1
|
Thompson JC, Levis Rabi M, Novoa M, Nash KR, Joly-Amado A. Evaluating the Efficacy of Levetiracetam on Non-Cognitive Symptoms and Pathology in a Tau Mouse Model. Biomedicines 2024; 12:2891. [PMID: 39767797 PMCID: PMC11727630 DOI: 10.3390/biomedicines12122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Alzheimer's disease (AD) is marked by amyloid-β plaques and hyperphosphorylated tau neurofibrillary tangles (NFTs), leading to cognitive decline and debilitating non-cognitive symptoms. This study aimed to evaluate compounds from four different classes in a short-term (7-day) study using transgenic tau mice to assess their ability to reduce non-cognitive symptoms. The best candidate was then evaluated for longer exposure to assess non-cognitive symptoms, cognition, and pathology. Methods: Tg4510 mice, expressing mutated human tau (P301L), were administered with levetiracetam, methylphenidate, diazepam, and quetiapine for 7 days at 6 months old, when pathology and cognitive deficits are established. Drugs were given in the diet, and non-cognitive symptoms were evaluated using metabolic cages. Levetiracetam was chosen for longer exposure (3 months) in 3-month-old Tg4510 mice and non-transgenic controls to assess behavior and pathology. Results: After 3 months of diet, levetiracetam mildly reduced tau pathology in the hippocampus but did not improve cognition in Tg4510 mice. Interestingly, it influenced appetite, body weight, anxiety-like behavior, and contextual fear memory in non-transgenic animals but not in Tg4510 mice. Conclusions: While levetiracetam has shown benefits in amyloid deposition models, it had limited effects on tau pathology and behavior in an animal model of tau deposition, which is crucial for AD context. The differential effects on non-transgenic versus Tg4510 mice warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (J.C.T.); (M.L.R.); (M.N.); (K.R.N.)
| |
Collapse
|
2
|
Kołodziej-Sobczak D, Sobczak Ł, Łączkowski KZ. Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:7033. [PMID: 39000142 PMCID: PMC11241624 DOI: 10.3390/ijms25137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.
Collapse
Affiliation(s)
- Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Łukasz Sobczak
- Hospital Pharmacy, Multidisciplinary Municipal Hospital in Bydgoszcz, Szpitalna 19, 85-826 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| |
Collapse
|
3
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Moussa N, Dayoub N. Exploring the role of COX-2 in Alzheimer's disease: Potential therapeutic implications of COX-2 inhibitors. Saudi Pharm J 2023; 31:101729. [PMID: 37638222 PMCID: PMC10448476 DOI: 10.1016/j.jsps.2023.101729] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
This review highlights the potential role of cyclooxygenase-2 enzyme (COX-2) in the pathogenesis of Alzheimer's disease (AD) and the potential therapeutic use of non-steroidal anti-inflammatory drugs (NSAIDs) in the management of AD. In addition to COX-2 enzymes role in inflammation, the formation of amyloid plaques and neurofibrillary tangles in the brain, the review emphasizes that COXs-2 have a crucial role in normal synaptic activity and plasticity, and have a relationship with acetylcholine, tau protein, and beta-amyloid (Aβ) which are the main causes of Alzheimer's disease. Furthermore, the review points out that COX-2 enzymes have a relationship with kinase enzymes, including Cyclin Dependent Kinase 5 (CDK5) and Glycogen Synthase Kinase 3β (GSK3β), which are known to play a role in tau phosphorylation and are strongly associated with Alzheimer's disease. Therefore, the use of drugs like NSAIDs may be a hopeful approach for managing AD. However, results from studies examining the effectiveness of NSAIDs in treating AD have been mixed and further research is needed to fully understand the mechanisms by which COX-2 and NSAIDs may be involved in the development and progression of AD and to identify new therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Moussa
- Department of Pharmaceutical Chemistry and Drug Control, University of Manara, Latakia, Syria
| | - Ninar Dayoub
- Faculty of Pharmacy, University of AL Andalus for Medical Science, Tartus, Syria
| |
Collapse
|
5
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
6
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Alhasan DM, Lohman MC, Hirsch JA, Miller MC, Cai B, Jackson CL. Neighborhood characteristics and dementia symptomology among community-dwelling older adults with Alzheimer's disease. Front Aging Neurosci 2022; 14:937915. [PMID: 36204556 PMCID: PMC9530440 DOI: 10.3389/fnagi.2022.937915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 01/05/2023] Open
Abstract
Background Neuropsychiatric symptoms (NPSs) lead to myriad poor health outcomes among individuals with Alzheimer's disease (AD). Prior studies have observed associations between the various aspects of the home environment and NPSs, but macro-level environmental stressors (e.g., neighborhood income) may also disrupt the neuronal microenvironment and exacerbate NPSs. Yet, to our knowledge, no studies have investigated the relationship between the neighborhood environment and NPSs. Methods Using 2010 data among older adults with AD collected from a sample of the South Carolina Alzheimer's Disease Registry, we estimated cross-sectional associations between neighborhood characteristics and NPSs in the overall population and by race/ethnicity. Neighborhood measures (within a 1/2-mile radius of residence) came from the American Community Survey and Rural Urban Commuting Area Code. We categorized median household income into tertiles: < $30,500, $30,500-40,000, and > $40,000, and rurality as: rural, small urban, and large urban. Residential instability was defined as the percent of residents who moved within the past year. NPSs were defined using the Neuropsychiatric Inventory Questionnaire that included the composite measure of all 12 domains. Adjusting for age, sex/gender, race/ethnicity, and caregiver educational attainment, we used negative binomial regression to estimate prevalence ratios (PR) and 95% confidence intervals (CI) for NPSs by neighborhood characteristics. Results Among 212 eligible participants, mean age was 82 ± 8.7 years, 72% were women, and 55% non-Hispanic (NH)-Black. Individuals with AD living in < $30,500 vs. > $40,000 income neighborhoods had a 53% (PR = 1.53; 95% CI = 1.06-2.23) higher prevalence of NPSs while individuals living in rural vs. large urban neighborhoods had a 36% lower prevalence of NPSs (PR = 0.64; 95% CI = 0.45-0.90), after adjustment. We did not observe an association between residential instability and NPSs (PR = 0.92; 95% CI = 0.86-1.00); however, our estimates suggested differences by race/ethnicity where NH-White older adults living in residential instable areas had lower NPSs (PR = 0.89; 95% CI = 0.82-0.96) compared to NH-Black older adults (PR = 0.96; 95% CI = 0.86-1.07). Discussion Across racial/ethnic groups, individuals with AD had more symptomology when living in lower income areas. Pending replication, intervention efforts should consider resource allocation to high-need neighborhoods (e.g., lower income), and studies should investigate underlying mechanisms for this relationship.
Collapse
Affiliation(s)
- Dana M Alhasan
- Epidemiology Branch, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Matthew C Lohman
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Jana A Hirsch
- Urban Health Collaborative, Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Maggi C Miller
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Bo Cai
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Chandra L Jackson
- Epidemiology Branch, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States.,Intramural Program, Department of Health and Human Services, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Downey J, Lam JC, Li VO, Gozes I. Somatic Mutations and Alzheimer’s Disease. J Alzheimers Dis 2022; 90:475-493. [DOI: 10.3233/jad-220643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) represents a global health challenge, with an estimated 55 million people suffering from the non-curable disease across the world. While amyloid-β plaques and tau neurofibrillary tangles in the brain define AD proteinopathy, it has become evident that diverse coding and non-coding regions of the genome may significantly contribute to AD neurodegeneration. The diversity of factors associated with AD pathogenesis, coupled with age-associated damage, suggests that a series of triggering events may be required to initiate AD. Since somatic mutations accumulate with aging, and aging is a major risk factor for AD, there is a great potential for somatic mutational events to drive disease. Indeed, recent data from the Gozes team/laboratories as well as other leading laboratories correlated the accumulation of somatic brain mutations with the progression of tauopathy. In this review, we lay the current perspectives on the principal genetic factors associated with AD and the potential causes, highlighting the contribution of somatic mutations to the pathogenesis of late onset Alzheimer’s disease. The roles that artificial intelligence and big data can play in accelerating the progress of causal somatic mutation markers/biomarkers identification, and the associated drug discovery/repurposing, have been highlighted for future AD and other neurodegenerative studies, with the aim to bring hope for the vulnerable aging population.
Collapse
Affiliation(s)
- Jocelyn Downey
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jacqueline C.K. Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- Department of Computer Science and Technology, University of Cambridge, UK
| | - Victor O.K. Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Fredriksen-Goldsen KI, Jung H, Kim HJ, Petros R, Emlet C. Disparities in Subjective Cognitive Impairment by Sexual Orientation and Gender in a National Population Based Study of U.S. Adults, 2013-2018. J Aging Health 2022; 34:519-528. [PMID: 34645296 PMCID: PMC10484229 DOI: 10.1177/08982643211046466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Objectives: This is the first national population-based study to examine cognitive impairment disparities among sexual minority mid-life and older adults. Methods: Using the National Health Interview Survey (2013-2018), we compared weighted prevalence of subjective cognitive impairment by sexual orientation and gender, among those aged 45 plus, applying logistic regressions adjusting for age, income, education, race/ethnicity, and survey years. Results: Sexual minorities (24.5%) were more likely to have subjective cognitive impairment than heterosexuals (19.1%). Sexual minority women had higher odds of greater severity, frequency, and extent of subjective cognitive impairment. Sexual minorities were also more likely to report activity limitations resulting from cognitive impairment and were no more likely to attribute limitations to dementia or senility. Discussion: Cognitive health disparities are of particular concern in this historically and socially marginalized population. The investigation of explanatory factors is needed, and targeted interventions and policies are warranted to address cognitive challenges faced by sexual minorities.
Collapse
Affiliation(s)
| | - Hailey Jung
- School of Social Work, University of Washington, Seattle, WA, USA
| | - Hyun-Jun Kim
- School of Social Work, University of Washington, Seattle, WA, USA
| | - Ryan Petros
- School of Social Work, University of Washington, Seattle, WA, USA
| | - Charles Emlet
- School of Social Work, University of Washington, Seattle, WA, USA
- University of Washington, Tacoma, WA, USA
| |
Collapse
|
10
|
El-Sewify IM, Radwan A, Elghazawy NH, Fritzsche W, Azzazy HME. Optical chemosensors for environmental monitoring of toxic metals related to Alzheimer's disease. RSC Adv 2022; 12:32744-32755. [PMID: 36425686 PMCID: PMC9664454 DOI: 10.1039/d2ra05384e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and progresses from mild memory loss to severe decline in thinking, behavioral and social skills, which dramatically impairs a person's ability to function independently. Genetics, some health disorders and lifestyle have all been connected to AD. Also, environmental factors are reported as contributors to this illness. The presence of heavy metals in air, water, food, soil and commercial products has increased tremendously. Accumulation of heavy metals in the body leads to serious malfunctioning of bodily organs, specifically the brain. For AD, a wide range of heavy metals have been reported to contribute to its onset and progression and the manifestation of its hallmarks. In this review, we focus on detection of highly toxic heavy metals such as mercury, cadmium, lead and arsenic in water. The presence of heavy metals in water is very troubling and regular monitoring is warranted. Optical chemosensors were designed and fabricated for determination of ultra-trace quantities of heavy metals in water. They have shown advantages when compared to other sensors, such as selectivity, low-detection limit, fast response time, and wide-range determination under optimal sensing conditions. Therefore, implementing optical chemosensors for monitoring levels of toxic metals in water represents an important contribution in fighting AD. This review briefly summarizes evidence that links toxic metals to onset and progression of Alzheimer's disease. It discusses the structure and fabrication of optical chemosensors, and their use for monitoring toxic metals in water.![]()
Collapse
Affiliation(s)
- Islam M. El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Ahmed Radwan
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Abbassia, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Nehal H. Elghazawy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology, Jena 07745, Germany
| | - Hassan M. E. Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, SSE, Rm #1194, P.O. Box 74, New Cairo 11835, Egypt
- Department of Nanobiophotonics, Leibniz Institute for Photonic Technology, Jena 07745, Germany
| |
Collapse
|
11
|
Arce-López B, Alvarez-Erviti L, De Santis B, Izco M, López-Calvo S, Marzo-Sola ME, Debegnach F, Lizarraga E, López de Cerain A, González-Peñas E, Vettorazzi A. Biomonitoring of Mycotoxins in Plasma of Patients with Alzheimer's and Parkinson's Disease. Toxins (Basel) 2021; 13:477. [PMID: 34357949 PMCID: PMC8310068 DOI: 10.3390/toxins13070477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure to environmental contaminants might play an important role in neurodegenerative disease pathogenesis, such as Parkinson´s disease (PD) and Alzheimer´s disease (AD). For the first time in Spain, the plasmatic levels of 19 mycotoxins from patients diagnosed with a neurodegenerative disease (44 PD and 24 AD) and from their healthy companions (25) from La Rioja region were analyzed. The studied mycotoxins were aflatoxins B1, B2, G1, G2 and M1, T-2 and HT-2, ochratoxins A (OTA) and B (OTB), zearalenone, sterigmatocystin (STER), nivalenol, deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, deepoxy-deoxynivalenol, neosolaniol, diacetoxyscirpenol and fusarenon-X. Samples were analyzed by LC-MS/MS before and after treatment with β-glucuronidase/arylsulfatase in order to detect potential metabolites. Only OTA, OTB and STER were detected in the samples. OTA was present before (77% of the samples) and after (89%) the enzymatic treatment, while OTB was only detectable before (13%). Statistically significant differences in OTA between healthy companions and patients were observed but the observed differences might seem more related to gender (OTA levels higher in men, p-value = 0.0014) than the disease itself. STER appeared only after enzymatic treatment (88%). Statistical analysis on STER, showed distributions always different between healthy controls and patients (patients' group > controls, p-value < 0.0001). Surprisingly, STER levels weakly correlated positively with age in women (rho = 0.3384), while OTA correlation showed a decrease of levels with age especially in the men with PD (rho = -0.4643).
Collapse
Affiliation(s)
- Beatriz Arce-López
- Department of Pharmaceutical Technology and Chemistry, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (B.A.-L.); (E.L.); (E.G.-P.)
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3rd Floor, 26006 Logroño, Spain; (L.A.-E.); (M.I.)
| | - Barbara De Santis
- National Reference Laboratory for Mycotoxins and Plant Toxins, Istituto Superiore di Sanità, 00161 Roma, Italy; (B.D.S.); (F.D.)
| | - María Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Piqueras 98, 3rd Floor, 26006 Logroño, Spain; (L.A.-E.); (M.I.)
| | - Silvia López-Calvo
- Servicio de Neurología, Hospital San Pedro, Piqueras 98, 26006 Logroño, Spain; (S.L.-C.); (M.E.M.-S.)
| | - Maria Eugenia Marzo-Sola
- Servicio de Neurología, Hospital San Pedro, Piqueras 98, 26006 Logroño, Spain; (S.L.-C.); (M.E.M.-S.)
| | - Francesca Debegnach
- National Reference Laboratory for Mycotoxins and Plant Toxins, Istituto Superiore di Sanità, 00161 Roma, Italy; (B.D.S.); (F.D.)
| | - Elena Lizarraga
- Department of Pharmaceutical Technology and Chemistry, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (B.A.-L.); (E.L.); (E.G.-P.)
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (B.A.-L.); (E.L.); (E.G.-P.)
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
12
|
Chen MH, Wang TJ, Chen LJ, Jiang MY, Wang YJ, Tseng GF, Chen JR. The effects of astaxanthin treatment on a rat model of Alzheimer's disease. Brain Res Bull 2021; 172:151-163. [PMID: 33932491 DOI: 10.1016/j.brainresbull.2021.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/03/2021] [Accepted: 04/25/2021] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by memory loss and dementia, could be a consequence of the abnormalities of cortical milieu, such as oxidative stress, inflammation, and/or accompanied with the aggregation of β-amyloid. The majority of AD patients are sporadic, late-onset AD, which predominantly occurs over 65 years of age. Our results revealed that the ferrous amyloid buthionine (FAB)-infused sporadic AD-like model showed deficits in spatial learning and memory and with apparent loss of choline acetyltransferase (ChAT) expression in medial septal (MS) nucleus. In hippocampal CA1 region, the loss of pyramidal neurons was accompanied with cholinergic fiber loss and neuroinflammatory responses including glial reaction and enhanced expression of inducible nitric oxide synthase (iNOS). Surviving hippocampal CA1 pyramidal neurons showed the reduction of dendritic spines as well. Astaxanthin (ATX), a potent antioxidant, reported to improve the outcome of oxidative-stress-related diseases. The ATX treatment in FAB-infused rats decreased neuroinflammation and restored the ChAT + fibers in hippocampal CA1 region and the ChAT expression in MS nucleus. It also partly recovered the spine loss on hippocampal CA1 pyramidal neurons and ameliorated the behavioral deficits in AD-like rats. From these data, we believed that the ATX can be a potential option for slowing the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Mu-Hsuan Chen
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Tsyr-Jiuan Wang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Li-Jin Chen
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Ming-Ying Jiang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yueh-Jan Wang
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan.
| | - Jeng-Rung Chen
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan; Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
13
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
14
|
Ashraf GM, Ebada MA, Suhail M, Ali A, Uddin MS, Bilgrami AL, Perveen A, Husain A, Tarique M, Hafeez A, Alexiou A, Ahmad A, Kumar R, Banu N, Najda A, Sayed AA, Albadrani GM, Abdel-Daim MM, Peluso I, Barreto GE. Dissecting Sex-Related Cognition between Alzheimer's Disease and Diabetes: From Molecular Mechanisms to Potential Therapeutic Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4572471. [PMID: 33747345 PMCID: PMC7960032 DOI: 10.1155/2021/4572471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/31/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
The brain is a sexually dimorphic organ that implies different functions and structures depending on sex. Current pharmacological approaches against different neurological diseases act distinctly in male and female brains. In all neurodegenerative diseases, including Alzheimer's disease (AD), sex-related outcomes regarding pathogenesis, prevalence, and response to treatments indicate that sex differences are important for precise diagnosis and therapeutic strategy. Pathogenesis of AD includes vascular dementia, and in most cases, this is accompanied by metabolic complications with similar features as those assembled in diabetes. This review discusses how AD-associated dementia and diabetes affect cognition in relation to sex difference, as both diseases share similar pathological mechanisms. We highlight potential protective strategies to mitigate amyloid-beta (Aβ) pathogenesis, emphasizing how these drugs act in the male and female brains.
Collapse
Affiliation(s)
- Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Ahmed Ebada
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf Ali
- Department of Sciences of Agriculture, Food, Natural Resources, and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Anwar L. Bilgrami
- Department of Entomology, Rutgers University, New Brunswick, NJ 018901, USA
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Amjad Husain
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
- Centre for Science and Society, IISER Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship, IISER Bhopal, India
| | - Mohd Tarique
- Department of Child Health, University of Missouri, Columbia, MO 65201, USA
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, New South Wales, Australia
- AFNP Med Austria, Wien, Austria
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Naheed Banu
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
15
|
Pakravan N, Abbasi A, Basirat E, Dehghan D, Heydari Havadaragh S. Harmony of T cell profile in brain, nasal, spleen, and cervical lymph nodes tissues in Alzheimer's: A systemic disease with local manifestations. Int Immunopharmacol 2021; 91:107306. [PMID: 33383443 DOI: 10.1016/j.intimp.2020.107306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
The brain has special importance and is known as immune privileged site to and from which trafficking of immune cells is tightly regulated. However, in Alzheimer's disease (AD) the balance of the immune system is disturbed and damages the brain. Given the anatomical and immunological barriers in the brain, we attempted to evaluate if the neuroinflammation occurred in AD is limited to the brain or is expanded to the periphery. Hence, rat model of AD was induced by intra-hippocampal injection of beta-amyloid1-42. Then, nasal, brain, cervical lymph nodes, and spleen were isolated. Then, profile of T-helper (Th)1, Th2, and Th17, represented by IFN-γ, IL-4, and IL-17, respectively, was determined. The results were compared between the organs and with the corresponding tissue in normal animals. IFN-γ and IL-17 levels in the brain, nasal tissue, and cervical lymph nodes of AD model were higher than IL-4, comparing with normal animals. Similar profile was observed in the spleen. The results suggest Alzheimer's as a systemic disease whose complication are observed locally. The possibility of epitope spreading and autoimmune nature of AD is raised again. Interestingly, although AD model was induced by injection of beta-amyloid in the brain, the cellular responses in the brain and nasal tissue were similar indicating that the nasal-brain axis is two-sided. In addition, both of IFN-γ/IL-17 and IL-4/IL-17 ratios, just in nasal tissue were markedly decreased in AD model comparing with normal animals. This suggests development of future nasal-based diagnostic approaches.
Collapse
Affiliation(s)
- Nafiseh Pakravan
- Division of Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran.
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Erfan Basirat
- Student Research Committee, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | - Danial Dehghan
- Student Research Committee, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | | |
Collapse
|
16
|
Perera G, Mueller C, Stewart R. Factors associated with slow progression of cognitive impairment following first dementia diagnosis. Int J Geriatr Psychiatry 2021; 36:271-285. [PMID: 32881117 DOI: 10.1002/gps.5420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To investigate the extent to which slow progression of dementia after diagnosis might be predicted from routine longitudinal healthcare data, in order to clarify characteristics of people who experience this outcome. METHODS A retrospective observational study was conducted using data from the South London and Maudsley NHS Foundation Trust Biomedical Research Centre Case Register. This study included all patients receiving a first dementia diagnosis between 2006 and 2017, restricted to those with a baseline Mini-Mental State Examination (MMSE) score within 6 months of initial diagnosis of dementia and at least one MMSE score after 3 years post-diagnosis. Slow progression was defined as a change in MMSE score of -1, 0 or an increase at the follow-up point. This group was compared to the remainder with an MMSE decline of -2 or more. RESULTS Overall, 682 patients with slow progression were compared to 1045 with faster progression. In the confounder-adjusted multivariate logistic regression model, slow progression was more likely in younger patients (age 65-74 years; odds ratio: 1.18; 95% confidence intervals: 1.04-1.37), males (1.24; 1.01-1.53), those with moderate or severe dementia according to MMSE, patients with mixed-type dementia (2.06; 1.11-3.82) compared to Alzheimer's disease and less likely in those receiving acetylcholinesterase inhibitor (AChEI) treatment (0.57; 0.46-0.71). CONCLUSION Slow dementia progression after diagnosis was common in patients with mixed Alzheimer's and vascular dementia, younger age, males and non-receipt of AChEIs, possibly suggesting non-Alzheimer pathologies and clarifying such predictors is important, as there is currently very limited information on which to base prognosis estimates in post-diagnosis counselling.
Collapse
Affiliation(s)
- Gayan Perera
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christoph Mueller
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Robert Stewart
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer's Disease: Causes and Treatment. Molecules 2020; 25:E5789. [PMID: 33302541 PMCID: PMC7764106 DOI: 10.3390/molecules25245789] [Citation(s) in RCA: 1058] [Impact Index Per Article: 211.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a disorder that causes degeneration of the cells in the brain and it is the main cause of dementia, which is characterized by a decline in thinking and independence in personal daily activities. AD is considered a multifactorial disease: two main hypotheses were proposed as a cause for AD, cholinergic and amyloid hypotheses. Additionally, several risk factors such as increasing age, genetic factors, head injuries, vascular diseases, infections, and environmental factors play a role in the disease. Currently, there are only two classes of approved drugs to treat AD, including inhibitors to cholinesterase enzyme and antagonists to N-methyl d-aspartate (NMDA), which are effective only in treating the symptoms of AD, but do not cure or prevent the disease. Nowadays, the research is focusing on understanding AD pathology by targeting several mechanisms, such as abnormal tau protein metabolism, β-amyloid, inflammatory response, and cholinergic and free radical damage, aiming to develop successful treatments that are capable of stopping or modifying the course of AD. This review discusses currently available drugs and future theories for the development of new therapies for AD, such as disease-modifying therapeutics (DMT), chaperones, and natural compounds.
Collapse
Affiliation(s)
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| |
Collapse
|
18
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
19
|
Askarova S, Umbayev B, Masoud AR, Kaiyrlykyzy A, Safarova Y, Tsoy A, Olzhayev F, Kushugulova A. The Links Between the Gut Microbiome, Aging, Modern Lifestyle and Alzheimer's Disease. Front Cell Infect Microbiol 2020; 10:104. [PMID: 32257964 PMCID: PMC7093326 DOI: 10.3389/fcimb.2020.00104] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Gut microbiome is a community of microorganisms in the gastrointestinal tract. These bacteria have a tremendous impact on the human physiology in healthy individuals and during an illness. Intestinal microbiome can influence one's health either directly by secreting biologically active substances such as vitamins, essential amino acids, lipids et cetera or indirectly by modulating metabolic processes and the immune system. In recent years considerable information has been accumulated on the relationship between gut microbiome and brain functions. Moreover, significant quantitative and qualitative changes of gut microbiome have been reported in patients with Alzheimer's disease. On the other hand, gut microbiome is highly sensitive to negative external lifestyle aspects, such as diet, sleep deprivation, circadian rhythm disturbance, chronic noise, and sedentary behavior, which are also considered as important risk factors for the development of sporadic Alzheimer's disease. In this regard, this review is focused on analyzing the links between gut microbiome, modern lifestyle, aging, and Alzheimer's disease.
Collapse
Affiliation(s)
- Sholpan Askarova
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tajbakhsh A, Rezaee M, Barreto GE, Moallem SA, Henney NC, Sahebkar A. The role of nuclear factors as “Find-Me”/alarmin signals and immunostimulation in defective efferocytosis and related disorders. Int Immunopharmacol 2020; 80:106134. [DOI: 10.1016/j.intimp.2019.106134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
21
|
Liyanage SI, Weaver DF. Misfolded proteins as a therapeutic target in Alzheimer's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:371-411. [PMID: 31928732 DOI: 10.1016/bs.apcsb.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For decades, Alzheimer's Disease (AD) was defined as a disorder of protein misfolding and aggregation. In particular, the extracellular peptide fragment: amyloid-β (Aβ), and the intracellular microtubule-associated protein: tau, were thought to initiate a neurodegenerative cascade which culminated in AD's progressive loss of memory and executive function. As such, both proteins became the focus of intense scrutiny, and served as the principal pathogenic target for hundreds of clinical trials. However, with varying efficacy, none of these investigations produced a disease-modifying therapy - offering patients with AD little recourse aside from transient, symptomatic medications. The near universal failure of clinical trials is unprecedented for a major research discipline. In part, this has motivated an increasing skepticism of the relevance of protein misfolding to AD's etiology. Several recent observations, principally the presence of significant protein pathologies in non-demented seniors, have lent credence to an apparent cursory role for Aβ and tau. Herein, we review both Aβ and tau, examining the processes from their biosynthesis to their pathogenesis and evaluate their vulnerability to medicinal intervention. We further attempt to reconcile the apparent failure of trials with the potential these targets hold. Ultimately, we seek to answer if protein misfolding is a viable platform in the pursuit of a disease-arresting strategy for AD.
Collapse
Affiliation(s)
- S Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Departments of Medicine (Neurology), Chemistry and Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Wang Y, Shen J, Yang X, Jin Y, Yang Z, Wang R, Zhang F, Linhardt RJ. Akebia saponin D reverses corticosterone hypersecretion in an Alzheimer's disease rat model. Biomed Pharmacother 2018; 107:219-225. [PMID: 30092401 DOI: 10.1016/j.biopha.2018.07.149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/15/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Glucocorticoid hormones are implicated in the pathogenesis of Alzheimer's disease (AD) and other diseases including diabetes, hyperlipidemia, and osteoporosis. Akebia saponin D (ASD) possesses numerous pharmacological activities, including as an anti-AD, anti-hyperlipidemia, anti-diabetes, and anti-osteoporosis agent. The anti-AD effect of ASD is possibly through its regulation of glucocorticoid levels. PURPOSE The present study was undertaken to investigate the neuroprotective effects of ASD on Aβ25-35-induced cognitive deficits and to elucidate its underlying mechanism of action. METHODS The AD rat model was established by an intracerebroventricular injection of Aβ25-35 into the lateral ventricles. Spatial learning and anxiety state were assessed by Morris water maze task and elevated plus-maze assay, respectively. The degree of hypertrophy of adrenal gland was analyzed using the viscera coefficient. Corticosterone and ACTH concentrations in the plasm were measured using biochemical assay kits. The activity of 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1) in liver and groin fat pad was assessed by measuring cortisol production. RESULTS Compared with the control group, AD rats displayed significant spatial learning and reference memory impairments, serious anxiety disorders, obvious hypertrophy of adrenal gland, elevated corticosterone and ACTH levels in the plasma, and increased 11β-HSD1 activity in liver and groin fat pad. ASD could significantly ameliorate the memory deficits and anxiety symptoms, markedly reduce the viscera coefficient of adrenal gland, observably decrease corticosterone and ACTH concentrations, and showed no effect on the activity of 11β-HSD1. CONCLUSIONS These results indicate that ASD might exert a significant neuroprotective effect on cognitive impairment, driven in part by reducing systemic corticosterone level by down-regulation of the hypothalamic-pituitary-adrenal (HPA) axis.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Pharmacology, Guilin Medical University, Guilin, China
| | - Jinyang Shen
- State Key laboratory of natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaolin Yang
- Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ye Jin
- Pharmacy Department, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, China
| | - Zhonglin Yang
- State Key laboratory of natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Rufeng Wang
- Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Material Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemistry, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Departments of Biology, Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
23
|
Cui B, Su D, Li W, She X, Zhang M, Wang R, Zhai Q. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: implications for Alzheimer's disease. J Neuroinflammation 2018; 15:190. [PMID: 29933742 PMCID: PMC6015475 DOI: 10.1186/s12974-018-1223-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Chronic noise exposure is associated with neuroinflammation and gut microbiota dysregulation and increases the risk of Alzheimer’s disease (AD). Environmental hazards are also thought to be associated with genetic susceptibility factors that increase AD pathogenesis. However, there is limited experimental evidence regarding the link between chronic noise stress and microbiome-gut-brain axis alterations, which may be closely related to AD development. Methods The aim of the present study was to systematically investigate the effects of chronic noise exposure on the microbiome-gut-brain axis in the senescence-accelerated mouse prone 8 (SAMP8) strain. We established SAMP8 mouse models to examine the consequences of noise exposure on the microbiome-gut-brain axis. Hippocampal amyloid-β (Aβ) assessment and the Morris water maze were used to evaluate AD-like changes, 16S ribosomal RNA sequencing analyses were used for intestinal flora measurements, and assessment of endothelial tight junctions and serum neurotransmitter and inflammatory mediator levels, as well as fecal microbiota transplant, was conducted to explore the underlying pathological mechanisms. Results Chronic noise exposure led to cognitive impairment and Aβ accumulation in young SAMP8 mice, similar to that observed in aging SAMP8 mice. Noise exposure was also associated with decreased gut microbiota diversity and compositional alterations. Axis-series studies showed that endothelial tight junction proteins were decreased in both the intestine and brain, whereas serum neurotransmitter and inflammatory mediator levels were elevated in young SAMP8 mice exposed to chronic noise, similar to the observations made in the aging group. The importance of intestinal bacteria in noise exposure-induced epithelial integrity impairment and Aβ accumulation was further confirmed through microbiota transplantation experiments. Moreover, the effects of chronic noise were generally intensity-dependent. Conclusion Chronic noise exposure altered the gut microbiota, accelerated age-related neurochemical and inflammatory dysregulation, and facilitated AD-like changes in the brain of SAMP8 mice. Electronic supplementary material The online version of this article (10.1186/s12974-018-1223-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Cui
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Donghong Su
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Wenlong Li
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Xiaojun She
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ming Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Rui Wang
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| | - Qingfeng Zhai
- School of Public Health and Management, Weifang Medical University, Weifang, China
| |
Collapse
|
24
|
Barocco F, Spallazzi M, Concari L, Gardini S, Pelosi A, Caffarra P. The Progression of Alzheimer's Disease: Are Fast Decliners Really Fast? A Four-Year Follow-Up. J Alzheimers Dis 2017; 57:775-786. [PMID: 28304306 PMCID: PMC5389047 DOI: 10.3233/jad-161264] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: The rate of cognitive and functional decline in Alzheimer’s disease (AD) changes across individuals. Objectives: Our purpose was to assess whether the concept of “fast decline” really fits its definition and whether cognitive and functional variables at onset can predict the progression of AD. Methods: 324 AD patients were included. We retrospectively examined their Mini-Mental State Examination (MMSE) total score and sub-items, Activities of Daily Living (ADL), and Instrumental Activities of Daily Living (IADL) at baseline and every six months for a 4-year follow-up. Patients were divided into “fast decliners” (n = 62), defined by a loss ≥5 points on the MMSE score within the first year from the baseline; “intermediate decliners” (n = 37), by a loss ≥5 points after the first year and before the 18th month; or “slow decliners” (n = 225), composed of the remaining patients. Results: At baseline, the groups did not differ on demographic, clinical, and cognitive variables. The decline at the end of the 4-year follow-up period seems to be similar among the different decline clusters. Predictors of disease progression have not been identified; only the MMSE total score at 12 months <14/30 was indicative of a poor prognosis. Conclusions: Even with the limitation due to the small sample size, the lack of differences in the disease progression in time in the different clusters suggest the inconsistency of the so-called “fast decliners”. This study was unable to show any significant difference among clusters of AD progression within a 4-year time interval. Further studies should better clarify whether a more consistent distinction exists between slow and fast decliners.
Collapse
Affiliation(s)
- Federica Barocco
- Section of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marco Spallazzi
- Section of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Annalisa Pelosi
- Section of Psychology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paolo Caffarra
- Section of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
25
|
Characterization of plasma metal profiles in Alzheimer's disease using multivariate statistical analysis. PLoS One 2017; 12:e0178271. [PMID: 28719622 PMCID: PMC5515399 DOI: 10.1371/journal.pone.0178271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/10/2017] [Indexed: 12/04/2022] Open
Abstract
The exact cause of Alzheimer’s disease (AD) and the role of metals in its etiology remain unclear. We have used an analytical approach, based on inductively coupled plasma mass spectrometry coupled with multivariate statistical analysis, to study the profiles of a wide range of metals in AD patients and healthy controls. AD cannot be cured and the lack of sensitive biomarkers that can be used in the early stages of the disease may contribute to this treatment failure. In the present study, we measured plasma levels of amyloid-β1–42(0.142±0.029μg/L)and furin(2.292±1.54μg/L), together with those of the metalloproteinases, insulin-degrading enzyme(1.459±1.14μg/L) and neprilysin(0.073±0.015μg/L), in order to develop biomarkers for AD. Partial least squares discriminant analysis models were used to refine intergroup differences and we discovered that four metals(Mn, Al, Li, Cu) in peripheral blood were strongly associated with AD. Aberration in homeostasis of these metals may alter levels of proteinases, such as furin, which are associated with neurodegeneration in AD and can be a used as plasma-based biomarkers.
Collapse
|
26
|
Sun X, Ma R, Yao X, Shang X, Wang Q, Wang JZ, Liu G. Concanavalin agglutinin levels are decreased in peripheral blood of Alzheimer's disease patients. J Alzheimers Dis 2016; 49:63-72. [PMID: 26444791 DOI: 10.3233/jad-150539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) seriously threatens patients' lives and causes severe burden to the families. Early prevention and treatment can alleviate the development of the disease; therefore it is important to find new effective and non-traumatic biomarkers for early diagnosis. In this study, peripheral blood samples were collected from 24 AD patients and the same number of age- and gender-matched control subjects. Lectin reactive glycosylation levels including beta-D-galactosyl ricinus communis agglutinin 120 (RCA), peanut agglutinin (PNA), concanavalin agglutinin (Con A), alpha-L-fucosyl ulex europeus agglutinin (UEA), dolichos biflorus agglutinin (DBA), and galanthus nivalis (GNL), in the red blood cells of peripheral blood were examined by western blotting. We found that lectin levels were altered with aging and gender; some lectin levels were different between AD patients and the control subjects. Only Con A levels were significantly decreased in AD patients compared to age-matched control subjects. These results suggest that Con A levels in peripheral blood may be a potent diagnostic marker for AD.
Collapse
Affiliation(s)
- Xuying Sun
- Department of Translational Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Pathophysiology, The School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Key Laboratory of Ministry of Education for Neurological Disorders, The School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ronghong Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiuqing Yao
- Department of Pathophysiology, The School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Key Laboratory of Ministry of Education for Neurological Disorders, The School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiaoling Shang
- Department of Pathophysiology, The School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Key Laboratory of Ministry of Education for Neurological Disorders, The School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qun Wang
- Department of Pathophysiology, The School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Key Laboratory of Ministry of Education for Neurological Disorders, The School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jian-Zhi Wang
- Department of Pathophysiology, The School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Key Laboratory of Ministry of Education for Neurological Disorders, The School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gongping Liu
- Department of Pathophysiology, The School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Key Laboratory of Ministry of Education for Neurological Disorders, The School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
27
|
Athanasopoulos D, Karagiannis G, Tsolaki M. Recent Findings in Alzheimer Disease and Nutrition Focusing on Epigenetics. Adv Nutr 2016; 7:917-27. [PMID: 27633107 PMCID: PMC5015036 DOI: 10.3945/an.116.012229] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disease with no effective cure so far. The current review focuses on the epigenetic mechanisms of AD and how nutrition can influence the course of this disease through regulation of gene expression, according to the latest scientific findings. The search strategy was the use of scientific databases such as PubMed and Scopus in order to find relative research or review articles published in the years 2012-2015. By showing the latest data of various nutritional compounds, this study aims to stimulate the scientific community to recognize the value of nutrition in this subject. Epigenetics is becoming a very attractive subject for researchers because it can shed light on unknown aspects of complex diseases like AD. DNA methylation, histone modifications, and microRNAs are the principal epigenetic mechanisms involved in AD pathophysiology. Nutrition is an environmental factor that is related to AD through epigenetic pathways. Vitamin B-12, for instance, can alter the one-carbon metabolism and thus interfere in the DNA methylation process. The research results might seem ambiguous about the clinical role of nutrition, but there is strengthening evidence that proper nutrition can not only change epigenetic biomarker levels but also prevent the development of late-onset AD and attenuate cognition deficit. Nutrition might grow to become a preventive and even therapeutic alternative against AD, especially if combined with other antidementia interventions, brain exercise, physical training, etc. Epigenetic biomarkers can be a very helpful tool to help researchers find the exact nutrients needed to create specific remedies, and perhaps the same biomarkers can be used even in patient screening in the future.
Collapse
Affiliation(s)
| | | | - Magda Tsolaki
- Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece; and Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
| |
Collapse
|
28
|
Zhu YP, Feng Y, Liu T, Wu YC. Epigenetic Modification and Its Role in Alzheimer's Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.1159/000437329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
|
30
|
Lin Q, Cao Y, Gao J. Serum calreticulin is a negative biomarker in patients with Alzheimer's disease. Int J Mol Sci 2014; 15:21740-53. [PMID: 25429433 PMCID: PMC4284675 DOI: 10.3390/ijms151221740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 11/16/2022] Open
Abstract
Calreticulin is down-regulated in the cortical neurons of patients with Alzheimer's disease (AD) and may be a potential biomarker for the diagnosis of AD. A total of 128 AD patients were randomly recruited from May 2012 to July 2013. The mRNA levels of calreticulin were measured from the serum of tested subjects using real-time quantitative reverse transcriptase-PCR (real-time qRT-PCR). Serum levels of calreticulin were determined by ELISA and Western Blot. Serum levels of calreticulin in AD patients were significantly lower than those from a healthy group (p < 0.01). The baseline characters indicated that sample size, gender, mean age, diabetes and BMI (body mass index) were not major sources of heterogeneity. The serum levels of mRNA and protein of calreticulin were lower in AD patients than those from a healthy group, and negatively associated with the progression of AD according to CDR scores (p < 0.01). Thus, there is a trend toward decreased serum levels of calreticulin in the patients with progression of AD. Serum levels of calreticulin can be a negative biomarker for the diagnosis of AD patients.
Collapse
Affiliation(s)
- Qiao Lin
- Department of Internal Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China.
| | - Yunpeng Cao
- Neural Department of Internal Medicine, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Jie Gao
- Department of Anatomy, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|