1
|
Wang L, Fu G, Han R, Fan P, Yang J, Gong K, Zhao Z, Zhang C, Sun K, Shao G. MALAT1 and NEAT1 are Neuroprotective During Hypoxic Preconditioning in the Mouse Hippocampus Possibly by Regulation of NR2B. High Alt Med Biol 2024; 25:285-294. [PMID: 38808452 DOI: 10.1089/ham.2023.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Wang, Liping, Gang Fu, Ruijuan Han, Peijia Fan, Jing Yang, Kerui Gong, Zhijun Zhao, Chunyang Zhang, Kai Sun, and Guo Shao. MALAT1 and NEAT1 are neuroprotective during hypoxic preconditioning in the mouse hippocampus possibly by regulation of NR2B. High Alt Med Biol. 25:285-294, 2024. Background: The regulation of noncoding ribonucleic acid (ncRNA) has been shown to be involved in cellular and molecular responses to hypoxic preconditioning (HPC), a situation created by the induction of sublethal hypoxia in the brain. The ncRNAs metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and nuclear paraspeckle assembly transcript 1 (NEAT1) are abundantly expressed in the brain, where they regulate the expression of various genes in nerve cells. However, the exact roles of MALAT1 and NEAT1 in HPC are not fully understood. Methods: A mouse model of acute repeated hypoxia was used as a model of HPC, and MALAT1 and NEAT1 levels in the hippocampus were measured using real-time polymerase chain reaction (PCR). The mRNA and protein levels of N-methyl-d-aspartate receptor subunit 2 B (NR2B) in the mouse hippocampus were measured using real-time PCR and western blotting, respectively. HT22 cells knocked-down for MALAT1 and NEAT1 were used for in vitro testing. Expression of NR2B, which is involved in nerve cell injury under ischemic and hypoxic conditions, was also evaluated. The levels of spectrin and cleaved caspase-3 in MALAT1 and NEAT1 knockdown HT22 cells under oxygen glucose deprivation/reperfusion (OGD/R) were determined by western blotting. Results: HPC increased the expression of MALAT1 and NEAT1 and decreased the expression of NR2B mRNA in the mouse hippocampus (p < 0.05). Knockdown of MALAT1 and NEAT1 increased both NR2B mRNA and protein levels nearly twofold and caused damage under OGD/R conditions in HT22 cells (p < 0.05). Conclusion: MALAT1 and NEAT1 exert neuroprotective effects by influencing the expression of NR2B.
Collapse
Affiliation(s)
- Liping Wang
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, PRC
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PRC
- Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Gang Fu
- Department of Cardiology, The Third People's Hospital of Longgang District, Shenzhen, PRC
| | - Ruijuan Han
- Department of Cardiology, The People's Hospital of Longgang District, Shenzhen, PRC
| | - Peijia Fan
- Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, PRC
| | - Jing Yang
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, PRC
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PRC
- Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, USA
| | - Zhijun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, PRC
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, PRC
| | - Kai Sun
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, PRC
| | - Guo Shao
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, PRC
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou, PRC
- Neuroscience Institute, Baotou Medical College, Inner Mongolia, PRC
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, PRC
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PRC
- Joint Laboratory of South China Hospital Affiliated to Shenzhen University and Third People's Hospital of Longgang District, Shenzhen University, Shenzhen, PRC
| |
Collapse
|
2
|
Chang Z, Liu Q, Fan P, Xu W, Xie Y, Gong K, Zhang C, Zhao Z, Sun K, Shao G. Hypoxia preconditioning increases Notch1 activity by regulating DNA methylation in vitro and in vivo. Mol Biol Rep 2024; 51:507. [PMID: 38622406 DOI: 10.1007/s11033-024-09308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.
Collapse
Affiliation(s)
- Zhehan Chang
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Liu
- Department of Radiology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Peijia Fan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenqiang Xu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yabin Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, USA
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Zhijun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China.
| | - Kai Sun
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, China.
| | - Guo Shao
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen, China.
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China.
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou, China.
- Joint Laboratory of South China Hospital Affiliated to Shenzhen University and Third People's Hospital of Longgang District, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Nourkami-Tutdibi N, Küllmer J, Dietrich S, Monz D, Zemlin M, Tutdibi E. Serum vascular endothelial growth factor is a potential biomarker for acute mountain sickness. Front Physiol 2023; 14:1083808. [PMID: 37064896 PMCID: PMC10098311 DOI: 10.3389/fphys.2023.1083808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Acute mountain sickness (AMS) is the most common disease caused by hypobaric hypoxia (HH) in high-altitude (HA) associated with high mortality when progressing to high-altitude pulmonary edema (HAPE) and/or high-altitude cerebral edema (HACE). There is evidence for a role of pro- and anti-inflammatory cytokines in development of AMS, but biological pathways and molecular mechanisms underlying AMS remain elusive. We aimed to measure changes in blood cytokine levels and their possible association with the development of AMS.Method: 15 healthy mountaineers were included into this prospective clinical trial. All participants underwent baseline normoxic testing with venous EDTA blood sampling at the Bangor University in United Kingdom (69 m). The participants started from Beni at an altitude of 869 m and trekked same routes in four groups the Dhaulagiri circuit in the Nepali Himalaya. Trekking a 14-day route, the mountaineers reached the final HA of 5,050 m at the Hidden Valley Base Camp (HVBC). Venous EDTA blood sampling was performed after active ascent to HA the following morning after arrival at 5,050 m (HVBC). A panel of 21 cytokines, chemokines and growth factors were assessed using Luminex system (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-1ra, sIL-2Rα, IFN-γ, TNF-α, MCP-1, MIP-1α, MIP-1β, IP-10, G-CSF, GM-CSF, EGF, FGF-2, VEGF, and TGF-β1).Results: There was a significant main effect for the gradual ascent from sea-level (SL) to HA on nearly all cytokines. Serum levels for TNF-α, sIL-2Rα, G-CSF, VEGF, EGF, TGF-β1, IL-8, MCP-1, MIP-1β, and IP-10 were significantly increased at HA compared to SL, whereas levels for IFN-γ and MIP-1α were significantly decreased. Serum VEGF was higher in AMS susceptible versus AMS resistant subjects (p < 0.027, main effect of AMS) and increased after ascent to HA in both AMS groups (p < 0.011, main effect of HA). Serum VEGF increased more from SL values in the AMS susceptible group than in the AMS resistant group (p < 0.049, interaction effect).Conclusion: Cytokine concentrations are significantly altered in HA. Within short interval after ascent, cytokine concentrations in HH normalize to values at SL. VEGF is significantly increased in mountaineers suffering from AMS, indicating its potential role as a biomarker for AMS.
Collapse
|
4
|
Liu N, Zhang Y, Zhang P, Gong K, Zhang C, Sun K, Shao G. Vascular Endothelial Growth Factor and Erythropoietin Show Different Expression Patterns in the Early and Late Hypoxia Preconditioning Phases and May Correlate with DNA Methylation Status in the Mouse Hippocampus. High Alt Med Biol 2022; 23:361-368. [PMID: 36449395 DOI: 10.1089/ham.2021.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Liu, Na, Yanbo Zhang, Pu Zhang, Kerui Gong, Chunyang Zhang, Kai Sun, and Guo Shao. Vascular endothelial growth factor and erythropoietin show different expression patterns in the early and late hypoxia preconditioning phases and may correlate with DNA methylation status in the mouse hippocampus. High Alt Med Biol. 23:361-368, 2022. Background: Vascular endothelial growth factor (VEGF) and erythropoietin (EPO) have been proven to participate in neuroprotection induced by hypoxia preconditioning (HPC), and they can be regulated by hypoxia-inducible factor 1 (HIF-1). It has been reported that DNA methylation can affect VEGF and EPO expression. This study aimed to explore the expression of VEGF and EPO in the early phase and late phase of HPC and whether their expression was affected by DNA methylation. Method: Acute repeated HPC mice were used as the animal model, and detection of molecular changes was performed immediately (early phase) and 1 day (late phase) after HPC treatment. The mRNA and protein expression levels of VEGF, EPO, and DNA methyltransferases (DNMTs) in the hippocampi were measured by real-time polymerase chain reaction and western blotting, respectively. The activity of DNMTs and global methylation levels were analyzed by enzyme-linked immunosorbent assay. DNA methylation levels of VEGF and EPO promoters, which were catalyzed by DNMTs, were determined by bisulfite-modified DNA sequencing. Results: The expression of VEGF was increased in the early phase and late phase of HPC (p < 0.05), whereas the expression of EPO was unchanged in the early phase (p > 0.05) of HPC and was increased in the late phase (p < 0.05). VEGF and EPO expression were negatively correlated with the DNA methylation levels of their promoters. DNMT3A and DNMT3B were decreased in the early phase and late phase (p < 0.05), whereas DNMT1 was unchanged in the early phase and late phase (p > 0.05). Conclusions: Our data demonstrated that DNMTs affect VEGF and EPO expression by regulating the DNA methylation levels of the promoters of VEGF and EPO.
Collapse
Affiliation(s)
- Na Liu
- Department of Laboratory Medicine, Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Inner Mongolia, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanbo Zhang
- Department of Laboratory Medicine, Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, China.,Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Pu Zhang
- Department of Laboratory Medicine, Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Inner Mongolia, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, California, USA
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China
| | - Kai Sun
- Department of Laboratory Medicine, Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, China.,Joint Laboratory of South China Hospital Affiliated to Shenzhen University and Third People's Hospital of Longgang District, Shenzhen University, Shenzhen, China
| | - Guo Shao
- Department of Laboratory Medicine, Center for Translational Medicine, the Third People's Hospital of Longgang District, Shenzhen, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College of Neuroscience Institute, Baotou Medical College, Inner Mongolia, China.,Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China.,Joint Laboratory of South China Hospital Affiliated to Shenzhen University and Third People's Hospital of Longgang District, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Possible Involvement of DNA Methylation in TSC1 Gene Expression in Neuroprotection Induced by Hypoxic Preconditioning. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9306097. [PMID: 36120601 PMCID: PMC9481362 DOI: 10.1155/2022/9306097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022]
Abstract
Background. It has been reported that ischemia and ischemic preconditioning (IPC) have different effects on the expression of tuberous sclerosis complex 1 (TSC1), which may contribute to the tolerance to ischemia/hypoxia with the increase of autophagy. The mechanisms of TSC1 differential expression are still unclear under ischemia/IPC conditions in hippocampal Cornu Ammon 1 (CA1) and Cornu Ammon 3 (CA3) area neuronal cells. While we have shown that 5-Aza-CdR, a DNA methyltransferase inhibitor, can upregulate TSC1 and increase hypoxic tolerance by autophagy in vivo and in vitro, in this study, we examined whether DNA methylation was involved in the differential expression of TSC1 in the CA1 and CA3 regions induced by hypoxic preconditioning (HPC). Methods. Level of rapamycin (mTOR) autophagy, a downstream molecular pathway of TSC1/TSC2 complex, was detected in HPC mouse hippocampal CA1 and CA3 areas as well as in the HPC model of mouse hippocampal HT22 cells. DNA methylation level of TSC1 promoter (-720 bp~ -360 bp) was determined in CA1 and CA3 areas by bisulfite-modified DNA sequencing (BMDS). At the same time, autophagy was detected in HT22 cells transfected with GFP-LC3 plasmid. The role of TSC1 in neuroprotection was measured by cell viability and apoptosis, and the role of TSC1 in metabolism was checked by ATP assay and ROS assay in HT22 cells that overexpressed/knocked down TSC1. Results. HPC upregulated the expression of TSC1, downregulated the level of P-mTOR (Ser2448) and P-p70S6K (Thr389), and enhanced the activity of autophagy in both in vivo and in vitro. The increased expression of TSC1 in HPC may depend on its DNA hypomethylation in the promoter region in vivo. HPC also could reduce energy consumption in HT22 cells. Overexpression and knockdown of TSC1 can affect cell viability, cell apoptosis, and metabolism in HT22 cells exposed to hypoxia. Conclusion. TSC1 expression induced by HPC may relate to the downregulation of its DNA methylation level with the increase of autophagy and the decrease of energy demand.
Collapse
|
6
|
Intracellular Signaling. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Winter C, Bjorkman T, Miller S, Nichols P, Cardinal J, O'Rourke P, Ballard E, Nasrallah F, Vegh V. Acute Mountain Sickness Following Incremental Trekking to High Altitude: Correlation With Plasma Vascular Endothelial Growth Factor Levels and the Possible Effects of Dexamethasone and Acclimatization Following Re-exposure. Front Physiol 2021; 12:746044. [PMID: 34744786 PMCID: PMC8567072 DOI: 10.3389/fphys.2021.746044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The recognition and treatment of high-altitude illness (HAI) is increasingly important in global emergency medicine. High altitude related hypobaric hypoxia can lead to acute mountain sickness (AMS), which may relate to increased expression of vascular endothelial growth factor (VEGF), and subsequent blood-brain barrier (BBB) compromise. This study aimed to establish the relationship between AMS and changes in plasma VEGF levels during a high-altitude ascent. VEGF level changes with dexamethasone, a commonly used AMS medication, may provide additional insight into AMS. Methods: Twelve healthy volunteers ascended Mt Fuji (3,700 m) and blood samples were obtained at distinct altitudes for VEGF analysis. Oxygen saturation (SPO2) measurements were also documented at the same time-point. Six out of the 12 study participants were prescribed dexamethasone for a second ascent performed 48 h later, and blood was again collected to establish VEGF levels. Results: Four key VEGF observations could be made based on the data collected: (i) the baseline VEGF levels between the two ascents trended upwards; (ii) those deemed to have AMS in the first ascent had increased VEGF levels (23.8–30.3 pg/ml), which decreased otherwise (23.8–30.3 pg/ml); (iii) first ascent AMS participants had higher VEGF level variability for the second ascent, and similar to those not treated with dexamethasone; and (iv) for the second ascent dexamethasone participants had similar VEGF levels to non-AMS first ascent participants, and the variability was lower than for first ascent AMS and non-dexamethasone participants. SPO2 changes were unremarkable, other than reducing by around 5% irrespective of whether measurement was taken for the first or second ascent. Conclusion: First ascent findings suggest a hallmark of AMS could be elevated VEGF levels. The lack of an exercise-induced VEGF level change strengthened the notion that elevated plasma VEGF was brain-derived, and related to AMS.
Collapse
Affiliation(s)
- Craig Winter
- Kenneth Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.,UQ Center for Clinical Research, University of Queensland, Brisbane, QLD, Australia.,School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tracy Bjorkman
- UQ Center for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Stephanie Miller
- UQ Center for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Paul Nichols
- Kenneth Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.,UQ Center for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - John Cardinal
- School of Human Movement Studies, University of Queensland, Brisbane, QLD, Australia
| | - Peter O'Rourke
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Emma Ballard
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - Fatima Nasrallah
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Chen Y, Hou G, Jing M, Teng H, Liu Q, Yang X, Wang Y, Qu J, Shi C, Lu L, Zhang J, Zhang Y. Genomic analysis unveils mechanisms of northward invasion and signatures of plateau adaptation in the Asian house rat. Mol Ecol 2021; 30:6596-6610. [PMID: 34564921 DOI: 10.1111/mec.16194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The Asian house rat (AHR), Rattus tanezumi, has recently invaded the northern half of China. The AHR is a highly adaptive rat species that has also successfully conquered the Qinghai-Tibet Plateau (QTP) and replaced the brown rat (BR), R. norvegicus, at the edge of the QTP. Here, we assembled a draft genome of the AHR and explored the mechanisms of its northward invasion and the genetic basis underlying plateau adaptation in this species. Population genomic analyses revealed that the northwardly invasive AHRs consisted of two independent and genetically distinct populations which might result from multiple independent primary invasion events. One invasive population exhibited reduced genetic diversity and distinct population structure compared with its source population, while the other displayed preserved genetic polymorphisms and little genetic differentiation from its source population. Genes involved in G-protein coupled receptors and carbohydrate metabolism may contribute to the local adaptation of northern AHRs. In particular, RTN4 was identified as a key gene for AHRs in the QTP that favours adaptation to high-altitude hypoxia. Coincidently, the physiological performance and transcriptome profiles of hypoxia-exposed rats both showed better hypoxia adaptation in AHRs than in BRs that failed to colonize the heart of the QTP, which may have facilitated the replacement of the BR population by the invading AHRs at the edge of the QTP. This study provides profound insights into the multiple origins of the northwardly invasive AHR and the great tolerance to hypoxia in this species.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guanmei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Meidong Jing
- School of Life Sciences, Nantong University, Nantong, China
| | - Huajing Teng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xingen Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yong Wang
- Dongting Lake Station for Wetland Ecosystem Research, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
| | - Chengmin Shi
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Li J, Zhao H, Xing Y, Zhao T, Cai L, Yan Z. A Genome-Wide Analysis of the Gene Expression and Alternative Splicing Events in a Whole-Body Hypoxic Preconditioning Mouse Model. Neurochem Res 2021; 46:1101-1111. [PMID: 33582968 DOI: 10.1007/s11064-021-03241-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/07/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Exposure to specific doses of hypoxia can trigger endogenous neuroprotective and neuroplastic mechanisms of the central nervous system. These molecular mechanisms, together referred to as hypoxic preconditioning (HPC), remain poorly understood. In the present study, we applied RNA sequencing and bioinformatics analyses to study HPC in a whole-body HPC mouse model. The preconditioned (H4) and control (H0) groups showed 605 differentially expressed genes (DEGs), of which 263 were upregulated and 342 were downregulated. Gene Ontology enrichment analysis indicated that these DEGs were enriched in several biological processes, including metabolic stress and angiogenesis. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that the FOXO and Notch signaling pathways were involved in hypoxic tolerance and protection during HPC. Furthermore, 117 differential alternative splicing events (DASEs) were identified, with exon skipping being the dominant one (48.51%). Repeated exposure to systemic hypoxia promoted skipping of exon 7 in Edrf1 and exon 9 or 13 in Lrrc45. This study expands the understanding of the endogenous protective mechanisms of HPC and the DASEs that occur during HPC.
Collapse
Affiliation(s)
- Jun Li
- College of Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
| | - Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
| | - Tongling Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China.
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China.
| | - Zuwei Yan
- College of Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
10
|
Chaudhary D, Khan A, Gupta M, Hu Y, Li J, Abedi V, Zand R. Obesity and mortality after the first ischemic stroke: Is obesity paradox real? PLoS One 2021; 16:e0246877. [PMID: 33566870 PMCID: PMC7875337 DOI: 10.1371/journal.pone.0246877] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Obesity is an established risk factor for ischemic stroke but the association of increased body mass index (BMI) with survival after ischemic stroke remains controversial. Many studies have shown that increased BMI has a "protective" effect on survival after stroke while other studies have debunked the "obesity paradox". This study aimed at examining the relationship between BMI and all-cause mortality at one year in first-time ischemic stroke patients using a large dataset extracted from different resources including electronic health records. METHODS This was a retrospective cohort study of consecutive ischemic stroke patients captured in our Geisinger NeuroScience Ischemic Stroke (GNSIS) database. Survival in first-time ischemic stroke patients in different BMI categories was analyzed using Kaplan Meier survival curves. The predictors of mortality at one-year were assessed using a stratified Cox proportional hazards model. RESULTS Among 6,703 first-time ischemic stroke patients, overweight and obese patients were found to have statistically decreased hazard ratio (HR) compared to the non-overweight patients (overweight patients- HR = 0.61 [95% CI, 0.52-0.72]; obese patients- HR = 0.56 [95% CI, 0.48-0.67]). Predictors with a significant increase in the hazard ratio for one-year mortality were age at the ischemic stroke event, history of neoplasm, atrial fibrillation/flutter, diabetes, myocardial infarction and heart failure. CONCLUSION Our study results support the obesity paradox in ischemic stroke patients as shown by a significantly decreased hazard ratio for one-year mortality among overweight and obese patients in comparison to non-overweight patients.
Collapse
Affiliation(s)
- Durgesh Chaudhary
- Geisinger Neuroscience Institute, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Ayesha Khan
- Geisinger Neuroscience Institute, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Mudit Gupta
- Phenomic Analytics and Clinical Data Core, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Yirui Hu
- Department of Population Health Sciences, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Jiang Li
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, Pennsylvania, United States of America
- Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ramin Zand
- Geisinger Neuroscience Institute, Geisinger Health System, Danville, Pennsylvania, United States of America
| |
Collapse
|
11
|
Li S, Ren C, Stone C, Chandra A, Xu J, Li N, Han C, Ding Y, Ji X, Shao G. Hamartin: An Endogenous Neuroprotective Molecule Induced by Hypoxic Preconditioning. Front Genet 2020; 11:582368. [PMID: 33193709 PMCID: PMC7556298 DOI: 10.3389/fgene.2020.582368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 11/23/2022] Open
Abstract
Hypoxic/ischemic preconditioning (HPC/IPC) is an innate neuroprotective mechanism in which a number of endogenous molecules are known to be involved. Tuberous sclerosis complex 1 (TSC1), also known as hamartin, is thought to be one such molecule. It is also known that hamartin is involved as a target in the rapamycin (mTOR) signaling pathway, which functions to integrate a variety of environmental triggers in order to exert control over cellular metabolism and homeostasis. Understanding the role of hamartin in ischemic/hypoxic neuroprotection will provide a novel target for the treatment of hypoxic-ischemic disease. Therefore, the proposed molecular mechanisms of this neuroprotective role and its preconditions are reviewed in this paper, with emphases on the mTOR pathway and the relationship between the expression of hamartin and DNA methylation.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ankush Chandra
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jiali Xu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Han
- Department of Neurosurgery, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China.,Public Health Department, Biomedicine Research Center, Basic Medical College, Baotou, China.,Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, China
| |
Collapse
|
12
|
Liu N, Zhang XL, Jiang SY, Shi JH, Cui JH, Liu XL, Han LH, Gong KR, Yan SC, Xie W, Zhang CY, Shao G. Neuroprotective mechanisms of DNA methyltransferase in a mouse hippocampal neuronal cell line after hypoxic preconditioning. Neural Regen Res 2020; 15:2362-2368. [PMID: 32594061 PMCID: PMC7749487 DOI: 10.4103/1673-5374.285003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hypoxic preconditioning has been shown to improve hypoxic tolerance in mice, accompanied by the downregulation of DNA methyltransferases (DNMTs) in the brain. However, the roles played by DNMTs in the multiple neuroprotective mechanisms associated with hypoxic preconditioning remain poorly understood. This study aimed to establish an in vitro model of hypoxic preconditioning, using a cultured mouse hippocampal neuronal cell line (HT22 cells), to examine the effects of DNMTs on the endogenous neuroprotective mechanisms that occur during hypoxic preconditioning. HT22 cells were divided into a control group, which received no exposure to hypoxia, a hypoxia group, which was exposed to hypoxia once, and a hypoxic preconditioning group, which was exposed to four cycles of hypoxia. To test the ability of hypoxic preadaptation to induce hypoxic tolerance, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium assay. Cell viability improved in the hypoxic preconditioning group compared with that in the hypoxia group. The effects of hypoxic preconditioning on the cell cycle and apoptosis in HT22 cells were examined by western blot assay and flow cytometry. Compared with the hypoxia group, the expression levels of caspase-3 and spectrin, which are markers of early apoptosis and S-phase arrest, respectively, noticeably reduced in the hypoxic preconditioning group. Finally, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and western blot assay were used to investigate the changes in DNMT expression and activity during hypoxic preconditioning. The results showed that compared with the control group, hypoxic preconditioning downregulated the expression levels of DNMT3A and DNMT3B mRNA and protein in HT22 cells and decreased the activities of total DNMTs and DNMT3B. In conclusion, hypoxic preconditioning may exert anti-hypoxic neuroprotective effects, maintaining HT22 cell viability and inhibiting cell apoptosis. These neuroprotective mechanisms may be associated with the inhibition of DNMT3A and DNMT3B.
Collapse
Affiliation(s)
- Na Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiao-Lu Zhang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Yuan Jiang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Jing-Hua Shi
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Jun-He Cui
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Xiao-Lei Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Li-Hong Han
- Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Ke-Rui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francsico, San Francisco, CA, USA
| | - Shao-Chun Yan
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Wei Xie
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chun-Yang Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine; Biomedicine Research Center, Basic Medical College and Baotou Medical College of Neuroscience Institute, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing; Department of Neurosurgery, the First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region,, China
| |
Collapse
|
13
|
Qi R, Zhang X, Xie Y, Jiang S, Liu Y, Liu X, Xie W, Jia X, Bade R, Shi R, Li S, Ren C, Gong K, Zhang C, Shao G. 5-Aza-2'-deoxycytidine increases hypoxia tolerance-dependent autophagy in mouse neuronal cells by initiating the TSC1/mTOR pathway. Biomed Pharmacother 2019; 118:109219. [PMID: 31325707 DOI: 10.1016/j.biopha.2019.109219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/03/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our previous study found that 5-Aza-2'-deoxycytidine (5-Aza-CdR) can repress the expression and activity of protein serine/threonine phosphatase-1γ (PP1γ) in mouse hippocampus. It is well known that PP1γ regulates cell metabolism, which is related to hypoxia/ischaemia tolerance. It has been reported that it can also induce autophagy in cancer cells. Autophagy is important for maintaining cellular homeostasis associated with metabolism. In this study, we examined whether 5-Aza-CdR increases hypoxia tolerance-dependent autophagy by initiating the TSC1/mTOR/autophagy signalling pathway in neuronal cells. METHODS 5-Aza-CdR was either administered to mice via intracerebroventricular injection (i.c.v) or added to cultured hippocampal-derived neuronal cell line (HT22 cell) in the medium for cell culture. The hypoxia tolerance of mice was measured by hypoxia tolerance time and Perl's iron stain. The mRNA and protein expression levels of tuberous sclerosis complex 1 (TSC1), mammalian target of rapamycin (mTOR) and autophagy marker light chain 3 (LC3) were measured by real-time PCR and western blot. The p-mTOR and p-p70S6k proteins were used as markers for mTOR activity. In addition, the role of autophagy was determined by correlating its intensity with hypoxia tolerance in a time-dependent manner. At the same time, the involvement of the TSC1/mTOR pathway in autophagy was also examined through transfection with TSC1 (hamartin) plasmid. RESULTS 5-Aza-CdR was revealed to increase hypoxia tolerance and induce autophagy, accompanied by an increase in mRNA and protein expression levels of TSC1, reduction in p-mTOR (Ser2448) and p-p70S6k (Thr389) protein levels, and an increase in the ratio of LC3-II/LC3-I in both mouse hippocampus and hippocampal-derived neuronal cell line (HT22). The fluorescence intensity of hamartin was enhanced in the hippocampus of mice exposed to 5-Aza-CdR. Moreover, HT22 cells that over-expressed TSC1 showed more autophagy. CONCLUSIONS 5-Aza-CdR can increase hypoxia tolerance by inducing autophagy by initiating the TSC1/mTOR pathway.
Collapse
Affiliation(s)
- Ruifang Qi
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Zhang
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yabin Xie
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuyuan Jiang
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - You Liu
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaolei Liu
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Xie
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoe Jia
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rengui Bade
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ruili Shi
- Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, USA
| | - Chunyang Zhang
- Department of neurosurgery, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia, China
| | - Guo Shao
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China; Inner Mongolia Key laboratory of Hypoxic Translational Medicine, Baotou Medical College, Inner Mongolia, China; Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Lu N, Li X, Tan R, An J, Cai Z, Hu X, Wang F, Wang H, Lu C, Lu H. HIF-1α/Beclin1-Mediated Autophagy Is Involved in Neuroprotection Induced by Hypoxic Preconditioning. J Mol Neurosci 2018; 66:238-250. [PMID: 30203298 PMCID: PMC6182618 DOI: 10.1007/s12031-018-1162-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
Hypoxic preconditioning (HPC) exerts a protective effect against hypoxic/ischemic brain injury, and one mechanism explaining this effect may involve the upregulation of hypoxia-inducible factor-1 (HIF-1). Autophagy, an endogenous protective mechanism against hypoxic/ischemic injury, is correlated with the activation of the HIF-1α/Beclin1 signaling pathway. Based on previous studies, we hypothesize that the protective role of HPC may involve autophagy occurring via activation of the HIF-1α/Beclin1 signaling pathway. To test this hypothesis, we evaluated the effects of HPC on oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptosis and autophagy in SH-SY5Y cells. HPC significantly attenuated OGD/R-induced apoptosis, and this effect was suppressed by the autophagy inhibitor 3-methyladenine and mimicked by the autophagy agonist rapamycin. In control SH-SY5Y cells, HPC upregulated the expression of HIF-1α and downstream molecules such as BNIP3 and Beclin1. Additionally, HPC increased the LC3-II/LC3-I ratio and decreased p62 levels. The increase in the LC3-II/LC3-I ratio was inhibited by the HIF-1α inhibitor YC-1 or by Beclin1-short hairpin RNA (shRNA). In OGD/R-treated SH-SY5Y cells, HPC also upregulated the expression levels of HIF-1α, BNIP3, and Beclin1, as well as the LC3-II/LC3-I ratio. Furthermore, YC-1 or Beclin1-shRNA attenuated the HPC-mediated cell viability in OGD/R-treated cells. Taken together, our results demonstrate that HPC protects SH-SY5Y cells against OGD/R via HIF-1α/Beclin1-regulated autophagy.
Collapse
Affiliation(s)
- Na Lu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Xingxing Li
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ruolan Tan
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jing An
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhenlu Cai
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xiaoxuan Hu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Feidi Wang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Haoruo Wang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Chengbiao Lu
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Haixia Lu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Wei ZZ, Zhu YB, Zhang JY, McCrary MR, Wang S, Zhang YB, Yu SP, Wei L. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy. Chin Med J (Engl) 2018; 130:2361-2374. [PMID: 28937044 PMCID: PMC5634089 DOI: 10.4103/0366-6999.215324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Stem cell-based therapies are promising in regenerative medicine for protecting and repairing damaged brain tissues after injury or in the context of chronic diseases. Hypoxia can induce physiological and pathological responses. A hypoxic insult might act as a double-edged sword, it induces cell death and brain damage, but on the other hand, sublethal hypoxia can trigger an adaptation response called hypoxic preconditioning or hypoxic tolerance that is of immense importance for the survival of cells and tissues. Data Sources: This review was based on articles published in PubMed databases up to August 16, 2017, with the following keywords: “stem cells,” “hypoxic preconditioning,” “ischemic preconditioning,” and “cell transplantation.” Study Selection: Original articles and critical reviews on the topics were selected. Results: Hypoxic preconditioning has been investigated as a primary endogenous protective mechanism and possible treatment against ischemic injuries. Many cellular and molecular mechanisms underlying the protective effects of hypoxic preconditioning have been identified. Conclusions: In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.
Collapse
Affiliation(s)
- Zheng Z Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yan-Bing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - James Y Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Myles R McCrary
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Song Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yong-Bo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shan-Ping Yu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Ling Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University; Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
16
|
Tan H, Lu H, Chen Q, Tong X, Jiang W, Yan H. The Effects of Intermittent Whole-Body Hypoxic Preconditioning on Patients with Carotid Artery Stenosis. World Neurosurg 2018; 113:e471-e479. [DOI: 10.1016/j.wneu.2018.02.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
|
17
|
Cheng H, Cui C, Lu S, Xia B, Li X, Xu P, Xue M. Identification and analysis of hub genes and networks related to hypoxia preconditioning in mice (No 035215). Oncotarget 2017; 9:11889-11904. [PMID: 29552280 PMCID: PMC5844716 DOI: 10.18632/oncotarget.23555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia preconditioning is an effective strategy of intrinsic cell protection. An acute repetitive hypoxic mice model was developed. High-throughput microarray analysis was performed to explore the integrative alterations of gene expression in repetitive hypoxic mice. Data obtained was analyzed via multiple bioinformatics approaches to identify the hub genes, pathways and biological processes related to hypoxia preconditioning. The current study, for the first time, provides insights into the gene expression profiles in repetitive hypoxic mice. It was found that a total of 1175 genes expressed differentially between the hypoxic mice and normal mice. Overall, 113 significantly up-regulated and 138 significantly down-regulated functions were identified from the differentially expressed genes in repetitive hypoxic brains. Among them, at least fourteen of these genes were very associated with hypoxia preconditioning. The change trends of these genes were validated by reverse-transcription polymerase chain reaction and were found to be consistent with the microarray data. Combined the results of pathway and gene co-expression networks, we defined Plcb1, Cacna2d1, Atp2b4, Grin2a, Grin2b and Glra1 as the main hub genes tightly related with hypoxia preconditioning. The differential functions mainly included the mitogen-activated protein kinase pathway and ion or neurotransmitter transport. The multiple reactions in cell could be initiated by activating MAPK pathway to prevent hypoxia damage. Plcb1 was an important and hub gene and node in the hypoxia preconditioning signal networks. The findings in the hub genes and integrated gene networks provide very useful information for further exploring the molecular mechanisms of hypoxia preconditioning.
Collapse
Affiliation(s)
- Haiting Cheng
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Department of Pharmacy, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
| | - Can Cui
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shousi Lu
- China Rehabilitation Research Center, Beijing 100068, China
| | - Binbin Xia
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaorong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Pinxiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
18
|
Re-exposure to the hypobaric hypoxic brain injury of high altitude: plasma S100B levels and the possible effect of acclimatisation on blood-brain barrier dysfunction. Neurol Sci 2016; 37:533-9. [PMID: 26924650 PMCID: PMC4819780 DOI: 10.1007/s10072-016-2521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 02/15/2016] [Indexed: 10/31/2022]
Abstract
Hypobaric hypoxic brain injury results in elevated peripheral S100B levels which may relate to blood-brain barrier (BBB) dysfunction. A period of acclimatisation or dexamethasone prevents altitude-related illnesses and this may involve attenuation of BBB compromise. We hypothesised that both treatments would diminish the S100B response (a measure of BBB dysfunction) on re-ascent to the hypobaric hypoxia of high altitude, in comparison to an identical ascent completed 48 h earlier by the same group. Twelve healthy volunteers, six of which were prescribed dexamethasone, ascended Mt Fuji (summit 3700 m) and serial plasma S100B levels measured. The S100B values reduced from a baseline 0.183 µg/l (95 % CI 0.083-0.283) to 0.145 µg/l (95 % CI 0.088-0.202) at high altitude for the dexamethasone group (n = 6) and from 0.147 µg/l (95 % CI 0.022-0.272) to 0.133 µg/l (95 % CI 0.085-0.182) for the non-treated group (n = 6) [not statistically significant (p = 0.43 and p = 0.82) for the treated and non-treated groups respectively]. [These results contrasted with the statistically significant increase during the first ascent, S100B increasing from 0.108 µg/l (95 % CI 0.092-0.125) to 0.216 µg/l (95 % CI 0.165-0.267) at high altitude]. In conclusion, an increase in plasma S100B was not observed in the second ascent and this may relate to the effect of acclimatisation (or hypoxic pre-conditioning) on the BBB. An exercise stimulated elevation of plasma S100B levels was also not observed during the second ascent. The small sample size and wide confidence intervals, however, precludes any statistically significant conclusions and a larger study would be required to confirm these findings.
Collapse
|
19
|
Thompson JW, Dawson VL, Perez-Pinzon MA, Dawson TM. Intracellular Signaling. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Rybnikova E, Samoilov M. Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia. Front Neurosci 2015; 9:388. [PMID: 26557049 PMCID: PMC4615940 DOI: 10.3389/fnins.2015.00388] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022] Open
Abstract
Exposure of organisms to repetitive mild hypoxia results in development of brain hypoxic/ischemic tolerance and cross-tolerance to injurious factors of a psycho-emotional nature. Such preconditioning by mild hypobaric hypoxia functions as a “warning” signal which prepares an organism, and in particular the brain, to subsequent more harmful conditions. The endogenous defense processes which are mobilized by hypoxic preconditioning and result in development of brain tolerance are based on evolutionarily acquired gene-determined mechanisms of adaptation and neuroprotection. They involve an activation of intracellular cascades including kinases, transcription factors and changes in expression of multiple regulatory proteins in susceptible areas of the brain. On the other hand they lead to multilevel modifications of the hypothalamic-pituitary-adrenal endocrine axis regulating various functions in the organism. All these components are engaged sequentially in the initiation, induction and expression of hypoxia-induced tolerance. A special role belongs to the epigenetic regulation of gene expression, in particular of histone acetylation leading to changes in chromatin structure which ensure access of pro-adaptive transcription factors activated by preconditioning to the promoters of target genes. Mechanisms of another, relatively novel, neuroprotective phenomenon termed hypoxic postconditioning (an application of mild hypoxic episodes after severe insults) are still largely unknown but according to recent data they involve apoptosis-related proteins, hypoxia-inducible factor and neurotrophins. The fundamental data accumulated to date and discussed in this review open new avenues for elaboration of the effective therapeutic applications of hypoxic pre- and postconditioning.
Collapse
Affiliation(s)
- Elena Rybnikova
- Laboratory of Neuroendocrinology, and Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences St. Petersburg, Russia
| | - Mikhail Samoilov
- Laboratory of Neuroendocrinology, and Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences St. Petersburg, Russia
| |
Collapse
|
21
|
Zhang S, Zhang Y, Jiang S, Liu Y, Huang L, Zhang T, Lu G, Gong K, Ji X, Shao G. The effect of hypoxia preconditioning on DNA methyltransferase and PP1γ in hippocampus of hypoxia preconditioned mice. High Alt Med Biol 2014; 15:483-90. [PMID: 25531462 DOI: 10.1089/ham.2014.1042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is well known that hypoxia preconditioning can increase hypoxic tolerance by changing the expressions of some genes in the brain. DNA methylation is important for regulating gene expression and is catalyzed by DNA methyltransferase (DNMT), an enzyme that is abundant in the brain. However, the impact of hypoxia preconditioning on DNA methylation remains unknown. In the current study, mice were randomly divided into three groups: blank control group with no exposure to hypoxia (H0), the hypoxia control group exposed to hypoxia once (H1), and the hypoxia preconditioning group exposed to 4 runs of hypoxia (H4). The mRNA and protein levels of three kinds of DNMTs and the activity of total DMNT were measured. Protein phosphatase 1(PP1)γ, which critically regulates neuroprotective pathways in brain, was measured in mRNA and protein activity and promoter methylation. DNMT1 was unchanged in H1 and H4, while DNMT3A and DNMT3B were decreased in H4. The mRNA and protein levels of PP1γ were decreased in H4. However, there was no detectable change in the level of DNA methylation of the promoter of PP1γ (-321 bp to 95 bp). These findings suggest that DNA methylation may have a role in hypoxia neuroprotection, and the change of PP1γ, which did not depend on the change of its promoter (-321 bp to 95bp) DNA methylation, may be involved in neuroprotection.
Collapse
Affiliation(s)
- Shu Zhang
- 1 Biomedicine Research Center and Basic Medical College, The First Affiliated Hospital of BaoTou Medical College , Inner Mongolia, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang YB, Wang X, Meister EA, Gong KR, Yan SC, Lu GW, Ji XM, Shao G. The effects of CoCl2 on HIF-1α protein under experimental conditions of autoprogressive hypoxia using mouse models. Int J Mol Sci 2014; 15:10999-1012. [PMID: 24945310 PMCID: PMC4100194 DOI: 10.3390/ijms150610999] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022] Open
Abstract
It is well known that cobalt chloride (CoCl2) can enhance the stability of hypoxia-inducible factor (HIF)-1α. The aim of this study is to detect the effect of CoCl2 on the hypoxia tolerance of mice which were repeatedly exposed to autoprogressive hypoxia. Balb/c mice were randomly divided into groups of chemical pretreatment and normal saline (NS), respectively injected with CoCl2 and NS 3 h before exposure to hypoxia for 0 run (H0), 1 run (H1), and 4 runs (H4). Western Blot, electrophoretic mobility shift assay (EMSA), extracellular recordings population spikes in area cornus ammonis I (CA 1) of mouse hippocampal slices and real-time were used in this study. Our results demonstrated that the tolerance of mice to hypoxia, the changes of HIF-1α protein level and HIF-1 DNA binding activity in mice hippocampus, the mRNA level of erythropoietin (EPO) and vascular endothelial growth factor (VEGF), and the disappearance time of population spikes of hippocampal slices were substantially different between the control group and the CoCl2 group. Over-induction of HIF-1α by pretreatment with CoCl2 before hypoxia did not increase the hypoxia tolerance.
Collapse
Affiliation(s)
- Yan-Bo Zhang
- Department of Neurology, Affiliated Hospital of Tai Shan Medical University, Taishan 271000, China.
| | - Xiulian Wang
- Department of Intensive Care Unit , 2nd Affiliated Hospital of Baotou Medical College, Baotou 014030, China.
| | - Edward A Meister
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Ke-Rui Gong
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Baotou 014060, China.
| | - Shao-Chun Yan
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Baotou 014060, China.
| | - Guo-Wei Lu
- Institute for Hypoxia Medicine, Xuanwu Hospital of Capital Medical University, Beijing 10054, China.
| | - Xun-Ming Ji
- Institute for Hypoxia Medicine, Xuanwu Hospital of Capital Medical University, Beijing 10054, China.
| | - Guo Shao
- Biomedicine Research Center and Basic Medical College, Baotou Medical College, Baotou 014060, China.
| |
Collapse
|
23
|
Li S, Zhang Y, Shao G, Yang M, Niu J, Lv G, Ji X. Hypoxic preconditioning stimulates angiogenesis in ischemic penumbra after acute cerebral infarction. Neural Regen Res 2013; 8:2895-903. [PMID: 25206610 PMCID: PMC4146171 DOI: 10.3969/j.issn.1673-5374.2013.31.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/17/2013] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated the protective effect of hypoxic preconditioning on acute cerebral infarction, but the mechanisms underlying this protection remain unclear. To investigate the protective mechanisms of hypoxic preconditioning in relation to its effects on angiogenesis, we induced a photochemical model of cerebral infarction in an inbred line of mice (BALB/c). Mice were then exposed to hypoxic preconditioning 30 minutes prior to model establishment. Results showed significantly increased vascular endothelial growth factor and CD31 expression in the ischemic penumbra at 24 and 72 hours post infarction, mainly in neurons and vascular endothelial cells. Hy-Hypoxic preconditioning increased vascular endothelial growth factor and CD31 expression in the ischemic penumbra and the expression of vascular endothelial growth factor was positively related to that of CD31. Moreover, hypoxic preconditioning reduced the infarct volume and improved rological function in mice. These findings indicate that the protective role of hypoxic preconditioning in acute cerebral infarction may possibly be due to an increase in expression of vascular endothelial growth factor and CD31 in the ischemic penumbra, which promoted angiogenesis.
Collapse
Affiliation(s)
- Sijie Li
- Institute of Hypoxic Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Yanbo Zhang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian 27100, Shandong Province, China
| | - Guo Shao
- Research Center of Biology and Medicine, Baotou Medical College, Baotou 014060, Inner Mongolia Autonomous Region, China
| | - Mingfeng Yang
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian 27100, Shandong Province, China
| | - Jingzhong Niu
- Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian 27100, Shandong Province, China
| | - Guowei Lv
- Institute of Hypoxic Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Xunming Ji
- Institute of Hypoxic Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
24
|
Abstract
The preconditioning phenomena have been well established in heart as well as brain. In this review, we detail some of the original studies on preconditioning as well as studies from our lab using rodents and a genetic model system (fruit fly). We have used Drosophila in our lab to solve some of the questions related to tolerance or susceptibility to hypoxia. We believe that these pro-survival strategies and genetic pathways help us understand some of the preconditioning mechanisms that protect the brain from ischemia or ischemia.
Collapse
Affiliation(s)
- Priti Azad
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|