1
|
Li X, Wang S, Zhang D, Feng Y, Liu Y, Yu W, Cui L, Harkany T, Verkhratsky A, Xia M, Li B. The periaxonal space as a conduit for cerebrospinal fluid flow to peripheral organs. Proc Natl Acad Sci U S A 2024; 121:e2400024121. [PMID: 39485799 DOI: 10.1073/pnas.2400024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
Mechanisms controlling the movement of the cerebrospinal fluid (CSF) toward peripheral nerves are poorly characterized. We found that, in addition to the foramina Magendie and Luschka for CSF flow toward the subarachnoid space and glymphatic system, CSF outflow could also occur along periaxonal spaces (termed "PAS pathway") from the spinal cord to peripheral organs, such as the liver and pancreas. When interrogating the latter route, we found that serotonin, acting through 5-HT2B receptors expressed in ependymocytes that line the central canal, triggered Ca2+ signals to induce polymerization of F-actin, a cytoskeletal protein, to reduce the volume of ependymal cells. This paralleled an increased rate of PAS-mediated CSF redistribution toward peripheral organs. In the liver, CSF was received by hepatic stellate cells. CSF efflux toward peripheral organs through the PAS pathway represents a mechanism dynamically connecting the nervous system with the periphery. Our findings are compatible with the traditional theory of CSF efflux into the glymphatic system to clear metabolic waste from the cerebral parenchyma. Thus, we extend the knowledge of CSF flow and expand the understanding of connectivity between the CNS and peripheral organs.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang 110122, China
- China Medical University Centre of Forensic Investigation, Shenyang 110122, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang 110122, China
- China Medical University Centre of Forensic Investigation, Shenyang 110122, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang 110122, China
- China Medical University Centre of Forensic Investigation, Shenyang 110122, China
| | - Yuliang Feng
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang 110122, China
- China Medical University Centre of Forensic Investigation, Shenyang 110122, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang 110122, China
- China Medical University Centre of Forensic Investigation, Shenyang 110122, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang 110122, China
- China Medical University Centre of Forensic Investigation, Shenyang 110122, China
| | - Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang 110122, China
- China Medical University Centre of Forensic Investigation, Shenyang 110122, China
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna 1090, Austria
- Department of Neuroscience, Biomedicum, Karolinska Institutet, Solna 17165, Sweden
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Neurosciences, University of the Basque Country, Leioa 48940, Bizkaia, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius LT-01102, Lithuania
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang 110002, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China Medical University, Shenyang 110122, China
- China Medical University Centre of Forensic Investigation, Shenyang 110122, China
| |
Collapse
|
2
|
Li J, Wu X, Yan S, Shen J, Tong T, Aslam MS, Zeng J, Chen Y, Chen W, Li M, You Z, Gong K, Yang J, Zhu M, Meng X. Understanding the Antidepressant Mechanisms of Acupuncture: Targeting Hippocampal Neuroinflammation, Oxidative Stress, Neuroplasticity, and Apoptosis in CUMS Rats. Mol Neurobiol 2024:10.1007/s12035-024-04550-5. [PMID: 39422855 DOI: 10.1007/s12035-024-04550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Depression is recognized globally as one of the most intractable diseases, and its complexity and diversity make treatment extremely challenging. Acupuncture has demonstrated beneficial effects in various psychiatric disorders. However, the underlying mechanisms of acupuncture's antidepressant action, particularly in depression, remain elusive. Therefore, this study aimed to investigate the effects of acupuncture on chronic unpredictability stress (CUMS)-induced depressive symptoms in rats and to further elucidate its underlying molecular mechanisms. All rats were exposed to CUMS of two stressors every day for 28 days, except for the control group. One hour before CUMS, rats were given a treatment with acupuncture, electroacupuncture, sham-acupuncture, or fluoxetine (2.1 mg/kg). Behavioral tests and biological detection methods were conducted in sequence to evaluate depression-like phenotype in rats. The findings of this study demonstrate that acupuncture therapy effectively ameliorated depression-like behavior induced by CUMS in rats. Additionally, acupuncture exerted a restorative effect on the alterations induced by CUMS in the levels of malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), brain-derived neurotrophic factor (BDNF), cyclic AMP response element-binding protein (CREB), postsynaptic density95 (PSD95), gamma-aminobutyric acid (GABA), and acetylcholine (ACh). Additionally, our findings indicate that acupuncture also modulates the ERK and Caspase-3 apoptotic pathways in the hippocampus of CUMS rats. This study suggests that acupuncture may play a potential preventive role by regulating hippocampal neuroinflammatory response, levels of oxidative stress, apoptotic processes, and enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, People's Republic of China
| | - Xinhong Wu
- The Fifth Hospital of Xiamen, Xiamen, Fujian, People's Republic of China
| | - Simin Yan
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Junliang Shen
- Longyan Hospital of Traditional Chinese Medicine Affiliated to Xiamen University, Longyan, Fujian, People's Republic of China
| | - Tao Tong
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, People's Republic of China
| | | | - Jingyu Zeng
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiping Chen
- First Clinical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Wenjie Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Meng Li
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, People's Republic of China
| | - Zhuoran You
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, People's Republic of China
| | - Kaiyue Gong
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinghao Yang
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Maoshu Zhu
- The Fifth Hospital of Xiamen, Xiamen, Fujian, People's Republic of China.
| | - Xianjun Meng
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Wang Y, Liu L, Yang D. Genetic Causal Associations between Various Serum Minerals and Risk of Depression: A Mendelian Randomization Study. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:211-220. [PMID: 38863045 PMCID: PMC11188766 DOI: 10.62641/aep.v52i3.1637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
BACKGROUND Previous observational studies have discovered a connection between depression and mineral status. Confirming this potential connection is challenging due to confounding factors and potential reverse causality which is inherent in observational studies. MATERIALS AND METHODS We performed a Mendelian randomization (MR) analysis to estimate the causal association of serum minerals with depression. Leveraging summary-level data on depression, a genome-wide association study (GWAS) was applied. The data on serum minerals were collected from the FinnGen Biobank database. MR assessments representing causality were produced by inverse-variance weighted approaches with multiplicative random and fixed effects. RESULT Sensitivity analyses were performed to validate the reliability of the results. A noteworthy correlation emerged between serum zinc levels and reduced risk of depression. An odds ratio (OR) of 0.917 for depression associated with a one standard deviation increase in serum zinc levels (OR = 0.968; 95% CI = 0.953-0.984, p = 1.19 × 10-4, random effects model inverse variance weighted (IVW)); (OR = 0.928; 95% CI = 0.634-1.358, p = 0.766, MR Egger). Sensitivity assessments supported this causation. However, the risk of depression did not exhibit an association with other minerals. CONCLUSIONS In summary, a higher zinc concentration is causally associated with a reduced depression risk. This MR outcome may assist clinicians in the regulation of specific mineral intake, particularly for high-risk patients with serum zinc deficiencies.
Collapse
Affiliation(s)
- Yuan Wang
- College of Clinical Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Department of Psychiatry, The Second People's Hospital of Hunan Province, 410021 Changsha, Hunan, China
| | - Lini Liu
- Department of Psychiatry, The Second People's Hospital of Hunan Province, 410021 Changsha, Hunan, China
| | - Dong Yang
- College of Clinical Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China; Department of Psychiatry, The Second People's Hospital of Hunan Province, 410021 Changsha, Hunan, China
| |
Collapse
|
4
|
Li B, Yu W, Verkhratsky A. Trace metals and astrocytes physiology and pathophysiology. Cell Calcium 2024; 118:102843. [PMID: 38199057 DOI: 10.1016/j.ceca.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Several trace metals, including iron, copper, manganese and zinc are essential for normal function of the nervous system. Both deficiency and excessive accumulation of these metals trigger neuropathological developments. The central nervous system (CNS) is in possession of dedicated homeostatic system that removes, accumulates, stores and releases these metals to fulfil nervous tissue demand. This system is mainly associated with astrocytes that act as dynamic reservoirs for trace metals, these being a part of a global system of CNS ionostasis. Here we overview physiological and pathophysiological aspects of astrocyte-cantered trace metals regulation.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, Ikerbasque, Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius LT-01102, Lithuania.
| |
Collapse
|
5
|
Tomizawa Y, Hagiwara A, Hoshino Y, Nakaya M, Kamagata K, Cossu D, Yokoyama K, Aoki S, Hattori N. The glymphatic system as a potential biomarker and therapeutic target in secondary progressive multiple sclerosis. Mult Scler Relat Disord 2024; 83:105437. [PMID: 38244527 DOI: 10.1016/j.msard.2024.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/11/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a refractory immune-mediated inflammatory disease of the central nervous system, and some cases of the major subtype, relapsing-remitting (RR), transition to secondary progressive (SP). However, the detailed pathogenesis, biomarkers, and effective treatment strategies for secondary progressive multiple sclerosis have not been established. The glymphatic system, which is responsible for waste clearance in the brain, is an intriguing avenue for investigation and is primarily studied through diffusion tensor image analysis along the perivascular space (DTI-ALPS). This study aimed to compare DTI-ALPS indices between patients with RRMS and SPMS to uncover potential differences in their pathologies and evaluate the utility of the glymphatic system as a possible biomarker. METHODS A cohort of 26 patients with MS (13 RRMS and 13 SPMS) who met specific criteria were enrolled in this prospective study. Magnetic resonance imaging (MRI), including diffusion MRI, 3D T1-weighted imaging, and relaxation time quantification, was conducted. The ALPS index, a measure of glymphatic function, was calculated using diffusion-weighted imaging data. Demographic variables, MRI metrics, and ALPS indices were compared between patients with RRMS and those with SPMS. RESULTS The ALPS index was significantly lower in the SPMS group. Patients with SPMS exhibited longer disease duration and higher Expanded Disability Status Scale (EDSS) scores than those with RRMS. Despite these differences, the correlations between the EDSS score, disease duration, and ALPS index were minimal, suggesting that the impact of these clinical variables on ALPS index variations was negligible. DISCUSSION Our study revealed the potential microstructural and functional differences between RRMS and SPMS related to glymphatic system impairment. Although disease severity and duration vary among subtypes, their influence on ALPS index differences appears to be limited. This highlights the stronger association between SP conversion and changes in the ALPS index. These findings align with those of previous research, indicating the involvement of the glymphatic system in the progression of MS. CONCLUSION Although the causality remains uncertain, our study suggests that a reduced ALPS index, reflecting glymphatic system dysfunction, may contribute to MS progression, particularly in SPMS. This suggests the potential of the ALPS index as a diagnostic biomarker for SPMS and underscores the potential of the glymphatic system as a therapeutic target to mitigate MS progression. Future studies with larger cohorts and pathological validation are necessary to confirm these findings. This study provides new insights into the pathogenesis of SPMS and the potential for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Yuji Tomizawa
- Department of Neurology, School of Medicine, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo, Tokyo 113-8431, Japan.
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasunobu Hoshino
- Department of Neurology, School of Medicine, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo, Tokyo 113-8431, Japan
| | - Moto Nakaya
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Davide Cossu
- Department of Neurology, School of Medicine, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo, Tokyo 113-8431, Japan
| | - Kazumasa Yokoyama
- Department of Neurology, School of Medicine, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo, Tokyo 113-8431, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, School of Medicine, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo, Tokyo 113-8431, Japan
| |
Collapse
|
6
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
7
|
Zhang G, Lv S, Zhong X, Li X, Yi Y, Lu Y, Yan W, Li J, Teng J. Ferroptosis: a new antidepressant pharmacological mechanism. Front Pharmacol 2024; 14:1339057. [PMID: 38259274 PMCID: PMC10800430 DOI: 10.3389/fphar.2023.1339057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence rate of depression, a mental disorder, is steadily increasing and has the potential to become a major global disability factor. Given the complex pathological mechanisms involved in depression, the use of conventional antidepressants may lead to severe complications due to their side effects. Hence, there is a critical need to explore the development of novel antidepressants. Ferroptosis, a newly recognized form of cell death, has been found to be closely linked to the onset of depression. Several studies have indicated that certain active ingredients can ameliorate depression by modulating the ferroptosis signaling pathway. Notably, traditional Chinese medicine (TCM) active ingredients and TCM prescriptions have demonstrated promising antidepressant effects in previous investigations owing to their unique advantages in antidepressant therapy. Building upon these findings, our objective was to review recent relevant research and provide new insights and directions for the development and application of innovative antidepressant strategies.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Hagiwara A, Tomizawa Y, Hoshino Y, Yokoyama K, Kamagata K, Sekine T, Takabayashi K, Nakaya M, Maekawa T, Akashi T, Wada A, Taoka T, Naganawa S, Hattori N, Aoki S. Glymphatic System Dysfunction in Myelin Oligodendrocyte Glycoprotein Immunoglobulin G Antibody-Associated Disorders: Association with Clinical Disability. AJNR Am J Neuroradiol 2023; 45:66-71. [PMID: 38123957 PMCID: PMC10756584 DOI: 10.3174/ajnr.a8066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND PURPOSE Impaired glymphatic function has been suggested to be implicated in the pathophysiology of MS and aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder. This study aimed to investigate the interstitial fluid dynamics in the brain in patients with myelin oligodendrocyte glycoprotein antibody disorders (MOGAD), another demyelinating disorder, using a noninvasive imaging technique called the diffusivity along the perivascular space (ALPS) index. MATERIALS AND METHODS A prospective study was conducted on 16 patients with MOGAD in remission and 22 age- and sex-matched healthy control subjects. MR imaging was performed using a 3T scanner, and the ALPS index was calculated using diffusion MR imaging data with a b-value of 1000 s/mm2. The ALPS index and gray matter volumes were compared between the 2 groups, and these parameters were correlated with the Expanded Disability Status Scale. RESULTS The mean ALPS index of patients with MOGAD was significantly lower than that of healthy controls (Cohen d = 0.93, false discovery rate-corrected P = .02). The lower mean ALPS index was significantly associated with a worse Expanded Disability Status Scale score (Spearman ρ = -0.51; 95% CI, -0.85 to -0.02; P = .03). However, cortical volume and deep gray matter volume were not significantly different between the 2 groups, and they were not correlated with the Expanded Disability Status Scale. CONCLUSIONS This study suggests that patients with MOGAD may have impaired glymphatic function, as measured by the ALPS index, which is associated with patient disability. Further study is warranted with a larger sample size.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Yuji Tomizawa
- Department of Neurology (Y.T., Y.H., N.H.), Juntendo University School of Medicine, Tokyo, Japan
| | - Yasunobu Hoshino
- Department of Neurology (Y.T., Y.H., N.H.), Juntendo University School of Medicine, Tokyo, Japan
| | | | - Koji Kamagata
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Towa Sekine
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Kaito Takabayashi
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Moto Nakaya
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology (M.N.), Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoko Maekawa
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiaki Akashi
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Akihiko Wada
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiaki Taoka
- Department of Radiology (T.T., S.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology (T.T., S.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Nobutaka Hattori
- Department of Neurology (Y.T., Y.H., N.H.), Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- From the Department of Radiology (A.H., K.K., T.S, K.T., M.N., T.M., T.A., A.W., S.A.), Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
10
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Zeng T, Li J, Xie L, Dong Z, Chen Q, Huang S, Xie S, Lai Y, Li J, Yan W, Wang Y, Xie Z, Hu C, Zhang J, Kuang S, Song Y, Gao L, Lv Z. Nrf2 regulates iron-dependent hippocampal synapses and functional connectivity damage in depression. J Neuroinflammation 2023; 20:212. [PMID: 37735410 PMCID: PMC10512501 DOI: 10.1186/s12974-023-02875-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Neuronal iron overload contributes to synaptic damage and neuropsychiatric disorders. However, the molecular mechanisms underlying iron deposition in depression remain largely unexplored. Our study aims to investigate how nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) ameliorates hippocampal synaptic dysfunction and reduces brain functional connectivity (FC) associated with excessive iron in depression. We treated mice with chronic unpredictable mild stress (CUMS) with the iron chelator deferoxamine mesylate (DFOM) and a high-iron diet (2.5% carbonyl iron) to examine the role of iron overload in synaptic plasticity. The involvement of Nrf2 in iron metabolism and brain function was assessed using molecular biological techniques and in vivo resting-state functional magnetic resonance imaging (rs-fMRI) through genetic deletion or pharmacologic activation of Nrf2. The results demonstrated a significant correlation between elevated serum iron levels and impaired hippocampal functional connectivity (FC), which contributed to the development of depression-induced CUMS. Iron overload plays a crucial role in CUMS-induced depression and synaptic dysfunction, as evidenced by the therapeutic effects of a high-iron diet and DFOM. The observed iron overload in this study was associated with decreased Nrf2 levels and increased expression of transferrin receptors (TfR). Notably, inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Nrf2-/- mice exhibited compromised FC within the limbic system and the basal ganglia, particularly in the hippocampus, and inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Activation of Nrf2 restored iron homeostasis and reversed vulnerability to depression. Mechanistically, we further identified that Nrf2 deletion promoted iron overload via upregulation of TfR and downregulation of ferritin light chain (FtL), leading to BDNF-mediated synapse damage in the hippocampus. Therefore, our findings unveil a novel role for Nrf2 in regulating iron homeostasis while providing mechanistic insights into poststress susceptibility to depression. Targeting Nrf2-mediated iron metabolism may offer promising strategies for developing more effective antidepressant therapies.
Collapse
Affiliation(s)
- Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
- Department of Brain Diseases, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Lingpeng Xie
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Chen
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Weixin Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - YuHua Wang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Changlei Hu
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Jiayi Zhang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Shanshan Kuang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Yuhong Song
- Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
12
|
Li X, Chen B, Zhang D, Wang S, Feng Y, Wu X, Cui L, Ji M, Gong W, Verkhratsky A, Xia M, Li B. A novel murine model of mania. Mol Psychiatry 2023; 28:3044-3054. [PMID: 36991130 PMCID: PMC10615760 DOI: 10.1038/s41380-023-02037-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
Neuropathological mechanisms of manic syndrome or manic episodes in bipolar disorder remain poorly characterised, as the research progress is severely limited by the paucity of appropriate animal models. Here we developed a novel mania mice model by combining a series of chronic unpredictable rhythm disturbances (CURD), which include disruption of circadian rhythm, sleep deprivation, exposure to cone light, with subsequent interference of followed spotlight, stroboscopic illumination, high-temperature stress, noise disturbance and foot shock. Multiple behavioural and cell biology tests comparing the CURD-model with healthy controls and depressed mice were deployed to validate the model. The manic mice were also tested for the pharmacological effects of various medicinal agents used for treating mania. Finally, we compared plasma indicators of the CURD-model mice and the patients with the manic syndrome. The CURD protocol produced a phenotype replicating manic syndrome. Mice exposed to CURD presented manic behaviours similar to that observed in the amphetamine manic model. These behaviours were distinct from depressive-like behaviours recorded in mice treated with a depression-inducing protocol of chronic unpredictable mild restraint (CUMR). Functional and molecular indicators in the CURD mania model showed multiple similarities with patients with manic syndrome. Treatment with LiCl and valproic acid resulted in behavioural improvements and recovery of molecular indicators. A novel manic mice model induced by environmental stressors and free from genetic or pharmacological interventions is a valuable tool for research into pathological mechanisms of mania.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Binjie Chen
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yuliang Feng
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Ming Ji
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Wenliang Gong
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
13
|
Lin SS, Zhou B, Chen BJ, Jiang RT, Li B, Illes P, Semyanov A, Tang Y, Verkhratsky A. Electroacupuncture prevents astrocyte atrophy to alleviate depression. Cell Death Dis 2023; 14:343. [PMID: 37248211 DOI: 10.1038/s41419-023-05839-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Astrocyte atrophy is the main histopathological hallmark of major depressive disorder (MDD) in humans and in animal models of depression. Here we show that electroacupuncture prevents astrocyte atrophy in the prefrontal cortex and alleviates depressive-like behaviour in mice subjected to chronic unpredictable mild stress (CUMS). Treatment of mice with CUMS induced depressive-like phenotypes as confirmed by sucrose preference test, tail suspension test, and forced swimming test. These behavioural changes were paralleled with morphological atrophy of astrocytes in the prefrontal cortex, revealed by analysis of 3D reconstructions of confocal Z-stack images of mCherry expressing astrocytes. This morphological atrophy was accompanied by a decrease in the expression of cytoskeletal linker Ezrin, associated with formation of astrocytic leaflets, which form astroglial synaptic cradle. Electroacupuncture at the acupoint ST36, as well as treatment with anti-depressant fluoxetine, prevented depressive-like behaviours, astrocytic atrophy, and down-regulation of astrocytic ezrin. In conclusion, our data further strengthen the notion of a primary role of astrocytic atrophy in depression and reveal astrocytes as cellular target for electroacupuncture in treatment of depressive disorders.
Collapse
Affiliation(s)
- Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bin Zhou
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anaesthesiology, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Bin-Jie Chen
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Ruo-Tian Jiang
- Laboratory of Anaesthesia and Critical Care Medicine, Department of Anaesthesiology, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Alexey Semyanov
- College of Medicine, Jiaxing University, Jiaxing, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling of Sichuan Province /Research Centre on TCM-Rehabilitation and Neural Circuit, School of Acupuncture and Tuina/Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
14
|
Han Y, Gu S, Li Y, Qian X, Wang F, Huang JH. Neuroendocrine pathogenesis of perimenopausal depression. Front Psychiatry 2023; 14:1162501. [PMID: 37065890 PMCID: PMC10098367 DOI: 10.3389/fpsyt.2023.1162501] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
With the development of social economics and the increase of working pressure, more and more women are suffering from long-term serious stress and showing symptoms of perimenopausal depression (PMD). The incidence rate of PMD is increasing, and the physical and mental health are seriously affected. However, due to the lack of accurate knowledge of pathophysiology, its diagnosis and treatment cannot be accurately executed. By consulting the relevant literature in recent years, this paper elaborates the neuroendocrine mechanism of perimenopausal depression from the aspects of epigenetic changes, monoamine neurotransmitter and receptor hypothesis, glial cell-induced neuroinflammation, estrogen receptor, interaction between HPA axis and HPG axis, and micro-organism-brain gut axis. The purpose is to probe into new ways of treatment of PMD by providing new knowledge about the neuroendocrine mechanism and treatment of PMD.
Collapse
Affiliation(s)
- Yuping Han
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
| | - Simeng Gu
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
- *Correspondence: Simeng Gu,
| | - Yumeng Li
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
| | - Xin Qian
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott and White Health, Temple, TX, United States
- Department of Surgery, Texas A&M University, Temple, TX, United States
| |
Collapse
|
15
|
Chang X, Ma M, Chen L, Song Z, Zhao Z, Shen W, Jiang H, Wu Y, Fan M, Wu H. Identification and Characterization of Elevated Expression of Transferrin and Its Receptor TfR1 in Mouse Models of Depression. Brain Sci 2022; 12:1267. [PMID: 36291201 PMCID: PMC9599150 DOI: 10.3390/brainsci12101267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Depression has become one of the severe mental disorders threatening global human health. In this study, we first used the proteomics approach to obtain the differentially expressed proteins in the liver between naive control and chronic social defeat stress (CSDS) induced depressed mice. We have identified the upregulation of iron binding protein transferrin (TF) in the liver, the peripheral blood, and the brain in CSDS-exposed mice. Furthermore, bioinformatics analysis of the Gene Expression Omnibus (GEO) database from various mouse models of depression revealed the significantly upregulated transcripts of TF and its receptor TfR1 in multiple brain regions in depressed mice. We also used the recombinant TF administration via the tail vein to detect its permeability through the blood-brain barrier (BBB). We demonstrated the permeability of peripheral TF into the brain through the BBB. Together, these results identified the elevated expression of TF and its receptor TfR1 in both peripheral liver and the central brain in CSDS-induced depressed mice, and peripheral administration of TF can be transported into the brain through the BBB. Therefore, our data provide a compelling information for understanding the potential role and mechanisms of the cross-talk between the liver and the brain in stress-induced depression.
Collapse
Affiliation(s)
- Xin Chang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Mengxin Ma
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haitao Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|
16
|
Yi T, Gao P, Zhu T, Yin H, Jin S. Glymphatic System Dysfunction: A Novel Mediator of Sleep Disorders and Headaches. Front Neurol 2022; 13:885020. [PMID: 35665055 PMCID: PMC9160458 DOI: 10.3389/fneur.2022.885020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep contributes to the maintenance of overall health and well-being. There are a growing number of patients who have headache disorders that are significantly affected by poor sleep. This is a paradoxical relationship, whereby sleep deprivation or excess sleep leads to a worsening of headaches, yet sleep onset also alleviates ongoing headache pain. Currently, the mechanism of action remains controversial and poorly understood. The glymphatic system is a newly discovered perivascular network that encompasses the whole brain and is responsible for removing toxic proteins and waste metabolites from the brain as well as replenishing nutrition and energy. Recent studies have suggested that glymphatic dysfunction is a common underlying etiology of sleep disorders and headache pain. This study reviews the current literature on the relationship between the glymphatic system, sleep, and headaches, discusses their roles, and proposes acupuncture as a non-invasive way to focus on the glymphatic function to improve sleep quality and alleviate headache pain.
Collapse
Affiliation(s)
- Ting Yi
- Rehabilitation and Health Preservation School, Chengdu University of TCM, Chengdu, China
| | - Ping Gao
- Rehabilitation and Health Preservation School, Chengdu University of TCM, Chengdu, China
| | - Tianmin Zhu
- Rehabilitation and Health Preservation School, Chengdu University of TCM, Chengdu, China
- Tianmin Zhu
| | - Haiyan Yin
- School of Acupuncture and Tuina, Chengdu University of TCM, Chengdu, China
- *Correspondence: Haiyan Yin
| | - Shuoguo Jin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shuoguo Jin
| |
Collapse
|
17
|
Zhang D, Li X, Li B. Glymphatic System Dysfunction in Central Nervous System Diseases and Mood Disorders. Front Aging Neurosci 2022; 14:873697. [PMID: 35547631 PMCID: PMC9082304 DOI: 10.3389/fnagi.2022.873697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
The glymphatic system, a recently discovered macroscopic waste removal system in the brain, has many unknown aspects, especially its driving forces and relationship with sleep, and thus further explorations of the relationship between the glymphatic system and a variety of possible related diseases are urgently needed. Here, we focus on the progress in current research on the role of the glymphatic system in several common central nervous system diseases and mood disorders, discuss the structural and functional abnormalities of the glymphatic system which may occur before or during the pathophysiological progress and the possible underlying mechanisms. We emphasize the relationship between sleep and the glymphatic system under pathological conditions and summarize the common imaging techniques for the glymphatic system currently available. The perfection of the glymphatic system hypothesis and the exploration of the effects of aging and endocrine factors on the central and peripheral regulatory pathways through the glymphatic system still require exploration in the future.
Collapse
Affiliation(s)
- Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinyu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, School of Forensic Medicine, China Medical University, Shenyang, China
- China Medical University Center of Forensic Investigation, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Li B, Zhang D, Verkhratsky A. Astrocytes in Post-traumatic Stress Disorder. Neurosci Bull 2022; 38:953-965. [PMID: 35349095 PMCID: PMC8960712 DOI: 10.1007/s12264-022-00845-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
Abstract
Although posttraumatic stress disorder (PTSD) is on the rise, traumatic events and their consequences are often hidden or minimized by patients for reasons linked to PTSD itself. Traumatic experiences can be broadly classified into mental stress (MS) and traumatic brain injury (TBI), but the cellular mechanisms of MS- or TBI-induced PTSD remain unknown. Recent evidence has shown that the morphological remodeling of astrocytes accompanies and arguably contributes to fearful memories and stress-related disorders. In this review, we summarize the roles of astrocytes in the pathogenesis of MS-PTSD and TBI-PTSD. Astrocytes synthesize and secrete neurotrophic, pro- and anti-inflammatory factors and regulate the microenvironment of the nervous tissue through metabolic pathways, ionostatic control, and homeostatic clearance of neurotransmitters. Stress or trauma-associated impairment of these vital astrocytic functions contribute to the pathophysiological evolution of PTSD and may present therapeutic targets.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
| |
Collapse
|
19
|
Astroglial Serotonin Receptors as the Central Target of Classic Antidepressants. ADVANCES IN NEUROBIOLOGY 2021; 26:317-347. [PMID: 34888840 DOI: 10.1007/978-3-030-77375-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Major depressive disorder (MDD) presents multiple clinical phenotypes and has complex underlying pathological mechanisms. Existing theories cannot completely explain the pathophysiological mechanism(s) of MDD, while the pharmacology of current antidepressants is far from being fully understood. Astrocytes, the homeostatic and defensive cells of the central nervous system, contribute to shaping behaviors, and regulating mood and emotions. A detailed introduction on the role of astrocytes in depressive disorders is thus required, to which this chapter is dedicated. We also focus on the interactions between classic antidepressants and serotonin receptors, overview the role of astrocytes in the pharmacological mechanisms of various antidepressants, and present astrocytes as targets for the treatment of bipolar disorder. We provide a foundation of knowledge on the role of astrocytes in depressive disorders and astroglial 5-HT2B receptors as targets for selective serotonin reuptake inhibitors in vivo and in vitro.
Collapse
|
20
|
Verkhratsky A, Parpura V, Li B, Scuderi C. Astrocytes: The Housekeepers and Guardians of the CNS. ADVANCES IN NEUROBIOLOGY 2021; 26:21-53. [PMID: 34888829 DOI: 10.1007/978-3-030-77375-5_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astroglia are a diverse group of cells in the central nervous system. They are of the ectodermal, neuroepithelial origin and vary in morphology and function, yet, they can be collectively defined as cells having principle function to maintain homeostasis of the central nervous system at all levels of organisation, including homeostasis of ions, pH and neurotransmitters; supplying neurones with metabolic substrates; supporting oligodendrocytes and axons; regulating synaptogenesis, neurogenesis, and formation and maintenance of the blood-brain barrier; contributing to operation of the glymphatic system; and regulation of systemic homeostasis being central chemosensors for oxygen, CO2 and Na+. Their basic physiological features show a lack of electrical excitability (inapt to produce action potentials), but display instead a rather active excitability based on variations in cytosolic concentrations of Ca2+ and Na+. It is expression of neurotransmitter receptors, pumps and transporters at their plasmalemma, along with transports on the endoplasmic reticulum and mitochondria that exquisitely regulate the cytosolic levels of these ions, the fluctuation of which underlies most, if not all, astroglial homeostatic functions.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
21
|
Cao J, Yao D, Li R, Guo X, Hao J, Xie M, Li J, Pan D, Luo X, Yu Z, Wang M, Wang W. Digoxin Ameliorates Glymphatic Transport and Cognitive Impairment in a Mouse Model of Chronic Cerebral Hypoperfusion. Neurosci Bull 2021; 38:181-199. [PMID: 34704235 PMCID: PMC8821764 DOI: 10.1007/s12264-021-00772-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/04/2021] [Indexed: 02/03/2023] Open
Abstract
The glymphatic system plays a pivotal role in maintaining cerebral homeostasis. Chronic cerebral hypoperfusion, arising from small vessel disease or carotid stenosis, results in cerebrometabolic disturbances ultimately manifesting in white matter injury and cognitive dysfunction. However, whether the glymphatic system serves as a potential therapeutic target for white matter injury and cognitive decline during hypoperfusion remains unknown. Here, we established a mouse model of chronic cerebral hypoperfusion via bilateral common carotid artery stenosis. We found that the hypoperfusion model was associated with significant white matter injury and initial cognitive impairment in conjunction with impaired glymphatic system function. The glymphatic dysfunction was associated with altered cerebral perfusion and loss of aquaporin 4 polarization. Treatment of digoxin rescued changes in glymphatic transport, white matter structure, and cognitive function. Suppression of glymphatic functions by treatment with the AQP4 inhibitor TGN-020 abolished this protective effect of digoxin from hypoperfusion injury. Our research yields new insight into the relationship between hemodynamics, glymphatic transport, white matter injury, and cognitive changes after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Rong Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xuequn Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Department of Respiratory Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000 China
| | - Jiahuan Hao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jia Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Dengji Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
22
|
Guan W, Xia M, Ji M, Chen B, Li S, Zhang M, Liang S, Chen B, Gong W, Dong C, Wen G, Zhan X, Zhang D, Li X, Zhou Y, Guan D, Verkhratsky A, Li B. Iron induces two distinct Ca 2+ signalling cascades in astrocytes. Commun Biol 2021; 4:525. [PMID: 33953326 PMCID: PMC8100120 DOI: 10.1038/s42003-021-02060-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is the fundamental element for numerous physiological functions. Plasmalemmal divalent metal ion transporter 1 (DMT1) is responsible for cellular uptake of ferrous (Fe2+), whereas transferrin receptors (TFR) carry transferrin (TF)-bound ferric (Fe3+). In this study we performed detailed analysis of the action of Fe ions on cytoplasmic free calcium ion concentration ([Ca2+]i) in astrocytes. Administration of Fe2+ or Fe3+ in μM concentrations evoked [Ca2+]i in astrocytes in vitro and in vivo. Iron ions trigger increase in [Ca2+]i through two distinct molecular cascades. Uptake of Fe2+ by DMT1 inhibits astroglial Na+-K+-ATPase, which leads to elevation in cytoplasmic Na+ concentration, thus reversing Na+/Ca2+ exchanger and thereby generating Ca2+ influx. Uptake of Fe3+ by TF-TFR stimulates phospholipase C to produce inositol 1,4,5-trisphosphate (InsP3), thus triggering InsP3 receptor-mediated Ca2+ release from endoplasmic reticulum. In summary, these findings reveal the mechanisms of iron-induced astrocytic signalling operational in conditions of iron overload.
Collapse
Affiliation(s)
- Wenzheng Guan
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- The First Department of Reproduction, Shengjing Hospital, China Medical University, Shenyang, China
| | - Maosheng Xia
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, PR China
| | - Ming Ji
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Beina Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shuai Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Manman Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shanshan Liang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Binjie Chen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Wenliang Gong
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Chengyi Dong
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, PR China
| | - Gehua Wen
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xiaoni Zhan
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Dianjun Zhang
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinyu Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Yuefei Zhou
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, PR China
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain.
- Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, PR China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
23
|
The Association Between Antidepressant Effect of SSRIs and Astrocytes: Conceptual Overview and Meta-analysis of the Literature. Neurochem Res 2021; 46:2731-2745. [PMID: 33527219 DOI: 10.1007/s11064-020-03225-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022]
Abstract
Major depressive disorders (MDD) a worldwide psychiatric disease, is yet to be adequately controlled by therapies; while the mechanisms of action of antidepressants are yet to be fully characterised. In the last two decades, an increasing number of studies have demonstrated the role of astrocytes in the pathophysiology and therapy of MDD. Selective serotonin reuptake inhibitors (SSRIs) are the most widely used antidepressants. It is generally acknowledged that SSRIs increase serotonin levels in the central nervous system by inhibiting serotonin transporters, although the SSRIs action is not ideal. The SSRIs antidepressant effect develops with considerable delay; their efficacy is low and frequent relapses are common. Neither cellular nor molecular pharmacological mechanisms of SSRIs are fully characterised; in particular their action on astrocytes remain underappreciated. In this paper we overview potential therapeutic mechanisms of SSRIs associated with astroglia and report the results of meta-analysis of studies dedicated to MDD, SSRIs and astrocytes. In particular, we argue that fluoxetine, the representative SSRI, improves depressive-like behaviours in animals treated with chronic mild stress and reverses depression-associated decrease in astrocytic glial fibrillary acidic protein (GFAP) expression. In addition, fluoxetine upregulates astrocytic mRNA expression of 5-hydroxytriptamin/serotonin2B receptors (5-HT2BR). In summary, we infer that SSRIs exert their anti-depressant effect by regulating several molecular and signalling pathways in astrocytes.
Collapse
|
24
|
Li B, Xia M, Zorec R, Parpura V, Verkhratsky A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res 2021; 1752:147234. [PMID: 33412145 DOI: 10.1016/j.brainres.2020.147234] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
With the industrial development and progressive increase in environmental pollution, the mankind overexposure to heavy metals emerges as a pressing public health issue. Excessive intake of heavy metals, such as arsenic (As), manganese (Mn), mercury (Hg), aluminium (Al), lead (Pb), nickel (Ni), bismuth (Bi), cadmium (Cd), copper (Cu), zinc (Zn), and iron (Fe), is neurotoxic and it promotes neurodegeneration. Astrocytes are primary homeostatic cells in the central nervous system. They protect neurons against all types of insults, in particular by accumulating heavy metals. However, this makes astrocytes the main target for heavy metals neurotoxicity. Intake of heavy metals affects astroglial homeostatic and neuroprotective cascades including glutamate/GABA-glutamine shuttle, antioxidative machinery and energy metabolism. Deficits in these astroglial pathways facilitate or even instigate neurodegeneration. In this review, we provide a concise outlook on heavy metal-induced astrogliopathies and their association with major neurodegenerative disorders. In particular, we focus on astroglial mechanisms of iron-induced neurotoxicity. Iron deposits in the brain are detected in main neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Accumulation of iron in the brain is associated with motor and cognitive impairments and iron-induced histopathological manifestations may be considered as the potential diagnostic biomarker of neurodegenerative diseases. Effective management of heavy metal neurotoxicity can be regarded as a potential strategy to prevent or retard neurodegenerative pathologies.
Collapse
Affiliation(s)
- Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China.
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, People's Republic of China
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000 Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexei Verkhratsky
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|