1
|
Fang J, Xiao C, Qi Y, Hong W, Wang M. Influence of pancreaticoduodenectomy for periampullary carcinoma on intestinal microbiome and metabolites. Heliyon 2024; 10:e24393. [PMID: 38304782 PMCID: PMC10831615 DOI: 10.1016/j.heliyon.2024.e24393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Recent growing evidence suggests a role for intestinal microbiome and metabolites in patients' postoperative recovery. Therefore, there is a need to gain insight into the impact of pancreaticoduodenectomy for periampullary carcinoma on microbiome and metabolites and the potential impact of their changes on patients' condition. Based on 16S rDNA gene sequencing and untargeted metabolomic analysis, we found that the diversity and abundance of intestinal microbiome were significantly higher in patients preoperatively than postoperatively, and the level of intestinal probiotics was significantly lower after surgery compared with preoperatively. In addition, the choline metabolism level was increased and the amino acid metabolism level was decreased after surgery. A total of 53 differential microbiome and 52 differential metabolites were detected, and the differential metabolites were mapped to approximately 60 different KEGG metabolic pathways, of which 13 KEGG metabolic pathways had a differential metabolite number greater than 5. A total of 88 colony-metabolite pairs with significant positive correlation and 69 colony-metabolite pairs with significant negative correlation were identified. Our results reveal alterations in intestinal microbiome after pancreaticoduodenectomy, suggesting its association with postoperative complications. Moreover, the elevated choline metabolism level in postoperative patients may predict their poorer prognosis. At the same time, the decreased abundance of such probiotic bacteria as Prevotella spp. in the postoperative intestine of patients will affect the amino acid metabolism of the organism to some extent.
Collapse
Affiliation(s)
| | | | - Yafeng Qi
- Department of General Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, Fujian, 350000, China
| | - Weixuan Hong
- Department of General Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, Fujian, 350000, China
| | - Meiping Wang
- Department of General Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, Fujian, 350000, China
| |
Collapse
|
2
|
Feng P, Xue X, Bukhari I, Qiu C, Li Y, Zheng P, Mi Y. Gut microbiota and its therapeutic implications in tumor microenvironment interactions. Front Microbiol 2024; 15:1287077. [PMID: 38322318 PMCID: PMC10844568 DOI: 10.3389/fmicb.2024.1287077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its tumor microenvironment (TME) also coevolves with it, which is primarily involved in tumor initiation, development, metastasis, and therapeutic responses. Recent years, TME has been emerged as a potential target for cancer diagnosis and treatment. However, the clinical efficacy of treatments targeting the TME, especially its specific components, remains insufficient. In parallel, the gut microbiome is an essential TME component that is crucial in cancer immunotherapy. Thus, assessing and constructing frameworks between the gut microbiota and the TME can significantly enhance the exploration of effective treatment strategies for various tumors. In this review the role of the gut microbiota in human cancers, including its function and relationship with various tumors was summarized. In addition, the interaction between the gut microbiota and the TME as well as its potential applications in cancer therapeutics was described. Furthermore, it was summarized that fecal microbiota transplantation, dietary adjustments, and synthetic biology to introduce gut microbiota-based medical technologies for cancer treatment. This review provides a comprehensive summary for uncovering the mechanism underlying the effects of the gut microbiota on the TME and lays a foundation for the development of personalized medicine in further studies.
Collapse
Affiliation(s)
- Pengya Feng
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Children Rehabilitation Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xia Xue
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ihtisham Bukhari
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunjing Qiu
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Li
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Kong C, Duan C, Zhang Y, Wang Y, Yan Z, Zhou S. Non-starch polysaccharides from kidney beans: comprehensive insight into their extraction, structure and physicochemical and nutritional properties. Food Funct 2024; 15:62-78. [PMID: 38063031 DOI: 10.1039/d3fo03801g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Kidney beans (Phaseolus vulgaris L.) are an important legume source of carbohydrates, proteins, and bioactive molecules and thus have attracted increasing attention for their high nutritional value and sustainability. Non-starch polysaccharides (NSPs) in kidney beans account for a high proportion and have a significant impact on their biological functions. Herein, we critically update the information on kidney bean varieties and factors that influence the physicochemical properties of carbohydrates, proteins, and phenolic compounds. Furthermore, their extraction methods, structural characteristics, and health regulatory effects, such as the regulation of intestinal health and anti-obesity and anti-diabetic effects, are also summarized. This review will provide suggestions for further investigation of the structure of kidney bean NSPs, their relationships with biological functions, and the development of NSPs as novel plant carbohydrate resources.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Caiping Duan
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yixuan Zhang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yiying Wang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zheng Yan
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China.
| | - Sumei Zhou
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
4
|
Chen M, Yao H, Tan H, Huang W, Wu Q, Nie S. Impact of Bifidobacterium longum NSP001 on DSS-induced colitis in conventional and humanised mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Zhao X, Kong M, Wang Y, Mao Y, Xu H, He W, He Y, Gu J. Nicotinamide mononucleotide improves the Alzheimer's disease by regulating intestinal microbiota. Biochem Biophys Res Commun 2023; 670:27-35. [PMID: 37271037 DOI: 10.1016/j.bbrc.2023.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease, and the intestinal flora and its metabolites play an important role in the amelioration of central nervous system (CNS) disorders such as AD through a bidirectional interaction between the gut-brain axis (GBA). Nicotinamide mononucleotide (NMN), one of the precursors for nicotinamide adenine dinucleotide (NAD+) synthesis, reduces the brain features of AD, including neuroinflammation, mitochondrial abnormalities, synaptic dysfunction, and cognitive impairment. However, the impact of NMN on the gut flora of AD is still unknown. In the current study, we investigated the relationship between gut flora and NMN treatment in APP/PS1 transgenic (AD) mice through the 16S ribosomal RNA (rRNA) high-throughput sequencing analysis of mouse feces after being treated with NMN for 16 weeks. The results show that the NMN significantly changed the intestinal microbial community composition in AD mice. The NMN also increased the relative abundance of short-chain fatty acids (SCFAs)-producing bacteria such as Lactobacillus and Bacteroides at the genus level by protecting intestinal health and improving AD. The overall results suggest novel therapeutic strategies for treating AD and highlight the critical role of gut microbiota in AD pathology, and layout the further research.
Collapse
Affiliation(s)
- Xiaodong Zhao
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Mengmeng Kong
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Yilin Wang
- College of Life Science, University of Jilin, Changchun, 130015, China.
| | - Yingxin Mao
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Huilian Xu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Wenxing He
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Yan He
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, 250014, China.
| | - Jinsong Gu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
6
|
Cheng X, Zhou T, He Y, Xie Y, Xu Y, Huang W. The role and mechanism of butyrate in the prevention and treatment of diabetic kidney disease. Front Microbiol 2022; 13:961536. [PMID: 36016798 PMCID: PMC9396028 DOI: 10.3389/fmicb.2022.961536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of the end-stage renal disease and is a major burden on the healthcare system. The current understanding of the mechanisms responsible for the progression of DKD recognizes the involvement of oxidative stress, low-grade inflammation, and fibrosis. Several circulating metabolites that are the end products of the fermentation process, released by the gut microbiota, are known to be associated with systemic immune-inflammatory responses and kidney injury. This phenomenon has been recognized as the “gut–kidney axis.” Butyrate is produced predominantly by gut microbiota fermentation of dietary fiber and undigested carbohydrates. In addition to its important role as a fuel for colonic epithelial cells, butyrate has been demonstrated to ameliorate obesity, diabetes, and kidney diseases via G-protein coupled receptors (GPCRs). It also acts as an epigenetic regulator by inhibiting histone deacetylase (HDAC), up-regulation of miRNAs, or induction of the histone butyrylation and autophagy processes. This review aims to outline the existing literature on the treatment of DKD by butyrate in animal models and cell culture experiments, and to explore the protective effects of butyrate on DKD and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Tingting Zhou,
| | - Yanqiu He
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yumei Xie
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- *Correspondence: Yong Xu,
| | - Wei Huang
- Department of Endocrinology and Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- Wei Huang,
| |
Collapse
|
7
|
Bigman G, Adebamowo SN, Yawe KDT, Yilkudi M, Olaomi O, Badejo O, Famooto A, Ezeome E, Salu IK, Miner E, Anosike I, Achusi B, Adebamowo C. A matched case-control study of bean intake and breast cancer risk in urbanized Nigerian women. Cancer Causes Control 2022; 33:959-969. [PMID: 35511324 DOI: 10.1007/s10552-022-01584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Bean intake has been associated with reduced risk of breast cancer, however; only a few studies considered molecular subtypes status and none in African women living in Sub-Saharan Africa (SSA). Therefore, the purpose of this study was to examine the associations between dietary intake of beans and breast cancer including its subtypes in Nigerian women. METHODS Overall, 472 newly diagnosed patients with primary invasive breast cancer were age-matched (± 5 years) with 472 controls from the Nigerian Integrative Epidemiology of Breast Cancer (NIBBLE) Study from 01/2014 to 07/2016. We collected the dietary intake of beans using a food frequency questionnaire (FFQ). Beans_alone intake was categorized into three levels never (never in the past year), low (≤ 1 portion/week), and high intake (> 1 portion/week). We used conditional and unconditional logistic regression models to estimate the Odds Ratio (OR) and 95% Confidence Intervals (CI) of beans_alone intake and the risk of breast cancer and by its molecular subtypes, respectively. RESULTS The mean (SD) age of cases was 44.4(10.0) and of controls was 43.5(9.5) years. In the case group, more than half (51.1%) have never consumed beans_alone in the past year compared to 39.0% in the control group. The multivariable models showed inverse associations between beans_alone (high vs. none) and breast cancer (OR = 0.55; 95%CI: 0.36-0.86, p-trend = 0.03), triple-negative (OR = 0.51 95%CI: 0.28-0.95, p-trend = 0.02) and marginally associated with hormone receptor-positive (OR = 0.53, 95%CI: 0.29-0.96, p-trend = 0.06). CONCLUSION Dietary intake of beans_alone may play a significant role in reducing the incidence of breast cancer, particularly of the more aggressive molecular subtype, triple-negative, in African women living in SSA.
Collapse
Affiliation(s)
- Galya Bigman
- Division of Epidemiology and Prevention, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Sally N Adebamowo
- Department of Epidemiology and Public Health and Marlene and Stewart Greenbaum, Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, USA
| | | | - Monday Yilkudi
- University of Abuja Teaching Hospital, Gwagwalada, Nigeria
| | | | | | - Ayo Famooto
- African Collaborative Center for Microbiome and Genomics Research (ACCME) Biorepository and Research Laboratory, Institute of Human Virology, Abuja, Nigeria
| | | | | | | | | | | | - Clement Adebamowo
- Department of Epidemiology and Public Health and Marlene and Stewart Greenbaum, Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, USA. .,African Collaborative Center for Microbiome and Genomics Research (ACCME) Biorepository and Research Laboratory, Institute of Human Virology, Abuja, Nigeria.
| |
Collapse
|
8
|
Chen L, Yang M, Zhu W, Su Y, Li D, Wang T. Multi-Omics Analysis After Vaginal Administration of Bacteroides fragilis in Chickens. Front Microbiol 2022; 13:846011. [PMID: 35250960 PMCID: PMC8888936 DOI: 10.3389/fmicb.2022.846011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
The reproductive tract of chickens is an important organ for egg formation. The vagina is in close contact with the external environment, which may lead to the invasion of a variety of pathogenic bacteria, affect the internal and external quality of eggs, and even increase mortality and cause economic loss. In recent years, probiotics as a substitute for antibiotics have brought economic benefits in livestock and poultry production. In the present study, we investigated the effects of vaginal administration of Bacteroides fragilis on the cloacal microbiota, vaginal transcriptome and metabolomics of chickens and evaluated the beneficial potential of B. fragilis. The results showed that B. fragilis treatment could affect the microbial composition of the cloaca. Transcriptome analysis found that the immune-related genes CCN3, HAS2, and RICTOR were upregulated, that the inflammatory genes EDNRB, TOX, and NKX2-3 were downregulated, and that DEGs were also enriched in the regulation of the inflammatory response, cellular metabolism, and synaptic response pathways. In addition, the differential metabolites were mainly related to steroid hormone biosynthesis, unsaturated fatty acid biosynthesis, and arachidonic acid metabolism, and we identified associations between specific differential metabolites and genes. Overall, this study provides a theoretical basis for the application of B. fragilis as a potential probiotic in livestock and poultry production.
Collapse
Affiliation(s)
- Lu Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Maosen Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yuan Su
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
9
|
Wang C, Xiao Y, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Protective effects of different Bacteroides vulgatus strains against lipopolysaccharide-induced acute intestinal injury, and their underlying functional genes. J Adv Res 2022; 36:27-37. [PMID: 35127162 PMCID: PMC8799915 DOI: 10.1016/j.jare.2021.06.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022] Open
Abstract
Different Bacteroides vulgatus strains have varying effects on inflammatory diseases. B. vulgatus FTJS7K1 was screened due to its role in alleviating inflammation. B. vulgatus FTJS7K1 can modulate gut microbial community. B. vulgatus FTJS7K1 can regulate the levels of related cytokines. The genes about SCFAs secretion are responsible for the anti-inflammatory effect.
Introduction The roles of Bacteroides species in alleviating inflammation and intestinal injury has been widely demonstrated, but few studies have focused on the roles of Bacteroides vulgatus. Objectives In this study, four B. vulgatus strains were selected, based on their genomic characteristics, to assess their ability to alleviate lipopolysaccharide (LPS)-induced acute intestinal injury in C57BL/6J mice. Methods Alterations in the intestinal microbiota, intestinal epithelial permeability, cytokine level, short-chain fatty acid (SCFA) concentration, and immune responses were investigated following LPS-induced acute intestinal injury in C57BL/6J mice. Results Severe histological damage and a significant change in cytokine expression was observed in the mouse colon tissues 24 h after LPS administration. Oral administration of different B. vulgatus strains showed different effects on the assessed parameters of the mice; particularly, only the administration of B. vulgatus FTJS7K1 was able to protect the architectural integrity of the intestinal epithelium. B. vulgatus FTJS7K1 also negated the LPS-induced changes in cytokine mRNA expression in the colon tissues, and in the proportion of regulatory T cells in the mesenteric lymph node. Compared with the LPS group, the B. vulgatus FTJS7K1 group showed significantly increased abundance of Lactobacillus, Akkermansia, and Bifidobacterium, and decreased abundance of Faecalibaculum. The B. vulgatus FTJS7K1 group also showed significantly increased concentration of SCFAs in fecal samples. The results of genomic analysis showed that these protective roles of B. vulgatus FTJS7K1 may be mediated through specific genes associated with defense mechanisms and metabolism (e.g., the secretion of SCFAs). Conclusions Our findings suggest that the protective role of B. vulgatus FTJS7K1 appear to be via modulation of cytokine production in the colon tissue and regulation of the structure of the gut microbiota. These results provide support for the screening of the Bacteroides genus for next-generation probiotics.
Collapse
|
10
|
Sun P, Yang J, Wang B, Ma H, Zhang Y, Guo J, Chen X, Zhao J, Sun H, Yang J, Yang H, Cui Y. The effects of combined environmental factors on the intestinal flora of mice based on ground simulation experiments. Sci Rep 2021; 11:11373. [PMID: 34059794 PMCID: PMC8166921 DOI: 10.1038/s41598-021-91077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/17/2021] [Indexed: 11/09/2022] Open
Abstract
The composition and function of intestinal microbial communities are important for human health. However, these intestinal floras are sensitive to changes in the environment. Adverse changes to intestinal flora can affect the health of astronauts, resulting in difficulties in implementing space missions. We randomly divided mice into three groups and placed each group in either a normal environment, simulated microgravity environment or a combined effects environment, which included simulated microgravity, low pressure and noise. Fecal samples of the mice were collected for follow-up analysis based on metagenomics technology. With the influence of different space environmental factors, the species composition at the phylum and genus levels were significantly affected by the combined effects environment, especially the abundance of the Firmicutes and Bacteroidetes. Furthermore, screening was conducted to identify biomarkers that could be regarded as environmental markers. And there have also been some noticeable changes in the function of intestinal floras. Moreover, the abundance of antibiotic resistance genes (ARGs) was also found to be changed under different environmental conditions, such as bacitracin and vancomycin. The combined effects environment could significantly affect the species composition, function, and the expression of ARGs of intestinal flora of mice which may provide a theoretical basis for space medical supervision and healthcare.
Collapse
Affiliation(s)
- Peiming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China
| | - Jiaqi Yang
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China
- Department of General Surgery, The 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Chaoyang District, Beijing, 100101, China
| | - Bo Wang
- China Astronaut Research and Training Center, Haidian District, Beijing, 100094, China
| | - Huan Ma
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Haizhu District, Guangzhou, 510006, China
| | - Yin Zhang
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Haizhu District, Guangzhou, 510006, China
| | - Jinhu Guo
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Haizhu District, Guangzhou, 510006, China
| | - Xiaoping Chen
- China Astronaut Research and Training Center, Haidian District, Beijing, 100094, China
| | - Jianwei Zhao
- China Astronaut Research and Training Center, Haidian District, Beijing, 100094, China
| | - Hongwei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China
| | - Jianwu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China
| | - Heming Yang
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China.
| | - Yan Cui
- Department of General Surgery, Strategic Support Force Medical Center, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
11
|
Abstract
The functional diversity of the mammalian intestinal microbiome far exceeds that of the host organism, and microbial genes contribute substantially to the well-being of the host. However, beneficial gut organisms can also be pathogenic when present in the gut or other locations in the body. Among dominant beneficial bacteria are several species of Bacteroides, which metabolize polysaccharides and oligosaccharides, providing nutrition and vitamins to the host and other intestinal microbial residents. These topics and the specific organismal and molecular interactions that are known to be responsible for the beneficial and detrimental effects of Bacteroides species in humans comprise the focus of this review. The complexity of these interactions will be revealed.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, USA
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara,Okara, PunjabPakistan
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, USA
| |
Collapse
|
12
|
Wang C, Zhao J, Zhang H, Lee YK, Zhai Q, Chen W. Roles of intestinal bacteroides in human health and diseases. Crit Rev Food Sci Nutr 2020; 61:3518-3536. [PMID: 32757948 DOI: 10.1080/10408398.2020.1802695] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteroides, an abundant genus in the intestines of mammals, has been recently considered as the next generation probiotics (NGP) candidate due to its potential role in promoting host health. However, the role of Bacteroides in the development of intestinal dysfunctions such as diarrhea, inflammatory bowel disease, and colorectal cancer should not be overlooked. In the present study, we focused on nine most widely occurred and abundant Bacteroides species and discussed their roles in host immunity, glucose and lipid metabolism and the prevention or induction of diseases. Besides, we also discussed the current methods used in the safety evaluation of Bacteroides species and key opinions about the concerns of these strains for the future use.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Research Institute, Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
13
|
Teixeira-Guedes C, Sánchez-Moya T, Pereira-Wilson C, Ros-Berruezo G, López-Nicolás R. In Vitro Modulation of Gut Microbiota and Metabolism by Cooked Cowpea and Black Bean. Foods 2020; 9:foods9070861. [PMID: 32630276 PMCID: PMC7404724 DOI: 10.3390/foods9070861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Legumes are a rich source of a wide range of compounds that may represent an important tool to overcome gut dysbiosis. In this work, the prebiotic potential of two cooked legumes (cowpea and black bean) was investigated in comparison with potato:beef mixture, as substrates in batch faecal culture fermentation. Prior to the fermentation, all the samples were in vitro digested, passing through three phases, namely mouth, gastric and small intestine simulation, and then in vitro fermented for 6, 24 and 48 h. The shift of pH, production of gas and short-chain fatty acids (SCFAs) and changes in gut microbiota were evaluated along the fermentation time. The pH decreased significantly over time in all media with fermentable sources when compared with the negative control. Gas production was higher in the media containing fermentable source than in the negative control and decreased with fermentation time. The concentration of SCFAs increased over time and it was significantly higher for both legumes than in inulin (positive control) and potato:beef meal. Acetate was the major SCFAs produced during fermentation, particularly in media containing legumes. Both legumes presented a strong prebiotic effect on gut microbiota, showing a significant increase in Bifidobacterium and Lactobacillus. These results suggest that consumption of cooked cowpea and black bean, used alone or as an ingredient of novel functional foods, may contribute to improving intestinal health and therefore human health promotion.
Collapse
Affiliation(s)
- Catarina Teixeira-Guedes
- Department of Biology, University of Minho, 4710-057 Braga, Portugal; (C.T.-G.); (C.P.-W.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Tereza Sánchez-Moya
- Department of Food Science and Human Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (T.S.-M.); (G.R.-B.)
| | - Cristina Pereira-Wilson
- Department of Biology, University of Minho, 4710-057 Braga, Portugal; (C.T.-G.); (C.P.-W.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Gaspar Ros-Berruezo
- Department of Food Science and Human Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (T.S.-M.); (G.R.-B.)
| | - Rubén López-Nicolás
- Department of Food Science and Human Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (T.S.-M.); (G.R.-B.)
- Correspondence:
| |
Collapse
|
14
|
Liu W, Zhou Y, Qin Y, Li Y, Yu L, Li R, Chen Y, Xu Y. Sex-Dependent Effects of PM 2.5 Maternal Exposure and Quercetin Intervention on Offspring's Short Chain Fatty Acids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4371. [PMID: 31717430 PMCID: PMC6887967 DOI: 10.3390/ijerph16224371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022]
Abstract
Short chain fatty acids (SCFAs) are produced by the colonic microbiota through fermentation. Influences of maternal PM2.5 exposure on SCFAs of the offspring have not been well understood. Additionally, studies of dietary intervention have not been carried out yet. Here we performed a study that dams were received PM2.5 and quercetin intervention during gestation and lactation. SCFAs in colon of dams and their offspring (on postnatal day 21 and 35) were analyzed using gas chromatography. For male offspring, when compared with the control group levels of acetic acid, butyric acid, and valeric acid were lower in the PM2.5 group (p < 0.05), however, levels of isobutyric acid and isovaleric acid were higher in the PM2.5 group (p < 0.05). For female offspring, as compared with the control group, propanoic acid was lower in the PM2.5 group, however isovaleric acid was higher in the PM2.5 group (p < 0.05). 100 mg/kg and 200 mg/kg quercetin intervention could inhibit SCFAs production of male offspring, especially in isobutyric acid and isovaleric acid (p < 0.05). 100 mg/kg quercetin intervention could upgrade the level of propanoic acid of female offspring (p < 0.05). Taken together, these results suggest that PM2.5 tracheal exposure during gestation and lactation could influence SCFAs of offspring. Quercetin administration might have the potential to offset the effects of mater PM2.5 exposure on SCFAs in the offspring to some extent. The above effects were showed in a sex-dependent manner.
Collapse
Affiliation(s)
- Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (W.L.); (Y.Z.); (Y.Q.); (Y.L.); (L.Y.); (R.L.); (Y.C.)
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (W.L.); (Y.Z.); (Y.Q.); (Y.L.); (L.Y.); (R.L.); (Y.C.)
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (W.L.); (Y.Z.); (Y.Q.); (Y.L.); (L.Y.); (R.L.); (Y.C.)
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (W.L.); (Y.Z.); (Y.Q.); (Y.L.); (L.Y.); (R.L.); (Y.C.)
| | - Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (W.L.); (Y.Z.); (Y.Q.); (Y.L.); (L.Y.); (R.L.); (Y.C.)
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (W.L.); (Y.Z.); (Y.Q.); (Y.L.); (L.Y.); (R.L.); (Y.C.)
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (W.L.); (Y.Z.); (Y.Q.); (Y.L.); (L.Y.); (R.L.); (Y.C.)
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (W.L.); (Y.Z.); (Y.Q.); (Y.L.); (L.Y.); (R.L.); (Y.C.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100083, China
| |
Collapse
|
15
|
Teixeira-Guedes CI, Oppolzer D, Barros AI, Pereira-Wilson C. Phenolic rich extracts from cowpea sprouts decrease cell proliferation and enhance 5-fluorouracil effect in human colorectal cancer cell lines. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Investigations of Bacteroides spp. towards next-generation probiotics. Food Res Int 2019; 116:637-644. [DOI: 10.1016/j.foodres.2018.08.088] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
|
17
|
Moreno-Jiménez MR, López-Barraza R, Cervantes-Cardoza V, Pérez-Ramírez IF, Reyna-Rojas JA, Gallegos-Infante JA, Estrella I, Rojas-Contreras JA, González-Laredo RF, Rocha-Guzmán NE. Mechanisms associated to apoptosis of cancer cells by phenolic extracts from two canned common beans varieties (Phaseolus vulgaris L.). J Food Biochem 2018; 43:e12680. [PMID: 31353616 DOI: 10.1111/jfbc.12680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/23/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Two varieties of common beans (Phaseolus vulgaris L.), Bayo Victoria and Negro 8025, were evaluated to determine the effect on cellular viability and mechanisms involved in apoptosis pathways, using a cellular model with HT-29 cells. Aqueous methanolic (50:50) extracts from cooked beans were analyzed for phenolic composition, identifying greater diversity of phenolic compounds in Bayo Victoria extracts. However, Negro 8025 showed greater phenolic content and cytotoxicity effects at lower media inhibitory concentrations, and greater effectiveness to activate apoptotic pathways. Proteins related to the arrest of cell cycle were modulated by both bean cultivars. Qualitative analysis by HPLC-PAD and HPLC-MS systems of phenolic compounds in common bean extracts showed mainly hydroxybenzoic and hydroxycinnamic acids, flavonols, and monomeric flavan-3-ols. Bioactive phenolics such as catechin, kaempferol, and ferulic acid were found in both cultivars as well anticancer phytochemicals such as quercetin, protocatechuic acid, myricetin, naringenin and their derivatives, and procyanidins. PRACTICAL APPLICATIONS: Polyphenols in common beans (Phaseolus vulgaris L.) cultivars processed by canning display chemoprotective potential as they activate mechanisms involved in apoptosis pathways. Phenolics in common beans modulate 28 proteins related to apoptotic processes. Therefore, a diet including canned beans (particularly darker varieties) might represent health benefits and cancer-preventive effects.
Collapse
Affiliation(s)
- Martha Rocío Moreno-Jiménez
- Departamento de Ingenierías Química y Bioquímica, Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Durango, México
| | - Rosalía López-Barraza
- Departamento de Ingenierías Química y Bioquímica, Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Durango, México
| | - Verónica Cervantes-Cardoza
- Departamento de Ingenierías Química y Bioquímica, Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Durango, México
| | - Iza Fernanda Pérez-Ramírez
- Research and Graduate Studies in Food Science. Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | - Jessica Alejandra Reyna-Rojas
- Departamento de Ingenierías Química y Bioquímica, Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Durango, México
| | - José Alberto Gallegos-Infante
- Departamento de Ingenierías Química y Bioquímica, Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Durango, México
| | - Isabel Estrella
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición-CSIC, Madrid, Spain
| | - Juan Antonio Rojas-Contreras
- Departamento de Ingenierías Química y Bioquímica, Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Durango, México
| | - Rubén Francisco González-Laredo
- Departamento de Ingenierías Química y Bioquímica, Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Durango, México
| | - Nuria Elizabeth Rocha-Guzmán
- Departamento de Ingenierías Química y Bioquímica, Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Durango, México
| |
Collapse
|
18
|
Rao S, Chinkwo KA, Santhakumar AB, Blanchard CL. Inhibitory Effects of Pulse Bioactive Compounds on Cancer Development Pathways. Diseases 2018; 6:diseases6030072. [PMID: 30081504 PMCID: PMC6163461 DOI: 10.3390/diseases6030072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Previous studies suggest that pulses may have the potential to protect against cancer development by inhibiting pathways that result in the development of cancer. These pathways include those that result in inflammation, DNA damage, cell proliferation, and metastasis. Other studies have demonstrated extracts from pulses have the capacity to induce apoptosis specifically in cancer cells. Compounds reported to be responsible for these activities have included phenolic compounds, proteins and short chain fatty acids. The majority of the studies have been undertaken using in vitro cell culture models, however, there are a small number of in vivo studies that support the hypothesis that pulse consumption may inhibit cancer development. This review highlights the potential benefit of a diet rich in pulse bioactive compounds by exploring the anti-cancer properties of its polyphenols, proteins and short chain fatty acids.
Collapse
Affiliation(s)
- Shiwangni Rao
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Kenneth A Chinkwo
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Abishek B Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| | - Christopher L Blanchard
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
- Australian Research Council (ARC) Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia.
| |
Collapse
|
19
|
Nurdin SU, Le Leu RK, Young GP, Stangoulis JCR, Christophersen CT, Abbott CA. Analysis of the Anti-Cancer Effects of Cincau Extract (Premna oblongifolia Merr) and Other Types of Non-Digestible Fibre Using Faecal Fermentation Supernatants and Caco-2 Cells as a Model of the Human Colon. Nutrients 2017; 9:nu9040355. [PMID: 28368356 PMCID: PMC5409694 DOI: 10.3390/nu9040355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/16/2017] [Accepted: 03/29/2017] [Indexed: 02/04/2023] Open
Abstract
Green cincau (Premna oblongifolia Merr) is an Indonesian food plant with a high dietary fibre content. Research has shown that dietary fibre mixtures may be more beneficial for colorectal cancer prevention than a single dietary fibre type. The aim of this study was to investigate the effects of green cincau extract on short chain fatty acid (SCFA) production in anaerobic batch cultures inoculated with human faecal slurries and to compare these to results obtained using different dietary fibre types (pectin, inulin, and cellulose), singly and in combination. Furthermore, fermentation supernatants (FSs) were evaluated in Caco-2 cells for their effect on cell viability, differentiation, and apoptosis. Cincau increased total SCFA concentration by increasing acetate and propionate, but not butyrate concentration. FSs from all dietary fibre sources, including cincau, reduced Caco-2 cell viability. However, the effects of all FSs on cell viability, cell differentiation, and apoptosis were not simply explainable by their butyrate content. In conclusion, products of fermentation of cincau extracts induced cell death, but further work is required to understand the mechanism of action. This study demonstrates for the first time that this Indonesian traditional source of dietary fibre may be protective against colorectal cancer.
Collapse
Affiliation(s)
- Samsu U Nurdin
- School of Biological Sciences, Flinders University, Adelaide, SA 5042, Australia.
- Department of Agricultural Product Technology, Lampung University, Bandar Lampung 35145, Indonesia.
- Flinders Centre for Innovation in Cancer, Adelaide, SA 5042, Australia.
| | - Richard K Le Leu
- Flinders Centre for Innovation in Cancer, Adelaide, SA 5042, Australia.
- CSIRO Food and Nutrition, Adelaide, SA 5000, Australia.
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, Adelaide, SA 5042, Australia.
| | - James C R Stangoulis
- School of Biological Sciences, Flinders University, Adelaide, SA 5042, Australia.
| | - Claus T Christophersen
- CSIRO Food and Nutrition, Adelaide, SA 5000, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - Catherine A Abbott
- School of Biological Sciences, Flinders University, Adelaide, SA 5042, Australia.
- Flinders Centre for Innovation in Cancer, Adelaide, SA 5042, Australia.
| |
Collapse
|
20
|
Huang W, Zhou L, Guo H, Xu Y, Xu Y. The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism 2017; 68:20-30. [PMID: 28183450 DOI: 10.1016/j.metabol.2016.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023]
Abstract
It has been found that several circulating metabolites derived from gut microbiota fermentation associate with a systemic immuno-inflammatory response and kidney injury, which has been coined the gut-kidney axis. Recent evidence has suggested that short-chain fatty acids (SCFAs), which are primarily originated from fermentation of dietary fiber in the gut, play an important role in regulation of immunity, blood pressure, glucose and lipid metabolism, and seem to be the link between microbiota and host homeostasis. In addition to their important role as fuel for colonic epithelial cells, SCFAs also modulate different cell signal transduction processes via G-protein coupled receptors, and act as epigenetic regulators by the inhibition of histone deacetylase and as potential mediators involved in the autophagy pathway. Though controversial, an intimate connection between SCFAs and kidney injury has been revealed, suggesting that SCFAs may act as new therapeutic targets of kidney injury. This review is intended to provide an overview of the impact of SCFAs and the potential link to kidney injury induced by gut-derived inflammatory response.
Collapse
Affiliation(s)
- Wei Huang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, PR China; Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China. 646000
| | - Luping Zhou
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China. 646000
| | - Hengli Guo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, PR China.
| | - Yong Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, PR China; Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China. 646000.
| |
Collapse
|
21
|
Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.032] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
22
|
Ali NM, Yeap SK, Yusof HM, Beh BK, Ho WY, Koh SP, Abdullah MP, Alitheen NB, Long K. Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1648-58. [PMID: 26009985 DOI: 10.1002/jsfa.7267] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/22/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Mung bean and soybean have been individually reported previously to have antioxidant, cytotoxic and immunomodulatory effects, while fermentation is a well-known process to enhance the bioactive compounds that contribute to higher antioxidant, cytotoxic and immunomodulation effects. In this study, the free amino acids profile, soluble phenolic acids content, antioxidants, cytotoxic and immunomodulatory effects of fermented and non-fermented mung bean and soybean were compared. RESULTS Fermented mung bean was recorded to have the highest level of free amino acids, soluble phenolic acids (especially protocatechuic acid) and antioxidant activities among all the tested products. Both fermented mung bean and soybean possessed cytotoxicity activities against breast cancer MCF-7 cells by arresting the G0/G1 phase followed by apoptosis. Moreover, fermented mung bean and soybean also induced splenocyte proliferation and enhanced the levels of serum interleukin-2 and interferon-γ. CONCLUSION Augmented amounts of free amino acids and phenolic acids content after fermentation enhanced the antioxidants, cytotoxicity and immunomodulation effects of mung bean and soybean. More specifically, fermented mung bean showed the best effects among all the tested products. This study revealed the potential of fermented mung bean and soybean as functional foods for maintenance of good health.
Collapse
Affiliation(s)
- Norlaily Mohd Ali
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000, Cheras, Malaysia
| | - Swee-Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hamidah Mohd Yusof
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Boon-Kee Beh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Wan-Yong Ho
- School of Biomedical Sciences, The University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Soo-Peng Koh
- Biotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia
| | - Mohd Puad Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Kamariah Long
- Biotechnology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
23
|
|