1
|
Song QX, Zhang YY, Li YL, Liu F, Liu YJ, Li YK, Li CJ, Zhou C, Shen JF. The crucial role of NR2A mediating the activation of satellite glial cells in the trigeminal ganglion contributes to orofacial inflammatory pain during TMJ inflammation. Neuropharmacology 2024; 261:110173. [PMID: 39357737 DOI: 10.1016/j.neuropharm.2024.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/31/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Temporomandibular joint inflammatory diseases are a significant subtype of temporomandibular disorders (TMD) characterized by inflammatory pain in the orofacial area. The N-methyl-D-aspartate receptor (NMDAR), specifically the NR2A subtype, was crucial in neuropathic pain. However, the exact role of NR2A in inflammatory pain in the TMJ and the molecular and cellular mechanisms mediating peripheral sensitization in the trigeminal ganglion (TG) remain unclear. This study utilized male and female mice to induce the TMJOA model by injecting Complete Freund's adjuvant (CFA) into the TMJ and achieve conditional knockout (CKO) of NR2A in the TG using Cre/Loxp technology. The Von-Frey filament test results showed that CFA-induced orofacial pain with reduced mechanical withdrawal threshold (MWT), which was not developed in NR2A CKO mice. Additionally, the up-regulation of interleukin (IL)-1β, IL-6, and nerve growth factor (NGF) in the TG induced by CFA did not occur by NR2A deficiency. In vitro, NMDA activated satellite glial cells (SGCs) with high expression of glial fibrillary acidic protein (GFAP), and both NMDA and LPS led to increased IL-1β, IL-6, and NGF in SGCs. NR2A deficiency reduced these stimulating effects of NMDA and LPS. The regulation of IL-1β involved the p38, Protein Kinase A (PKA), and Protein Kinase C (PKC) pathways, while IL-6 signaling relied on PKA and PKC pathways. NGF regulation was primarily through the p38 pathway. This study highlighted NR2A's crucial role in the TG peripheral sensitization during TMJ inflammation by mediating ILs and NGF, suggesting potential targets for orofacial inflammatory pain management.
Collapse
Affiliation(s)
- Qin-Xuan Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi-Ke Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Disease & West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhou X, Zhao X, Dong H, Gao Y. Chrysene contribution to bronchial asthma: Activation of TRPA1 disrupts bronchial epithelial barrier via ERK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117095. [PMID: 39395376 DOI: 10.1016/j.ecoenv.2024.117095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Elevated polycyclic aromatic hydrocarbon (PAH) levels are associated with exacerbation of asthma. Chrysene is one of the most prevalent unsubstituted PAHs in the environment. Transient receptor potential ankyrin 1 (TRPA1) can be used as a chemoreceptor to detect inhaled stimuli and plays an important role in the occurrence and deterioration of asthma. Whether exposure to a high concentration of chrysene in the environment can activate TRPA1 and contribute to the development of asthma, potentially through the dysfunction of the bronchial epithelial barrier, remains unclear. METHODS A cell-based assay was performed to verify the downregulation of the expression of E-cadherin and tight junction (TJ) proteins by chrysene in bronchial epithelial cells to explore the role of chrysene-mediated TRPA1 activation in the regulation of TJ protein expression through the extracellular signal-regulated protein kinase (ERK) pathway. Animal tests were conducted to determine whether chrysene could enhance airway hyperresponsiveness (AHR) induced by house dust mites (HDMs) and disrupt barrier function, thereby contributing to asthma. RESULTS The cell-based assay revealed that chrysene could disrupt the function of the bronchial epithelial barrier and decrease the expression levels of E-cadherin, zonula occludens-1 (ZO-1), occludin, and claudin-5 through the ERK pathway. Chrysene induced airway epithelial barrier dysfunction primarily through TRPA1 instead of transient receptor potential vanilloid 1. TRPA1 knockdown was able to attenuate chrysene-induced downregulation of TJ protein expression and downregulate ERK activation (p-ERK). Compared with exposure to HDM alone, coexposure to chrysene and HDM resulted in an increased incidence of AHR, disruption of barrier function, and eosinophilic inflammatory responses in a mouse model of asthma. Coexposure to chrysene and HDM increased TRPA1 expression. The animal test verified that the TRPA1 inhibitor HC030031 could suppress chrysene and HDM-induced asthma in mice. CONCLUSIONS Our findings showed that chrysene contributed to the breakdown of the function of the bronchial epithelial barrier through the TRPA1-ERK axis and therefore acted as an adjuvant to contribute to asthma.
Collapse
Affiliation(s)
- Xinjia Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xiaoyu Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Han Dong
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuan Gao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
3
|
Cho HJ, Chung DK, Lee HH. Mefloquine-induced conformational shift in Cx36 N-terminal helix leading to channel closure mediated by lipid bilayer. Nat Commun 2024; 15:9223. [PMID: 39455592 PMCID: PMC11512059 DOI: 10.1038/s41467-024-53587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Connexin 36 (Cx36) forms interneuronal gap junctions, establishing electrical synapses for rapid synaptic transmission. In disease conditions, inhibiting Cx36 gap junction channels (GJCs) is beneficial, as it prevents abnormal synchronous neuronal firing and apoptotic signal propagation, mitigating seizures and progressive cell death. Here, we present cryo-electron microscopy structures of human Cx36 GJC in complex with known channel inhibitors, such as mefloquine, arachidonic acid, and 1-hexanol. Notably, these inhibitors competitively bind to the binding pocket of the N-terminal helices (NTH), inducing a conformational shift from the pore-lining NTH (PLN) state to the flexible NTH (FN) state. This leads to the obstruction of the channel pore by flat double-layer densities of lipids. These studies elucidate the molecular mechanisms of how Cx36 GJC can be modulated by inhibitors, providing valuable insights into potential therapeutic applications.
Collapse
Affiliation(s)
- Hwa-Jin Cho
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Dong Kyu Chung
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Aji A, Zhang C, Liu W, Chen T, Liu Z, Zuo J, Li H, Mi W, Mao-Ying QL, Wang Y, Zhao Q, Chu YX. Foxg1 Modulation of the Prkcd Gene in the Lateral Habenula Mediates Trigeminal Neuralgia-Associated Anxiety-Like Behaviors in Mice. Mol Neurobiol 2024; 61:4335-4351. [PMID: 38085455 DOI: 10.1007/s12035-023-03856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/28/2023] [Indexed: 07/11/2024]
Abstract
Trigeminal Neuralgia (TN) is a debilitating disorder frequently accompanied by mood complications such as depression and anxiety. The current study sought to elucidate the molecular underpinnings that contribute to the pathogenesis of TN and its associated anxiety. Employing a partial transection of the infraorbital nerve (pT-ION) in a murine model, we successfully induced sustained primary and secondary orofacial allodynia alongside anxiety-like behavioral manifestations. Transcriptome-wide gene microarray analyses revealed a marked upregulation of Foxg1 subsequent to pT-ION. Targeted knockdown of Foxg1, achieved through bilateral microinjection of adeno-associated virus harboring Foxg1-specific shRNA into the lateral habenula (LHb), resulted in a significant attenuation of both orofacial pain and anxiety-like behaviors. Subsequent RNA sequencing implicated Prkcd as a downstream effector gene modulated by Foxg1. Pharmacological inhibition of protein kinase C delta, encoded by Prkcd, within the LHb markedly ameliorated pT-ION-induced symptomatology. The dual luciferase assay revealed that Foxg1 substantially enhances the transcriptional activity of the Prkcd gene. Collectively, these findings indicate that trigeminal nerve injury leads to Foxg1 upregulation in the LHb, which in turn elevates the expression of Prkcd, culminating in the manifestation of orofacial pain and anxiety-like behaviors. This work offers promising therapeutic targets and a conceptual framework for the clinical management of TN and its psychological comorbidities.
Collapse
Affiliation(s)
- Abudula Aji
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Chen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Wenbo Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Teng Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Zhechen Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Jiaxin Zuo
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Haojun Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qing Zhao
- Shanghai Sunshine Rehabilitation Center, Shanghai Yangzhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Institute of Acupuncture Research, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Su Y, Verkhratsky A, Yi C. Targeting connexins: possible game changer in managing neuropathic pain? Trends Mol Med 2024; 30:642-659. [PMID: 38594094 DOI: 10.1016/j.molmed.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Neuropathic pain is a chronic debilitating condition caused by nerve injury or a variety of diseases. At the core of neuropathic pain lies the aberrant neuronal excitability in the peripheral and/or central nervous system (PNS and CNS). Enhanced connexin expression and abnormal activation of connexin-assembled gap junctional channels are prominent in neuropathic pain along with reactive gliosis, contributing to neuronal hypersensitivity and hyperexcitability. In this review, we delve into the current understanding of how connexin expression and function contribute to the pathogenesis and pathophysiology of neuropathic pain and argue for connexins as potential therapeutic targets for neuropathic pain management.
Collapse
Affiliation(s)
- Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China; Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, China.
| |
Collapse
|
6
|
Jia S, Mai L, Yang H, Huang F, He H, Fan W. Cross-species gene expression patterns of purinergic signaling in the human and mouse trigeminal ganglion. Life Sci 2023; 332:122130. [PMID: 37769809 DOI: 10.1016/j.lfs.2023.122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Purinergic signaling system plays a pivotal role in the trigeminal ganglion (TG) which is a primary sensory tissue in vertebrate nervous systems involving orofacial nociception and peripheral sensitization. Despite previous efforts to reveal the expression patterns of purinergic components in the mouse TG, it is still unknown the interspecies differences between human and mouse. In this study, we provide a comprehensive transcriptome profile of the purinergic signaling system across diverse cell types and neuronal subpopulations within the human TG, systematically comparing it with mouse TG. In addition, the evolutionary conservation and species-specific expression patterns of the purinergic components are also discussed. We propose that the data can improve our understanding of purinergic signaling in the peripheral nervous system and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Shilin Jia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hui Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
7
|
Gianò M, Franco C, Castrezzati S, Rezzani R. Involvement of Oxidative Stress and Nutrition in the Anatomy of Orofacial Pain. Int J Mol Sci 2023; 24:13128. [PMID: 37685933 PMCID: PMC10487620 DOI: 10.3390/ijms241713128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Pain is a very important problem of our existence, and the attempt to understand it is one the oldest challenges in the history of medicine. In this review, we summarize what has been known about pain, its pathophysiology, and neuronal transmission. We focus on orofacial pain and its classification and features, knowing that is sometimes purely subjective and not well defined. We consider the physiology of orofacial pain, evaluating the findings on the main neurotransmitters; in particular, we describe the roles of glutamate as approximately 30-80% of total peripheric neurons associated with the trigeminal ganglia are glutamatergic. Moreover, we describe the important role of oxidative stress and its association with inflammation in the etiogenesis and modulation of pain in orofacial regions. We also explore the warning and protective function of orofacial pain and the possible action of antioxidant molecules, such as melatonin, and the potential influence of nutrition and diet on its pathophysiology. Hopefully, this will provide a solid background for future studies that would allow better treatment of noxious stimuli and for opening new avenues in the management of pain.
Collapse
Affiliation(s)
- Marzia Gianò
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
| | - Stefania Castrezzati
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.G.); (C.F.); (S.C.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
8
|
Liu J, Jia S, Huang F, He H, Fan W. Peripheral role of glutamate in orofacial pain. Front Neurosci 2022; 16:929136. [PMID: 36440288 PMCID: PMC9682037 DOI: 10.3389/fnins.2022.929136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/10/2022] [Indexed: 09/10/2023] Open
Abstract
Glutamate is the principal excitatory neurotransmitter in the central nervous system. In the periphery, glutamate acts as a transmitter and involves in the signaling and processing of sensory input. Glutamate acts at several types of receptors and also interacts with other transmitters/mediators under various physiological and pathophysiological conditions including chronic pain. The increasing amount of evidence suggests that glutamate may play a role through multiple mechanisms in orofacial pain processing. In this study, we reviewed the current understanding of how peripheral glutamate mediates orofacial pain, how glutamate is regulated in the periphery, and how these findings are translated into therapies for pain conditions.
Collapse
Affiliation(s)
- Jinyue Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shilin Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Jia YZ, Li HT, Zhang GM, Wu HY, Zhang SS, Zhi HW, Wang YH, Zhu JW, Wang YF, Xu XQ, Tian CJ, Cui WQ. Electroacupuncture alleviates orofacial allodynia and anxiety-like behaviors by regulating synaptic plasticity of the CA1 hippocampal region in a mouse model of trigeminal neuralgia. Front Mol Neurosci 2022; 15:979483. [PMID: 36277498 PMCID: PMC9582442 DOI: 10.3389/fnmol.2022.979483] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Trigeminal neuralgia (TN), one of the most severe and debilitating chronic pain conditions, is often accompanied by mood disorders, such as anxiety and depression. Electroacupuncture (EA) is a characteristic therapy of Traditional Chinese Medicine with analgesic and anxiolytic effects. This study aimed to investigate whether EA ameliorates abnormal TN orofacial pain and anxiety-like behavior by altering synaptic plasticity in the hippocampus CA1. Materials and methods A mouse infraorbital nerve transection model (pT-ION) of neuropathic pain was established, and EA or sham EA was used to treat ipsilateral acupuncture points (GV20-Baihui and ST7-Xiaguan). Golgi-Cox staining and transmission electron microscopy (TEM) were administrated to observe the changes of synaptic plasticity in the hippocampus CA1. Results Stable and persistent orofacial allodynia and anxiety-like behaviors induced by pT-ION were related to changes in hippocampal synaptic plasticity. Golgi stainings showed a decrease in the density of dendritic spines, especially mushroom-type dendritic spines, in hippocampal CA1 neurons of pT-ION mice. TEM results showed that the density of synapses, membrane thickness of the postsynaptic density, and length of the synaptic active zone were decreased, whereas the width of the synaptic cleft was increased in pT-ION mice. EA attenuated pT-ION-induced orofacial allodynia and anxiety-like behaviors and effectively reversed the abnormal changes in dendritic spines and synapse of the hippocampal CA1 region. Conclusion EA modulates synaptic plasticity of hippocampal CA1 neurons, thereby reducing abnormal orofacial pain and anxiety-like behavior. This provides evidence for a TN treatment strategy.
Collapse
Affiliation(s)
- Yu-Zhi Jia
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Tao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Ming Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Si-Shuo Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Wei Zhi
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Han Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing-Wen Zhu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Fan Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Qing Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cai-Jun Tian
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Yan Q, Li W, Gong X, Hu R, Chen L. Transcriptomic and Phenotypic Analysis of CRISPR/Cas9-Mediated gluk2 Knockout in Zebrafish. Genes (Basel) 2022; 13:genes13081441. [PMID: 36011351 PMCID: PMC9408333 DOI: 10.3390/genes13081441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
As a subtype of kainite receptors (KARs), GluK2 plays a role in the perception of cold in the periphery sensory neuron. However, the molecular mechanism for gluk2 on the cold stress in fish has not been reported. In this article, real-time PCR assays showed that gluk2 was highly expressed in the brain and eyes of adult zebrafish. To study the functions of gluk2, gene knockout was carried out using the CRISPR/Cas9 system. According to RNA-seq analysis, we selected the differentially expressed genes (DEGs) that had significant differences in at least three tissues of the liver, gill, intestine, skin, brain, and eyes. Gene Ontology (GO) enrichment analysis revealed that cry1ba, cry2, per1b, per2, hsp70.1, hsp70.2, hsp70l, hsp90aa1.1, hsp90aa1.2, hspb1, trpv1, slc27a1b, park2, ucp3, and METRNL were significantly enriched in the ‘Response to temperature stimulus’ pathway. Through behavioral phenotyping assay, the gluk2−/− larval mutant displayed obvious deficiency in cold stress. Furthermore, TUNEL (TdT-mediated dUTP Nick-End Labeling) staining proved that the gill apoptosis of gluk2−/− mutant was increased approximately 60 times compared with the wild-type after gradient cooling to 8 °C for 15 h. Overall, our data suggested that gluk2 was necessary for cold tolerance in zebrafish.
Collapse
|
11
|
Liu Q, Mai L, Yang S, Jia S, Chu Y, He H, Fan W, Huang F. Transcriptional Alterations of Mouse Trigeminal Ganglion Neurons Following Orofacial Inflammation Revealed by Single-Cell Analysis. Front Cell Neurosci 2022; 16:885569. [PMID: 35722619 PMCID: PMC9200971 DOI: 10.3389/fncel.2022.885569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Orofacial inflammation leads to transcriptional alterations in trigeminal ganglion (TG) neurons. However, diverse alterations and regulatory mechanisms following orofacial inflammatory pain in different types of TG neurons remain unclear. Here, orofacial inflammation was induced by injection of complete Freund’s adjuvant (CFA) in mice. After 7 days, we performed single-cell RNA-sequencing on TG cells of mice from control and treatment groups. We identified primary sensory neurons, Schwann cells, satellite glial cells, oligodendrocyte-like cells, immune cells, fibroblasts, and endothelial cells in TG tissue. After principal component analysis and hierarchical clustering, we identified six TG neuronal subpopulations: peptidergic nociceptors (PEP1 and PEP2), non-peptidergic nociceptors (NP1 and NP2), C-fiber low-threshold mechanoreceptors (cLTMR) and myelinated neurons (Nefh-positive neurons, NF) based on annotated marker gene expression. We also performed differential gene expression analysis among TG neuronal subtypes, identifying several differential genes involved in the inflammatory response, neuronal excitability, neuroprotection, and metabolic processes. Notably, we identified several potential novel targets associated with pain modulation, including Arl6ip1, Gsk3b, Scn7a, and Zbtb20 in PEP1, Rgs7bp in PEP2, and Bhlha9 in cLTMR. The established protein–protein interaction network identified some hub genes, implying their critical involvement in regulating orofacial inflammatory pain. Our study revealed the heterogeneity of TG neurons and their diverse neuronal transcriptomic responses to orofacial inflammation, providing a basis for the development of therapeutic strategies for orofacial inflammatory pain.
Collapse
Affiliation(s)
- Qing Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Mai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shengyan Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shilin Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yanhao Chu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- *Correspondence: Wenguo Fan,
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Fang Huang,
| |
Collapse
|
12
|
Abstract
Trigeminal neuralgia (TN) is a severe facial pain disease of unknown cause and unclear genetic background. To examine the existing knowledge about genetics in TN, we performed a systematic study asking about the prevalence of familial trigeminal neuralgia, and which genes that have been identified in human TN studies and in animal models of trigeminal pain. MedLine, Embase, Cochrane Library and Web of Science were searched from inception to January 2021. 71 studies were included in the systematic review. Currently, few studies provide information about the prevalence of familial TN; the available evidence indicates that about 1–2% of TN cases have the familial form. The available human studies propose the following genes to be possible contributors to development of TN: CACNA1A, CACNA1H, CACNA1F, KCNK1, TRAK1, SCN9A, SCN8A, SCN3A, SCN10A, SCN5A, NTRK1, GABRG1, MPZ gene, MAOA gene and SLC6A4. Their role in familial TN still needs to be addressed. The experimental animal studies suggest an emerging role of genetics in trigeminal pain, though the animal models may be more relevant for trigeminal neuropathic pain than TN per se. In summary, this systematic review suggests a more important role of genetic factors in TN pathogenesis than previously assumed.
Collapse
Affiliation(s)
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|