1
|
Ma HY, Chen XY, Jin H, Deng YY, Xiong YM, Chang X, Kong XH, Li M. Correlation analysis of structural and functional changes in the carotid artery in patients with H-type hypertension using ultrasound radiofrequency. Vascular 2024; 32:768-773. [PMID: 37616577 DOI: 10.1177/17085381231194149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
OBJECTIVES To perform a correlation analysis on the structural and functional changes of the carotid artery in patients with H-type hypertension. METHODS Outpatients and inpatients with hypertension in our hospital between 2017 and 2018 were selected and divided into the H-type hypertension group (primary hypertension + plasma homocysteine ≥ 10 umol/l) (n = 30) and the simple hypertension group (primary hypertension + plasma Hcy < 10 umol/l) (n = 30) based on the plasma homocysteine (Hcy), and 30 healthy people were included in the control group. Thickness and stiffness parameters of the intima of the carotid artery (compliance coefficient [CC], stiffness index [β], and pulse wave velocity [PWV]) were measured for all study participants using ultrasound radiofrequency signal-based quality intima-media thickness (QIMT) and quantitative arterial stiffness (QAS) for contrast analysis. RESULTS Indexes such as QIMT, β, and PWV of the carotid artery were significantly higher, and the CC was significantly lower in the H-type hypertension group and simple hypertension group than the control group (p < .05), and the difference was statistically significant; these indexes were significantly higher in the H-type hypertension group than in the simple hypertension group, and the CC was significantly lower than in the control group (p < .05), and the difference was statistically significant. CONCLUSIONS Hypertension can accelerate structural and functional changes of the carotid artery intima, with these changes being more significant in H-type hypertension. The ultrasound radiofrequency technique can be used to quantitatively evaluate the structure and function of the carotid artery in patients with H-type hypertension.
Collapse
Affiliation(s)
- Hai-Yan Ma
- Department of Ultrasound Imaging, Huangshi Aikang Hospital Affiliated to Hubei Institute of Technology, Huangshi, China
| | - Xue-Ying Chen
- Department of Ultrasound Imaging, The Central Hospital of Jingmen, Jingmen, China
| | - Hong Jin
- Department of Ultrasound Imaging, The Central Hospital of Jingmen, Jingmen, China
| | - Yao-Yao Deng
- Department of Ultrasound Imaging, The Central Hospital of Jingmen, Jingmen, China
| | - Ya-Ming Xiong
- Department of Ultrasound Imaging, The Central Hospital of Jingmen, Jingmen, China
| | - Xuan Chang
- Department of Medical Laboratory, The Central Hospital of Jingmen, Jingmen, China
| | - Xiang-Hui Kong
- Department of Cardiology, The Central Hospital of Jingmen, Jingmen, China
| | - Ming Li
- Department of Ultrasound Imaging, The Central Hospital of Jingmen, Jingmen, China
| |
Collapse
|
2
|
Gu Y, Shi D, Shen H, Wang Y, Xu D, Xiao A, Jin D, Lu K, Cai W, Xu L. Nomogram Based on Dual-Layer Spectral Detector CTA Parameter for the Prediction of Infarct Core in Patients with Acute Ischemic Stroke. Diagnostics (Basel) 2023; 13:3434. [PMID: 37998572 PMCID: PMC10670594 DOI: 10.3390/diagnostics13223434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Background: Acute ischemic stroke (AIS) is time-sensitive. The accurate identification of the infarct core and penumbra areas in AIS patients is an important basis for formulating treatment plans, and is the key to dual-layer spectral detector computed tomography angiography (DLCTA), a safer and more accurate diagnostic method for AIS that will replace computed tomography perfusion (CTP) in the future. Thus, this study aimed to investigate the value of DLCTA in differentiating infarct core from penumbra in patients with AIS to establish a nomogram combined with spectral computed tomography (CT) parameters for predicting the infarct core and performing multi-angle evaluation. (2) Methods: Data for 102 patients with AIS were retrospectively collected. All patients underwent DLCTA and CTP. The patients were divided into the non-infarct core group and the infarct core group, using CTP as the reference. Multivariate logistic regression analysis was used to screen predictors related to the infarct core and establish a nomogram model. The receiver operating characteristic (ROC) curve, the calibration curve, and decision curve analysis (DCA) were used to evaluate the predictive efficacy, accuracy, and clinical practicability of the model, respectively. (3) Results: Multivariate logistic analysis identified three independent predictors: iodine density (OR: 0.022, 95% CI: 0.003-0.170, p < 0.001), hypertension (OR: 7.179, 95% CI: 1.766-29.186, p = 0.006), and triglycerides (OR: 0.255, 95% CI: 0.109-0.594, p = 0.002). The AUC-ROC of the nomogram was 0.913. Calibration was good. Decision curve analysis was clinically useful. (4) Conclusions: The spectral CT parameters, specifically iodine density values, effectively differentiate between the infarct core and penumbra areas in patients with AIS. The nomogram, based on iodine density values, showed strong predictive power, discrimination, and clinical utility to accurately predict infarct core in AIS patients.
Collapse
Affiliation(s)
- Yan Gu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.G.); (D.S.); (Y.W.); (D.X.); (A.X.); (D.J.); (K.L.); (W.C.)
| | - Dai Shi
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.G.); (D.S.); (Y.W.); (D.X.); (A.X.); (D.J.); (K.L.); (W.C.)
| | - Hao Shen
- Department of Medical Oncology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230000, China;
| | - Yeqing Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.G.); (D.S.); (Y.W.); (D.X.); (A.X.); (D.J.); (K.L.); (W.C.)
| | - Dandan Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.G.); (D.S.); (Y.W.); (D.X.); (A.X.); (D.J.); (K.L.); (W.C.)
| | - Aoqi Xiao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.G.); (D.S.); (Y.W.); (D.X.); (A.X.); (D.J.); (K.L.); (W.C.)
| | - Dan Jin
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.G.); (D.S.); (Y.W.); (D.X.); (A.X.); (D.J.); (K.L.); (W.C.)
| | - Kuan Lu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.G.); (D.S.); (Y.W.); (D.X.); (A.X.); (D.J.); (K.L.); (W.C.)
| | - Wu Cai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.G.); (D.S.); (Y.W.); (D.X.); (A.X.); (D.J.); (K.L.); (W.C.)
| | - Liang Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China; (Y.G.); (D.S.); (Y.W.); (D.X.); (A.X.); (D.J.); (K.L.); (W.C.)
| |
Collapse
|
3
|
Huang J, Chen J, Wang X, Hao L, Zhang J, Zhang X, Sheng Z, Liu K. The diagnostic value of quantitative parameters on dual-layer detector-based spectral CT in identifying ischaemic stroke. Front Neurol 2023; 14:1056941. [PMID: 36908613 PMCID: PMC9996291 DOI: 10.3389/fneur.2023.1056941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Objective To investigate the diagnostic value of quantitative parameters of spectral computed tomography (CT) in ischaemic stroke areas. Methods The medical records of 57 patients with acute ischaemic stroke (AIS) who underwent plain computed tomography (CT) head scans, CT angiography (CTA), and CT perfusion (CTP) were retrospectively reviewed. The ischaemic areas (including the core infarct area and penumbra) and non-ischaemic areas in each patient were quantitatively analyzed using F-STROKE software. Two independent readers measured the corresponding values of the spectroscopic quantitative parameters (effective atomic number [Zeff value], iodine density value, and iodine-no-water value) in the ischaemic area and contralateral normal area alone. The differences in spectroscopic quantitative parameters between the two groups were compared, and their diagnostic efficacy was obtained. Results The Zeff, iodine-no-water value, and iodine density value of the ischaemic area all showed significant lower than those of non-ischaemic tissue (P < 0.001). For differentiating the ischaemic area from non-ischaemic tissue, the area under the curve (AUC) of the Zeff value reached 0.869 (cut-off value: 7.385; sensitivity: 93.0%; specificity: 70.2%), the AUC of the iodine density value reached 0.932 (cut-off value: 0.235; sensitivity: 91.2%; specificity: 82.5%), and the AUC of the iodine-no-water value reached 0.922 (cut-off value: 0.205; sensitivity: 96.5%; specificity: 78.9%). Conclusion The study showed the spectral CT would be a potential novel rapid method for identifying AIS. The spectral CT quantitative parameters (Zeff, iodine density values, and iodine-no-water values) can effectively differentiate the ischaemic area from non-ischaemic tissue in stroke patients.
Collapse
Affiliation(s)
- Jian Huang
- Department of Radiology, Taicang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Taicang, Jiangsu, China.,Department of Radiology, Taicang Hospital, The Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Jinghua Chen
- Department of Radiology, Taicang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Taicang, Jiangsu, China.,Department of Radiology, Taicang Hospital, The Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Ximing Wang
- Department of Radiology, First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu, China
| | - Ling Hao
- Department of Radiology, Taicang Hospital, The Affiliated Hospital of Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Jinfeng Zhang
- Department of Neurology, Taicang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Taicang, Jiangsu, China
| | - Xiaohui Zhang
- Clinical Science, Philips Healthcare, Shanghai, China
| | | | - Kefu Liu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Iyer MR, Kundu B, Wood CM. Soluble epoxide hydrolase inhibitors: an overview and patent review from the last decade. Expert Opin Ther Pat 2022; 32:629-647. [PMID: 35410559 DOI: 10.1080/13543776.2022.2054329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Biological effects mediated by the CYP450 arm of arachidonate cascade implicate the enzyme-soluble epoxide hydrolase (sEH) in hydrolyzing anti-inflammatory epoxy fatty acids to pro-inflammatory diols. Hence, inhibiting the sEH offers a therapeutic approach to treating inflammatory diseases. Over three decades of work has shown the role of sEH inhibitors (sEHis) in treating various disorders in rodents and larger veterinary subjects. Novel chemical strategies to enhance the efficacy of sEHi have now appeared. AREAS COVERED A comprehensive review of patent literature related to soluble epoxide hydrolase inhibitors in the last decade (2010-2021) is provided. EXPERT OPINION Soluble epoxide hydrolase (sEH) is an important enzyme that metabolizes the bioactive epoxy fatty acids (EFAs) in the arachidonic acid signaling pathway and converts them to vicinal diols, which appear to be pro-inflammatory. Inhibition of sEH hence offers a mechanism to increase in vivo epoxyeicosanoid levels and resolve pro-inflammatory pathways in disease states. Significant efforts in the field have led to potent single target as well as multi-target inhibitors with promising in vitro and widely encompassing in vivo activities. Successful clinical translation of compounds targeting sEH inhibition will further validate the promised therapeutic potential of this pathway in treating human diseases.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| | - Biswajit Kundu
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| | - Casey M Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States
| |
Collapse
|
5
|
Alarmins and c-Jun N-Terminal Kinase (JNK) Signaling in Neuroinflammation. Cells 2020; 9:cells9112350. [PMID: 33114371 PMCID: PMC7693759 DOI: 10.3390/cells9112350] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is involved in the progression or secondary injury of multiple brain conditions, including stroke and neurodegenerative diseases. Alarmins, also known as damage-associated molecular patterns, are released in the presence of neuroinflammation and in the acute phase of ischemia. Defensins, cathelicidin, high-mobility group box protein 1, S100 proteins, heat shock proteins, nucleic acids, histones, nucleosomes, and monosodium urate microcrystals are thought to be alarmins. They are released from damaged or dying cells and activate the innate immune system by interacting with pattern recognition receptors. Being principal sterile inflammation triggering agents, alarmins are considered biomarkers and therapeutic targets. They are recognized by host cells and prime the innate immune system toward cell death and distress. In stroke, alarmins act as mediators initiating the inflammatory response after the release from the cellular components of the infarct core and penumbra. Increased c-Jun N-terminal kinase (JNK) phosphorylation may be involved in the mechanism of stress-induced release of alarmins. Putative crosstalk between the alarmin-associated pathways and JNK signaling seems to be inherently interwoven. This review outlines the role of alarmins/JNK-signaling in cerebral neurovascular inflammation and summarizes the complex response of cells to alarmins. Emerging anti-JNK and anti-alarmin drug treatment strategies are discussed.
Collapse
|
6
|
Ravindran AV, Killingsworth MC, Bhaskar S. Cerebral collaterals in acute ischaemia: Implications for acute ischaemic stroke patients receiving reperfusion therapy. Eur J Neurosci 2020; 53:1238-1261. [PMID: 32871623 DOI: 10.1111/ejn.14955] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/21/2022]
Abstract
The cerebral collaterals play an important role in penumbral tissue sustenance after an acute ischaemic stroke. Recent studies have demonstrated the potential role of collaterals in the selection of acute ischaemic stroke patients eligible for reperfusion therapy. However, the understanding of the significance and evidence around the role of collateral status in predicting outcomes in acute ischaemic stroke patients treated with reperfusion therapy is still unclear. Moreover, the use of pre-treatment collaterals in patient selection and prognosis is relatively underappreciated in clinical settings. A focused review of the literature was performed on the various methods of collateral evaluation and the role of collateral status in acute ischaemic stroke patients receiving reperfusion therapy. We discuss the methods of evaluating pre-treatment collaterals in clinical settings. The patient selection based on collateral status as well as the prognostic and therapeutic value of collaterals in acute ischaemic stroke, in settings of intravenous thrombolysis or endovascular therapy alone, and bridge therapy, are summarized. Recommendations for future research and possible pharmacological intervention strategies aimed at collateral enhancement are also discussed. Collaterals may play an important role in identifying acute ischaemic stroke patients who are likely to benefit from endovascular treatment in an extended time window. Future neuroscientific efforts to better improve our understanding of the role of collaterals in acute ischaemia as well as clinical studies to delineate its role in patient selection and acute stroke prognosis are warranted.
Collapse
Affiliation(s)
- Abina Vishni Ravindran
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia.,Neurovascular Imaging Laboratory, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.,Thrombolysis and Endovascular WorkFLOw Network (TEFLON), Sydney, NSW, Australia
| | - Murray C Killingsworth
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia.,NSW Brain Clot Bank, NSW Health Statewide Biobank and NSW Health Pathology, Sydney, NSW, Australia.,Correlative Microscopy Facility, Ingham Institute for Applied Medical Research and Department of Anatomical Pathology, NSW Health Pathology and Liverpool Hospital, Liverpool, NSW, Australia
| | - Sonu Bhaskar
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia.,Department of Neurology & Neurophysiology, Liverpool Hospital & South West Sydney Local Health District (SWSLHD), Sydney, NSW, Australia.,Neurovascular Imaging Laboratory, Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.,Stroke & Neurology Research Group, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.,NSW Brain Clot Bank, NSW Health Statewide Biobank and NSW Health Pathology, Sydney, NSW, Australia.,Thrombolysis and Endovascular WorkFLOw Network (TEFLON), Sydney, NSW, Australia
| |
Collapse
|
7
|
Wang Z, Mascarenhas C, Jia X. Positron Emission Tomography After Ischemic Brain Injury: Current Challenges and Future Developments. Transl Stroke Res 2020; 11:628-642. [PMID: 31939060 PMCID: PMC7347441 DOI: 10.1007/s12975-019-00765-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Positron emission tomography (PET) is widely used in clinical and animal studies, along with the development of diverse tracers. The biochemical characteristics of PET tracers may help uncover the pathophysiological consequences of cardiac arrest (CA) and ischemic stroke, which include cerebral ischemia and reperfusion, depletion of oxygen and glucose, and neuroinflammation. PubMed was searched for studies of the application of PET for "cardiac arrest," "ischemic stroke," and "targeted temperature management." Available studies were included and classified according to the biochemical properties involved and metabolic processes of PET tracers, and were summarized. The mechanisms of ischemic brain injuries were investigated by PET with various tracers to elucidate the pathological process from the initial decrease of cerebral blood flow (CBF) to the subsequent abnormalities in energy and oxygen metabolism, to the monitoring of inflammation. In general, the trends of cerebral blood flow and oxygen metabolism after ischemic attack are not unidirectional but closely related to the time point of injury and recovery. Glucose metabolism after injury showed significant differences in different brain regions whereas global cerebral metabolic rate of glucose (CMRglc) declined. PET monitoring of neuroinflammation shows comparable efficacy to immunostaining. The technology of PET targeting in brain metabolism and the development of tracers provide new tools to track and evaluate the brain's pathological changes after ischemic brain injury. Despite no existing evidence for an available PET-based prediction method, discoveries of new tracers are expected to provide more possibilities for the whole field.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 43007, China
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Conrad Mascarenhas
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 823, Baltimore, MD, 21201, USA.
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Peng D. Clinical practice guideline for cognitive impairment of cerebral small vessel disease. Aging Med (Milton) 2019; 2:64-73. [PMID: 31942514 PMCID: PMC6880706 DOI: 10.1002/agm2.12073] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022] Open
Abstract
Cognitive impairment of cerebral small vessel disease (CSVD) is one of the most common cognitive disorders. It has a high incidence and results in heavy social burden; thus, it is essential to provide reasonable diagnosis and treatment in clinical practice. Based on the results of clinical research and related reports, combined with the actual situation in China, we propose a diagnosis and treatment guideline for cognitive impairment of CSVD.
Collapse
Affiliation(s)
- Dantao Peng
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | | |
Collapse
|
9
|
Nie B, Liang S, Jiang X, Duan S, Huang Q, Zhang T, Li P, Liu H, Shan B. An Automatic Method for Generating an Unbiased Intensity Normalizing Factor in Positron Emission Tomography Image Analysis After Stroke. Neurosci Bull 2018; 34:833-841. [PMID: 29876785 DOI: 10.1007/s12264-018-0240-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/12/2018] [Indexed: 10/14/2022] Open
Abstract
Positron emission tomography (PET) imaging of functional metabolism has been widely used to investigate functional recovery and to evaluate therapeutic efficacy after stroke. The voxel intensity of a PET image is the most important indicator of cellular activity, but is affected by other factors such as the basal metabolic ratio of each subject. In order to locate dysfunctional regions accurately, intensity normalization by a scale factor is a prerequisite in the data analysis, for which the global mean value is most widely used. However, this is unsuitable for stroke studies. Alternatively, a specified scale factor calculated from a reference region is also used, comprising neither hyper- nor hypo-metabolic voxels. But there is no such recognized reference region for stroke studies. Therefore, we proposed a totally data-driven automatic method for unbiased scale factor generation. This factor was generated iteratively until the residual deviation of two adjacent scale factors was reduced by < 5%. Moreover, both simulated and real stroke data were used for evaluation, and these suggested that our proposed unbiased scale factor has better sensitivity and accuracy for stroke studies.
Collapse
Affiliation(s)
- Binbin Nie
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shengxiang Liang
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049, China.,Physical Science and Technology College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaofeng Jiang
- School of Public Health and Family Medicine, Capital Medical University, Beijing, 100069, China
| | - Shaofeng Duan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Huang
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianhao Zhang
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Panlong Li
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049, China.,Physical Science and Technology College, Zhengzhou University, Zhengzhou, 450052, China
| | - Hua Liu
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049, China
| | - Baoci Shan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China. .,Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Jung S, Horvath T, Zimmel S, Mosimann PJ, Arsany H, Arnold M, Bassetti C. Still restricted usability of imaging criteria in therapeutic decisions for acute ischemic stroke treatment. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18759132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Simon Jung
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Horvath
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sarah Zimmel
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pascal J Mosimann
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hakim Arsany
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marcel Arnold
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Zhou D, Meng R, Li SJ, Ya JY, Ding JY, Shang SL, Ding YC, Ji XM. Advances in chronic cerebral circulation insufficiency. CNS Neurosci Ther 2017; 24:5-17. [PMID: 29143463 DOI: 10.1111/cns.12780] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Chronic cerebral circulation insufficiency (CCCI) may not be an independent disease; rather, it is a pervasive state of long-term cerebral blood flow insufficiency caused by a variety of etiologies, and considered to be associated with either occurrence or recurrence of ischemic stroke, vascular cognitive impairment, and development of vascular dementia, resulting in disability and mortality worldwide. This review summarizes the features and recent progress of CCCI, mainly focusing on epidemiology, experimental research, pathophysiology, etiology, clinical manifestations, imaging presentation, diagnosis, and potential therapeutic regimens. Some research directions are briefly discussed as well.
Collapse
Affiliation(s)
- Da Zhou
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Si-Jie Li
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jing-Yuan Ya
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia-Yue Ding
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Ling Shang
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu-Chuan Ding
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xun-Ming Ji
- Departments of Neurology and Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Sünwoldt J, Bosche B, Meisel A, Mergenthaler P. Neuronal Culture Microenvironments Determine Preferences in Bioenergetic Pathway Use. Front Mol Neurosci 2017; 10:305. [PMID: 29085280 PMCID: PMC5649214 DOI: 10.3389/fnmol.2017.00305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022] Open
Abstract
In the brain, metabolic supply and demand is directly coupled to neuronal activation. Methods for culturing primary rodent brain cells have come of age and are geared toward sophisticated modeling of human brain physiology and pathology. However, the impact of the culture microenvironment on neuronal function is rarely considered. Therefore, we investigated the role of different neuronal culture supplements for neuronal survival and metabolic activity in a model of metabolic deprivation of neurons using oxygen deprivation, glucose deprivation, as well as live cell metabolic flux analysis. We demonstrate the impact of neuronal culture conditions on metabolic function and neuronal survival under conditions of metabolic stress. In particular, we find that the common neuronal cell culture supplement B27 protects neurons from cell death under hypoxic conditions and inhibits glycolysis. Furthermore, we present data that B27 as well as the alternative neuronal culture supplement N2 restrict neuronal glucose metabolism. On the contrary, we find that the more modern supplement GS21 promotes neuronal energy metabolism. Our data support the notion that careful control of the metabolic environment is an essential component in modeling brain function and the cellular and molecular pathophysiology of brain disease in culture.
Collapse
Affiliation(s)
- Juliane Sünwoldt
- Charité - Universitätsmedizin Berlin, Department of Experimental Neurology, Berlin, Germany
| | - Bert Bosche
- Division of Neurosurgery, Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Department of Neurology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Neurocritical Care, First Stage Rehabilitation and Weaning, MediClin Klinik Reichshof, Eckenhagen, Germany
| | - Andreas Meisel
- Charité - Universitätsmedizin Berlin, Department of Experimental Neurology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Berlin, Germany
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Experimental Neurology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
13
|
Laviña B. Brain Vascular Imaging Techniques. Int J Mol Sci 2016; 18:ijms18010070. [PMID: 28042833 PMCID: PMC5297705 DOI: 10.3390/ijms18010070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/13/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
14
|
Horti AG, Wang Y, Minn I, Lan X, Wang J, Koehler RC, Alkayed NJ, Dannals RF, Pomper MG. 18F-FNDP for PET Imaging of Soluble Epoxide Hydrolase. J Nucl Med 2016; 57:1817-1822. [PMID: 27417650 DOI: 10.2967/jnumed.116.173245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/16/2016] [Indexed: 12/29/2022] Open
Abstract
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme located within cytosol and peroxisomes that converts epoxides to the corresponding diols and hydrolyzes phosphate monoesters. It serves to inactivate epoxyeicosatrienoic acids (EETs), which are generated in the brain to couple neuronal activity and cerebral blood flow in normal and pathologic states. Altered regulation of sEH was observed previously in various neuropathologic disorders including vascular dementia and stroke. Inhibitors of sEH are pursued as agents to mitigate neuronal damage after stroke. We developed N-(3,3-diphenylpropyl)-6-18F-fluoronicotinamide (18F-FNDP), which proved highly specific for imaging of sEH in the mouse and nonhuman primate brain with PET. METHODS 18F-FNDP was synthesized from the corresponding bromo precursor. sEH inhibitory activity of 18F-FNDP was measured using an sEH inhibitor screening assay kit. Biodistribution was undertaken in CD-1 mice. Binding specificity was assayed in CD-1 and sEH knock-out mice and Papio anubis (baboon) through pretreatment with an sEH inhibitor to block sEH binding. Dynamic PET imaging with arterial blood sampling was performed in 3 baboons, with regional tracer binding quantified using distribution volume. The metabolism of 18F-FNDP in baboons was assessed using high-performance liquid chromatography. RESULTS 18F-FNDP (inhibition binding affinity constant, 1.73 nM) was prepared in 1 step in a radiochemical yield of 14% ± 7%, specific radioactivity in the range of 888-3,774 GBq/μmol, and a radiochemical purity greater than 99% using an automatic radiosynthesis module. The time of preparation was about 75 min. In CD-1 mice, regional uptake followed the pattern of striatum > cortex > hippocampus > cerebellum, consistent with the known brain distribution of sEH, with 5.2% injected dose per gram of tissue at peak uptake. Blockade of 80%-90% was demonstrated in all brain regions. Minimal radiotracer uptake was present in sEH knock-out mice. PET baboon brain distribution paralleled that seen in mouse, with a marked blockade (95%) noted in all regions indicating sEH-mediated uptake of 18F-FNDP. Two hydrophilic metabolites were identified, with 20% parent compound present at 90 min after injection in baboon plasma. CONCLUSION 18F-FNDP can be synthesized in suitable radiochemical yield and high specific radioactivity and purity. In vivo imaging experiments demonstrated that 18F-FNDP targeted sEH in murine and nonhuman primate brain specifically. 18F-FNDP is a promising PET radiotracer likely to be useful for understanding the role of sEH in a variety of conditions affecting the central nervous system.
Collapse
Affiliation(s)
- Andrew G Horti
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yuchuan Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Xi Lan
- Department of Neurology, Anesthesiology & Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Jian Wang
- Department of Neurology, Anesthesiology & Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Raymond C Koehler
- Department of Neurology, Anesthesiology & Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Robert F Dannals
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
15
|
Banerjee G, Wilson D, Jäger HR, Werring DJ. Novel imaging techniques in cerebral small vessel diseases and vascular cognitive impairment. Biochim Biophys Acta Mol Basis Dis 2015; 1862:926-38. [PMID: 26687324 DOI: 10.1016/j.bbadis.2015.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/27/2022]
Abstract
Dementia is a global growing concern, affecting over 35 million people with a global economic impact of over $604 billion US. With an ageing population the number of people affected is expected double over the next two decades. Vascular cognitive impairment can be caused by various types of cerebrovascular disease, including cortical and subcortical infarcts, and the more diffuse white matter injury due to cerebral small vessel disease. Although this type of cognitive impairment is usually considered the second most common form of dementia after Alzheimer's disease, there is increasing recognition of the vascular contribution to neurodegeneration, with both pathologies frequently coexisting. The aim of this review is to highlight the recent advances in the understanding of vascular cognitive impairment, with a focus on small vessel diseases of the brain. We discuss recently identified small vessel imaging markers that have been associated with cognitive impairment, namely cerebral microbleeds, enlarged perivascular spaces, cortical superficial siderosis, and microinfarcts. We will also consider quantitative techniques including diffusion tensor imaging, magnetic resonance perfusion imaging with arterial spin labelling, functional magnetic resonance imaging and positron emission tomography. As well as potentially shedding light on the mechanism by which cerebral small vessel diseases cause dementia, these novel imaging biomarkers are also of increasing relevance given their ability to guide diagnosis and reflect disease progression, which may in the future be useful for therapeutic interventions. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Gargi Banerjee
- UCL Stroke Research Centre, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, 10-12 Russell Square, London WC1B 3EE, UK
| | - Duncan Wilson
- UCL Stroke Research Centre, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, 10-12 Russell Square, London WC1B 3EE, UK
| | - Hans R Jäger
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - David J Werring
- UCL Stroke Research Centre, Department of Brain Repair & Rehabilitation, UCL Institute of Neurology, 10-12 Russell Square, London WC1B 3EE, UK
| |
Collapse
|
16
|
Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BNM, Lammertsma AA, Windhorst AD. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochim Biophys Acta Mol Basis Dis 2015; 1862:425-41. [PMID: 26643549 DOI: 10.1016/j.bbadis.2015.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is thought to play a pivotal role in many diseases affecting the brain, including Alzheimer's disease, multiple sclerosis and stroke. Neuroinflammation is characterised predominantly by microglial activation, which can be visualised using positron emission tomography (PET). Traditionally, translocator protein 18kDa (TSPO) is the target for imaging of neuroinflammation using PET. In this review, recent preclinical and clinical research using PET in Alzheimer's disease, multiple sclerosis and stroke is summarised. In addition, new molecular targets for imaging of neuroinflammation, such as monoamine oxidases, adenosine receptors and cannabinoid receptor type 2, are discussed. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Uta Funke
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | - Ger T Molenaar
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | | | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Mapping of cerebral metabolic rate of oxygen using dynamic susceptibility contrast and blood oxygen level dependent MR imaging in acute ischemic stroke. Neuroradiology 2015; 57:1253-61. [DOI: 10.1007/s00234-015-1592-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
|
18
|
Takahashi S, Tanizaki Y, Kimura H, Akaji K, Kano T, Suzuki K, Takayama Y, Kanzawa T, Shidoh S, Nakazawa M, Yoshida K, Mihara B. Prediction of Cerebrovascular Reserve Capacity by Computed Tomography Perfusion Using 320-Row Computed Tomography. J Stroke Cerebrovasc Dis 2015; 24:939-45. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/30/2014] [Accepted: 12/05/2014] [Indexed: 10/23/2022] Open
|
19
|
In vivo analysis of neuroinflammation in the late chronic phase after experimental stroke. Neuroscience 2015; 292:71-80. [PMID: 25701708 DOI: 10.1016/j.neuroscience.2015.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE In vivo imaging of inflammatory processes is a valuable tool in stroke research. We here investigated the combination of two imaging modalities in the chronic phase after cerebral ischemia: magnetic resonance imaging (MRI) using intravenously applied ultra small supraparamagnetic iron oxide particles (USPIO), and positron emission tomography (PET) with the tracer [(11)C]PK11195. METHODS Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) by the macrosphere model and monitored by MRI and PET for 28 or 56 days, followed by immunohistochemical endpoint analysis. To our knowledge, this is the first study providing USPIO-MRI data in the chronic phase up to 8 weeks after stroke. RESULTS Phagocytes with internalized USPIOs induced MRI-T2(∗) signal alterations in the brain. Combined analysis with [(11)C]PK11195-PET allowed quantification of phagocytic activity and other neuroinflammatory processes. From 4 weeks after induction of ischemia, inflammation was dominated by phagocytes. Immunohistochemistry revealed colocalization of Iba1+ microglia with [(11)C]PK11195 and ED1/CD68 with USPIOs. USPIO-related iron was distinguished from alternatively deposited iron by assessing MRI before and after USPIO application. Tissue affected by non-phagocytic inflammation during the first week mostly remained in a viably vital but remodeled state after 4 or 8 weeks, while phagocytic activity was associated with severe injury and necrosis accordingly. CONCLUSIONS We conclude that the combined approach of USPIO-MRI and [(11)C]PK11195-PET allows to observe post-stroke inflammatory processes in the living animal in an intraindividual and longitudinal fashion, predicting long-term tissue fate. The non-invasive imaging methods do not affect the immune system and have been applied to human subjects before. Translation into clinical applications is therefore feasible.
Collapse
|
20
|
Neuro-molecular imaging. Neurosci Bull 2014; 30:711-2. [PMID: 25260794 DOI: 10.1007/s12264-014-1474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|