefit for meeting the requirements of practical application. In this paper, in-depth investigations on recombinant expression, fermentation, and modification studies of collagen are conducted. Also, it summarizes the research progress of collagen in food, medicine, and beauty industry in recent years. Furthermore, the future development trend and application prospect of collagen are discussed, which would provide guidance for its preparation and application.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Wei-Ting Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, PR China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| |
Collapse
|
9
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
10
|
Merrett K, Wan F, Lee CJ, Harden JL. Enhanced Collagen-like Protein for Facile Biomaterial Fabrication. ACS Biomater Sci Eng 2021; 7:1414-1427. [PMID: 33733733 DOI: 10.1021/acsbiomaterials.1c00069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a collagen-mimetic protein of bacterial origin based upon a modified subdomain of the collagen-like Sc12 protein from Streptococcus pyogenes, as an alternative collagen-like biomaterial platform that is highly soluble, forms stable, homogeneous, fluid-like solutions at elevated concentrations, and that can be efficiently fabricated into hydrogel materials over a broad range of pH conditions. This extended bacterial collagen-like (eBCL) protein is expressed in a bacterial host and purified as a trimeric assembly exhibiting a triple helical secondary structure in its collagen-like subdomain that is stable near physiological solution conditions (neutral pH and 37 °C), as well as over a broad range of pH conditions. We also show how this sequence can be modified to include biofunctional attributes, in particular, the Arg-Gly-Asp (RGD) sequence to elicit integrin-specific cell binding, without loss of structural function. Furthermore, through the use of EDC-NHS chemistry, we demonstrate that members of this eBCL protein system can be covalently cross-linked to fabricate transparent hydrogels with high protein concentrations (at least to 20% w/w). These hydrogels are shown to possess material properties and resistance to enzymatic degradation that are comparable or superior to a type I collagen control. Moreover, such hydrogels containing the constructs with the RGD integrin-binding sequence are shown to promote the adhesion, spreading, and proliferation of C2C12 and 3T3 cells in vitro. Due to its enhanced solubility, structural stability, fluidity at elevated concentrations, ease of modification, and facility of cross-linking, this eBCL collagen-mimetic system has potential for numerous biomedical material applications, where the ease of processing and fabrication and the facility to tailor the sequence for specific biological functionality are desired.
Collapse
Affiliation(s)
- Kim Merrett
- Department of Physics, University of Ottawa, Ontario K1N 6N5, Canada
| | - Fan Wan
- Department of Physics, University of Ottawa, Ontario K1N 6N5, Canada
| | - Chyan-Jang Lee
- Department of Physics, University of Ottawa, Ontario K1N 6N5, Canada
| | - James L Harden
- Department of Physics, University of Ottawa, Ontario K1N 6N5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ontario K1H 8M5, Canada.,Centre for Advanced Materials Research, University of Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
11
|
Chen Z, Fan D, Shang L. Exploring the potential of the recombinant human collagens for biomedical and clinical applications: a short review. ACTA ACUST UNITED AC 2020; 16:012001. [PMID: 32679570 DOI: 10.1088/1748-605x/aba6fa] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural animal collagen and its recombinant collagen are favourable replacements in human tissue engineering due to their remarkable biomedical property. However, this exploitation is largely restricted due to the potential of immunogenicity and virus contamination. Exploring new ways to produce human collagen is fundamental to its biomedical and clinical application. All human fibrillar collagen molecules have three polypeptide chains constructed from a repeating Gly-Xaa-Yaa triplet, where Xaa and Yaa represent one random amino acid. Using cDNA techniques to modify several repeat sequences of the cDNA fragment, a novel human collagen, named recombinant human-like collagen (rHLC), with low immunogenicity and little risk from hidden virus can be engineered and notably tailored to specific applications. Human-like collagen (HLC) was initially used as a coating to modify the tissue engineering scaffold, and then used as the scaffold after cross-link agents were added to increase its mechanical strength. Due to its good biocompatibility, low immunogenicity, stabilised property, and the ability of mass production, HLC has been widely used in skin injury treatments, vascular scaffolds engineering, cartilage, bone defect repair, skincare, haemostatic sponge, and drug delivery, including coating with medical nanoparticles. In this review, we symmetrically reviewed the development, recent advances in design and application of HLC, and other recombinant human collagen-based biomedicine potentials. At the end, future improvements are also discussed.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China. Shaanxi Key Laboratory of Degradable Biomedical Materials; Shaanxi R&D Center of Biomaterial and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China
| | | | | |
Collapse
|
12
|
Mi Y, Gao Y, Fan D, Duan Z, Fu R, Liang L, Xue W, Wang S. Stability improvement of human collagen α1(I) chain using insulin as a fusion partner. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|