1
|
Cardioprotective Mechanisms of Interrupted Anesthetic Preconditioning with Sevoflurane in the Setting of Ischemia/Reperfusion Injury in Rats. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Anesthetic preconditioning (AP) is known to mimic ischemic preconditioning. The purpose of this study was to investigate the effects of an interrupted sevoflurane administration protocol on myocardial ischemia/reperfusion (I/R) injury. Methods: Male Wistar rats (n = 60) were ventilated for 30 min with room air (control group, CG) or with a mixture of air and sevoflurane (1 minimum alveolar concentration—MAC) in 5-min cycles, alternating with 5-min wash-out periods (preconditioned groups). Cytokines implicated in the AP response were measured. An (I/R) lesion was produced immediately after the sham intervention (CG) and preconditioning protocol (early AP group, EAPG) or 24 h after the intervention (late AP group, LAPG). The area of fibrosis, the degree of apoptosis and the number of c-kit+ cells was estimated for each group. Results: Cytokine levels were increased post AP. The area of fibrosis decreased in both EAPG and LAPG compared to the CG (p < 0.0001). When compared to the CG, the degree of apoptosis was reduced in both LAPG (p = 0.006) and EAPG (p = 0.007) and the number of c-kit+ cells was the greatest for the LAPG (p < 0.0001). Conclusions: Sevoflurane preconditioning, using an interrupted anesthesia protocol, is efficient in myocardial protection and could be beneficial to reduce perioperative or periprocedural ischemia in patients with increased cardiovascular risk.
Collapse
|
2
|
Abstract
After a myocardial infarction, heart tissue becomes irreversibly damaged, leading to scar formation and inevitably ischemic heart failure. Of the many available interventions after a myocardial infarction, such as percutaneous intervention or pharmacological optimization, none can reverse the ischemic insult on the heart and restore cardiac function. Thus, the only available cure for patients with scarred myocardium is allogeneic heart transplantation, which comes with extensive costs, risks, and complications. However, multiple studies have shown that the heart is, in fact, not an end-stage organ and that there are endogenous mechanisms in place that have the potential to spark regeneration. Stem cell therapy has emerged as a potential tool to tap into and activate this endogenous framework. Particularly promising are stem cells derived from cardiac tissue itself, referred to as cardiosphere-derived cells (CDCs). CDCs can be extracted and isolated from the patient's myocardium and then administered by intramyocardial injection or intracoronary infusion. After early success in the animal model, multiple clinical trials have demonstrated the safety and efficacy of autologous CDC therapy in humans. Clinical trials with allogeneic CDCs showed early promising results and pose a potential "off-the-shelf" therapy for patients in the acute setting after a myocardial infarction. The mechanism responsible for CDC-induced cardiac regeneration seems to be a combination of triggering native cardiomyocyte proliferation and recruitment of endogenous progenitor cells, which most prominently occurs via paracrine effects. A further understanding of the mediators involved in paracrine signaling can help with the development of a stem cell-free therapy, with all the benefits and none of the associated complications.
Collapse
|
3
|
Garba A, Desmarets LMB, Acar DD, Devriendt B, Nauwynck HJ. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells. PLoS One 2017; 12:e0186343. [PMID: 29036224 PMCID: PMC5642917 DOI: 10.1371/journal.pone.0186343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/01/2017] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.
Collapse
Affiliation(s)
- Abubakar Garba
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lowiese M. B. Desmarets
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Delphine D. Acar
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans J. Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
4
|
Glass C, Singla R, Arora A, Singla DK. Mouse embryonic stem cell-derived cardiac myocytes in a cell culture dish. Methods Mol Biol 2015; 1299:145-52. [PMID: 25836581 DOI: 10.1007/978-1-4939-2572-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Embryonic stem (ES) cells are pluripotent stem cells capable of self-renewal and have broad differentiation potential yielding cell types from all three germ layers. In the absence of differentiation inhibitory factors, when cultured in suspension, ES cells spontaneously differentiate and form three-dimensional cell aggregates termed embryoid bodies (EBs). Although various methods exist for the generation of EBs, the hanging drop method offers reproducibility and homogeneity from a predetermined number of ES cells. Herein, we describe the in vitro differentiation of mouse embryonic stem cells into cardiac myocytes using the hanging drop method and immunocytochemistry to identify cardiomyogenic differentiation. In brief, ES cells, placed in droplets on the lid of culture dishes following a 2-day incubation, yield embryoid bodies, which are resuspended and plated. 1-2 weeks following plating of the EBs, spontaneous beating areas can be observed and staining for specific cardiac markers can be achieved.
Collapse
Affiliation(s)
- Carley Glass
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Building 20 Room 320A, Orlando, FL, 32817, USA
| | | | | | | |
Collapse
|
5
|
Kai D, Prabhakaran MP, Jin G, Tian L, Ramakrishna S. Potential of VEGF-encapsulated electrospun nanofibers for in vitro
cardiomyogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med 2015; 11:1002-1010. [DOI: 10.1002/term.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/13/2014] [Accepted: 12/12/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Dan Kai
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore
- Institute of Materials Research and Engineering (IMRE); Singapore
| | - Molamma P. Prabhakaran
- Centre for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative; National University of Singapore
| | - Guorui Jin
- Department of Mechanical Engineering; National University of Singapore
- Institute of Materials Research and Engineering (IMRE); Singapore
| | - Lingling Tian
- Centre for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative; National University of Singapore
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative; National University of Singapore
- Department of Mechanical Engineering; National University of Singapore
| |
Collapse
|
6
|
Di Scipio F, Sprio A, Folino A, Carere M, Salamone P, Yang Z, Berrone M, Prat M, Losano G, Rastaldo R, Berta G. Injured cardiomyocytes promote dental pulp mesenchymal stem cell homing. Biochim Biophys Acta Gen Subj 2014; 1840:2152-61. [DOI: 10.1016/j.bbagen.2014.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 02/07/2023]
|
7
|
The small molecule Wnt signaling modulator ICG-001 improves contractile function in chronically infarcted rat myocardium. PLoS One 2013; 8:e75010. [PMID: 24069374 PMCID: PMC3771968 DOI: 10.1371/journal.pone.0075010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/09/2013] [Indexed: 12/23/2022] Open
Abstract
The adult mammalian heart has limited capability for self-repair after myocardial infarction. Therefore, therapeutic strategies that improve post-infarct cardiac function are critically needed. The small molecule ICG-001 modulates Wnt signaling and increased the expression of genes beneficial for cardiac regeneration in epicardial cells. Lineage tracing experiments, demonstrated the importance of β-catenin/p300 mediated transcription for epicardial progenitor contribution to the myocardium. Female rats given ICG-001 for 10 days post-occlusion significantly improved ejection fraction by 8.4%, compared to controls (P<0.05). Taken together, Wnt modulation via β-catenin/CBP inhibition offers a promising therapeutic strategy towards restoration of myocardial tissues and an enhancement of cardiac functions following infarction.
Collapse
|
8
|
Yan B, Singla DK. Transplanted induced pluripotent stem cells mitigate oxidative stress and improve cardiac function through the Akt cell survival pathway in diabetic cardiomyopathy. Mol Pharm 2013; 10:3425-32. [PMID: 23879836 DOI: 10.1021/mp400258d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent evidence suggests transplanted stem cells improve left ventricular function in diabetic induced cardiomyopathy (DICM). However, little is known about the mechanisms by which induced pluripotent stem (iPS) cells or factors released from these cells inhibit adverse cardiac remodeling in DICM. The present study was designed to determine molecular mediators and pathways regulated by transplanted iPS cells and their conditioned media (CM) in DICM. Animals were divided into four experimental groups such as control, streptozotocin (STZ), STZ+iPS-CM, and STZ+iPS cells. Experimental diabetes was induced in C57BL/6 mice by intraperitoneal STZ injections (100 mg/kg body weight for 2 consecutive days). Following STZ injections, iPS cells or CM was given intravenously for 3 consecutive days. Animals were humanely killed, and hearts were harvested at D14. Animals transplanted with iPS cells or CM demonstrated a significant reduction in apoptosis, mediated by Akt upregulation and ERK1/2 downregulation, and inhibition of interstitial fibrosis via MMP-9 suppression compared with the STZ group. Oxidative stress was significantly hindered in iPS cell and CM groups as evidenced by diminished pro-oxidant expression and enhanced antioxidant (catalase and MnSOD) concentration. Echocardiography data suggest a significant improvement in cardiac function in cells and CM groups in comparison to STZ. In conclusion, our data strongly suggest that iPS cells and CM attenuate oxidative stress and associated apoptosis and fibrosis. Moreover, we also suggest that increased antioxidant levels, decreased adverse cardiac remodeling, and improved cardiac function is mediated by iPS CM and cells in DICM through multiple autocrine and paracrine mechanisms.
Collapse
Affiliation(s)
- Binbin Yan
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida 32816, United States
| | | |
Collapse
|
9
|
Sachlos E, Bollenbach T, Kerstetter-Fogle AE, Madeddu P, King CC. Research Highlights: Highlights from the latest articles in regenerative medicine. Regen Med 2013; 8:115. [DOI: 10.2217/rme.13.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Konoplyannikov M, Haider KH, Lai VK, Ahmed RPH, Jiang S, Ashraf M. Activation of diverse signaling pathways by ex-vivo delivery of multiple cytokines for myocardial repair. Stem Cells Dev 2012; 22:204-15. [PMID: 22873203 DOI: 10.1089/scd.2011.0575] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We tested the hypothesis that simultaneous transgenic overexpression of a select quartet of growth factors activates diverse signaling pathways for mobilization and participation of various stem/progenitor cells for cardiogenesis in the infarcted heart. Human insulin growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 (SDF-1a), and hepatocyte growth factor (HGF) plasmids were synthesized and transfected into skeletal myoblasts (SM) from young male wild-type or transgenic rats expressing green fluorescent protein (GFP). Overexpression of growth factors in transfected SM ((Trans)SM) was confirmed by reverse transcription polymerase chain reaction, western blotting, and fluorescence immunostaining. Using our custom-made growth factor array and western blotting, multiple angiogenic and prosurvival factors were detected in (Trans)SM, including secreted frizzled related protein-1,2,4,5, matrix metalloproteinases-3 and 9, connexin-43, netrin-1, Nos-2, Wnt-3, Akt, MAPK42/44, Stat3, nuclear factor kappa B (NFκB), hypoxia-inducible factor 1 (HIF-1α), and protein kinase C (PKC). The conditioned medium (CM) from (Trans)SM was cytoprotective for cardiomyocytes following H(2)O(2) treatment [P<0.01 vs. CM from native SM ((Nat)SM)], promoted a higher transwell migration of human umbilical cord vein endothelial cells (223.3±1.8, P<0.01) and in vitro tube formation (47.8±1.9, P<0.01). Intramyocardial transplantation of 1.5×10(6) (Trans)SM (group-3) in a rat model of acute myocardial infarction induced extensive mobilization of cMet(+), ckit(+), ckit(+)/GATA(4+), CXCR4(+), CD44(+), CD31(+), and CD59(+) cells into the infarcted heart on day 7 and improved integration of (Trans)SM in the heart compared to (Nat)SM (group 2) (P<0.05). Extensive neomyogenesis and angiogenesis in group-3 (P<0.01 vs. group-2), with resultant attenuation of infarct size (P<0.01 vs. group-2) and improvement in global heart function (P<0.01 vs. group-2) was observed at 8 weeks. In conclusion, simultaneous activation of diverse signaling pathways by overexpression of multiple growth factors caused massive mobilization and homing of stem/progenitor cells from peripheral circulation, the bone marrow, and the heart for accelerated repair of the infarcted myocardium.
Collapse
Affiliation(s)
- Mikhail Konoplyannikov
- Department of Pathology, University of Cincinnati, 231Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | | | | | |
Collapse
|
11
|
Wright EJ, Farrell KA, Malik N, Kassem M, Lewis AL, Wallrapp C, Holt CM. Encapsulated glucagon-like peptide-1-producing mesenchymal stem cells have a beneficial effect on failing pig hearts. Stem Cells Transl Med 2012. [PMID: 23197668 DOI: 10.5966/sctm.2012-0064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stem cell therapy is an exciting and emerging treatment option to promote post-myocardial infarction (post-MI) healing; however, cell retention and efficacy in the heart remain problematic. Glucagon-like peptide-1 (GLP-1) is an incretin hormone with cardioprotective properties but a short half-life in vivo. The effects of prolonged GLP-1 delivery from stromal cells post-MI were evaluated in a porcine model. Human mesenchymal stem cells immortalized and engineered to produce a GLP-1 fusion protein were encapsulated in alginate (bead-GLP-1 MSC) and delivered to coronary artery branches. Control groups were cell-free beads and beads containing unmodified MSCs (bead-MSC), n = 4-5 per group. Echocardiography confirmed left ventricular (LV) dysfunction at time of delivery in all groups. Four weeks after intervention, only the bead-GLP-1 MSC group demonstrated LV function improvement toward baseline and showed decreased infarction area compared with controls. Histological analysis showed reduced inflammation and a trend toward reduced apoptosis in the infarct zone. Increased collagen but fewer myofibroblasts were observed in infarcts of the bead-GLP-1 MSC and bead-MSC groups, and significantly more vessels per mm(2) were noted in the infarct of the bead-GLP-1 MSC group. No differences were observed in myocyte cross-sectional area between groups. Post-MI delivery of GLP-1 encapsulated genetically modified MSCs provided a prolonged supply of GLP-1 and paracrine stem cell factors, which improved LV function and reduced epicardial infarct size. This was associated with increased angiogenesis and an altered remodeling response. Combined benefits of paracrine stem cell factors and GLP-1 were superior to those of stem cells alone. These results suggest that encapsulated genetically modified MSCs would be beneficial for recovery following MI.
Collapse
Affiliation(s)
- Elizabeth J Wright
- Institute for Cardiovascular Science, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
12
|
Casado JG, Gomez-Mauricio G, Alvarez V, Mijares J, Tarazona R, Bernad A, Sanchez-Margallo FM. Comparative phenotypic and molecular characterization of porcine mesenchymal stem cells from different sources for translational studies in a large animal model. Vet Immunol Immunopathol 2012; 147:104-12. [PMID: 22521281 DOI: 10.1016/j.vetimm.2012.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/30/2023]
Abstract
Mesenchymal stem cells have demonstrated their potentiality for therapeutic use in treating diseases or repairing damaged tissues. However, in some cases, the results of clinical trials have been disappointing or have not worked out as well as hoped. These disappointing results can be attributed to an inadequate or insufficient preclinical study. For medical and surgical purposes, the similarities between the anatomy of pig and human make this animal an attractive preclinical model. In this sense, for mesenchymal stem cell-based therapy, it is strongly necessary to have well characterized animal-derived mesenchymal stem cell lines to validate preclinical effectiveness of these cells. In this work, porcine mesenchymal stem cells (pMSCs) were isolated from bone marrow, adipose tissue and peripheral blood and compared in terms of differentiation potential, cell surface markers and gene expression. Our results demonstrated that the isolation and in vitro expansion protocols were feasible and effective. The data presented in this work are relevant because they provide an extensive phenotypic characterization; genetic study and differentiation behavior of the most commonly used stem cell lines for clinical practices. These pMSCs are widely available to scientists and could be a valuable tool to evaluate the safety and efficacy of adoptively transferred cells.
Collapse
Affiliation(s)
- Javier G Casado
- Stem Cell Therapy Unit, Minimally Invasive Surgery Centre Jesus Uson, Caceres, Spain.
| | | | | | | | | | | | | |
Collapse
|
13
|
Characterization and Chondrogenic Differentiation of Menstrual Blood-Derived Stem Cells on a Nanofibrous Scaffold. Int J Artif Organs 2012; 35:55-66. [DOI: 10.5301/ijao.5000019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2011] [Indexed: 12/25/2022]
Abstract
Introduction The recent identification of menstrual blood-derived stem cells (MenSCs) as a unique population of stem cells has created enormous promise for tissue engineering. In this study, after characterization of MenSCs in comparison with bone marrow-derived stem cells (BMSCs), the potential of MenSCs seeded into electrospun, biodegradable, nanofibrous scaffolds in order to engineer cartilage was evaluated. Methods MenSCs and BMSCs were isolated by discontinuous density gradient centrifugation and plastic adherence. After characterization of MenSCs compared with BMSCs, MenSC differentiation into chondrocytes was investigated on a nanofibrous scaffold with specific growth and differentiation factors. The scaffold was prepared from polycaprolactone (PCL) and its surface was modified by plasma treatment. Results Flow cytometric analysis of expanded cells showed that MenSCs typically express some surface and intracellular markers associated with BMSCs. But marked expression of OCT-4 and the absence of STRO1 distinguished them from mesenchymal stem cells obtained from bone marrow. Based on scanning electron microscope images, the MenSCs were strongly anchored to the highly porous scaffold, which they penetrated and proliferated on. The scaffold contained an extensive cartilage-like extracellular matrix with about 50% greater glycosaminoglycan content than control MenSCs differentiated in a two-dimensional (2D) culture system (p<0.05). Considerable amounts of proteoglycan were produced by the cells differentiated on the scaffold, as demonstrated by Alcian blue staining. Unlike undifferentiated MenSCs, cells differentiated on the scaffold had strong immunoreactivity with monoclonal antibody against collagen type II. Conclusions The evidence presented in this study introduces MenSCs as a suitable stem cell population candidate for cartilage tissue engineering.
Collapse
|
14
|
Reduced collagen deposition in infarcted myocardium facilitates induced pluripotent stem cell engraftment and angiomyogenesis for improvement of left ventricular function. J Am Coll Cardiol 2011; 58:2118-27. [PMID: 22051336 DOI: 10.1016/j.jacc.2011.06.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The purpose of this study was to assess the effect of scar tissue composition on engraftment of progenitor cells into infarcted myocardium. BACKGROUND Scar tissue formation after myocardial infarction creates a barrier that severely compromises tissue regeneration, limiting potential functional recovery. METHODS In vitro: A tricell patch (Tri-P) was created from peritoneum seeded and cultured with induced pluripotent stem cell-derived cardiomyocytes, endothelial cells, and mouse embryonic fibroblasts. The expression of fibrosis-related molecules from mouse embryonic fibroblasts and infarcted heart was measured by Western blot and quantitative reverse transcriptase polymerase chain reaction. In vivo: A Tri-P was affixed over the entire infarcted area 7 days after myocardial infarction in mice overexpressing adenylyl cyclase 6 (AC6). Engraftment efficiency of progenitor cells in hearts of AC6 mice was compared with that of control wild-type (WT) mice using a combination of in vivo bioluminescence imaging, post-mortem ex vivo tissue analysis, and the number of green fluorescent protein-positive cells. Echocardiography of left ventricular (LV) function was performed weekly. Hearts were harvested for analysis 4 weeks after Tri-P application. Mouse embryonic fibroblasts were stimulated with forskolin before an anoxia/reoxygenation protocol. Fibrosis-related molecules were analyzed. RESULTS In AC6 mice, infarcted hearts treated with Tri-P showed significantly higher bioluminescence imaging intensity and numbers of green fluorescent protein-positive cells than in WT mice. LV function improved progressively in AC6 mice from weeks 2 to 4 and was associated with reduced LV fibrosis. CONCLUSIONS Application of a Tri-P in AC6 mice resulted in significantly higher induced pluripotent stem cell engraftment accompanied by angiomyogenesis in the infarcted area and improvement in LV function.
Collapse
|
15
|
Neel S, Singla DK. Induced pluripotent stem (iPS) cells inhibit apoptosis and fibrosis in streptozotocin-induced diabetic rats. Mol Pharm 2011; 8:2350-7. [PMID: 21988648 DOI: 10.1021/mp2004675] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent data suggests that transplanted bone marrow stem cells improve cardiac function in streptozotocin induced diabetic cardiomyopathy (SIDC). However, whether modified embryonic stem (ES) cells, induced pluripotent stem (iPS) cells, or factors released from these cells can inhibit apoptosis and fibrosis remains completely unknown. Therefore, we hypothesized that transplanted ES cells overexpressing pancreatic transcription factor 1 a (Ptf1a), a propancreatic endodermal transcription factor, iPS cells, or their respective conditioned media (CM) will attenuate cardiac remodeling and improve cardiac function in SIDC. Experimental diabetes was induced in male Sprague-Dawley rats (8-10 weeks old) by intraperitoneal injections of streptozotocin (STZ) (65 mg/kg body weight). Animals were divided into different groups including control, STZ, stem cells, and CM. Histology, TUNEL, caspase-3 activity, sarcomeric α-actin, and DHE stainings were performed to assess cardiac apoptosis, fibrosis, and oxidative stress. Animals transplanted with ES cells, iPS cells, or both CM showed a significant (p < 0.05) reduction in apoptosis compared with STZ treated animals. Furthermore, our data also shows that active apoptosis was present in cardiac myocytes as confirmed with combined stainings with TUNEL, sarcomeric α-actin, and active caspase-3 antibodies. Increased oxidative stress as evidenced by DHE staining was significantly (p < 0.05) reduced following stem cell or CM transplantation. Moreover, stem cells or CM also attenuated increased interstitial and vascular fibrosis in SIDC hearts. Echocardiography analysis showed a significant (p < 0.05) improvement in fractional shortening in stem cell and CM transplanted groups compared with respective controls. In conclusion, our data suggest that transplanted stem cells or their CM inhibit apoptosis, reduce fibrosis, and improve cardiac function in STZ-treated diabetic rats.
Collapse
Affiliation(s)
- Sarah Neel
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | | |
Collapse
|
16
|
Singla DK, Long X, Glass C, Singla RD, Yan B. Induced pluripotent stem (iPS) cells repair and regenerate infarcted myocardium. Mol Pharm 2011; 8:1573-81. [PMID: 21542647 PMCID: PMC6309322 DOI: 10.1021/mp2001704] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac myocyte differentiation reported thus far is from iPS cells generated from mouse and human fibroblasts. However, there is no article on the generation of iPS cells from cardiac ventricular specific cell types such as H9c2 cells. Therefore, whether transduced H9c2 cells, originally isolated from embryonic cardiac ventricular tissue, will be able to generate iPS cells and have the potential to repair and regenerate infarcted myocardium remains completely elusive. We transduced H9c2 cells with four stemness factors, Oct3/4, Sox2, Klf4, and c-Myc, and successfully reprogrammed them into iPS cells. These iPS cells were able to differentiate into beating cardiac myocytes and positively stained for cardiac specific sarcomeric α-actin and myosin heavy chain proteins. Following transplantation in the infarcted myocardium, there were newly differentiated cardiac myocytes and formation of gap junction proteins at 2 weeks post-myocardial infarction (MI), suggesting newly formed cardiac myocytes were integrated into the native myocardium. Furthermore, transplanted iPS cells significantly (p < 0.05) inhibited apoptosis and fibrosis and improved cardiac function compared with MI and MI+H9c2 cell groups. Moreover, our iPS cell derived cardiac myocyte differentiation in vitro and in vivo was comparable to embryonic stem cells in the present study. In conclusion we report for the first time that we have H9c2 cell-derived iPS cells which contain the potential to differentiate into cardiac myocytes in the cell culture system and repair and regenerate infarcted myocardium with improved cardiac function in vivo.
Collapse
Affiliation(s)
- Dinender K Singla
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States.
| | | | | | | | | |
Collapse
|
17
|
New Targets to Treat the Structural Remodeling of the Myocardium. J Am Coll Cardiol 2011; 58:1833-43. [DOI: 10.1016/j.jacc.2011.06.058] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 11/20/2022]
|
18
|
Otto WR, Wright NA. Mesenchymal stem cells: from experiment to clinic. FIBROGENESIS & TISSUE REPAIR 2011; 4:20. [PMID: 21902837 PMCID: PMC3182886 DOI: 10.1186/1755-1536-4-20] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/08/2011] [Indexed: 02/07/2023]
Abstract
There is currently much interest in adult mesenchymal stem cells (MSCs) and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients.
Collapse
Affiliation(s)
- William R Otto
- Histopathology Laboratory, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK.
| | | |
Collapse
|
19
|
Franco C, Price J, West J. Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres. Acta Biomater 2011; 7:3267-76. [PMID: 21704198 DOI: 10.1016/j.actbio.2011.06.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 01/10/2023]
Abstract
A growing number of clinical trials explore the use of cell-based therapies for the treatment of disease and restoration of damaged tissue; however, limited cell survival and engraftment remains a significant challenge. As the field continues to progress, microencapsulation strategies are proving to be a valuable tool for protecting and supporting these cell therapies while preserving minimally invasive delivery. This work presents a novel, dual-photoinitiator technique for encapsulation of cells within hydrogel microspheres. A desktop vortexer was used to generate an emulsion of poly(ethylene glycol) diacrylate (PEGDA) or PEGDA-based precursor solution in mineral oil. Through an optimized combination of photoinitiators added to both the aqueous and the oil phase, rapid gelation of the suspended polymer droplets was achieved. The photoinitiator combination provided superior cross-linking consistency and greater particle yield, and required lower overall initiator concentrations compared with a single initiator system. When cells were combined with the precursor solution, these benefits translated to excellent microencapsulation yield with 60-80% viability for the tested cell types. It was further shown that the scaffold material could be modified with cell-adhesive peptides to be used as surface-seeded microcarriers, or additionally with enzymatically degradable sequences to support three-dimensional spreading, migration and long-term culture of encapsulated cells. Three cell lines relevant to neural stem cell therapies are demonstrated here, but this technology is adaptable, scalable and easy to implement with standard laboratory equipment, making it a useful tool for advancing the next generation of cell-based therapeutics.
Collapse
|
20
|
Glass C, Singla DK. MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. Am J Physiol Heart Circ Physiol 2011; 301:H2038-49. [PMID: 21856911 DOI: 10.1152/ajpheart.00271.2011] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
microRNAs (miRs) have emerged as critical modulators of various physiological processes including stem cell differentiation. Indeed, miR-1 has been reported to play an integral role in the regulation of cardiac muscle progenitor cell differentiation. However, whether overexpression of miR-1 in embryonic stem (ES) cells (miR-1-ES cells) will enhance cardiac myocyte differentiation following transplantation into the infarcted myocardium is unknown. In the present study, myocardial infarction (MI) was produced in C57BL/6 mice by left anterior descending artery ligation. miR-1-ES cells, ES cells, or culture medium (control) was transplanted into the border zone of the infarcted heart, and 2 wk post-MI, cardiac myocyte differentiation, adverse ventricular remodeling, and cardiac function were assessed. We provide evidence demonstrating enhanced cardiac myocyte commitment of transplanted miR-1-ES cells in the mouse infarcted heart as compared with ES cells. Assessment of apoptosis revealed that overexpression of miR-1 in transplanted ES cells protected host myocardium from MI-induced apoptosis through activation of p-AKT and inhibition of caspase-3, phosphatase and tensin homolog, and superoxide production. A significant reduction in interstitial and vascular fibrosis was quantified in miR-1-ES cell and ES cell transplanted groups compared with control MI. However, no statistical significance between miR-1-ES cell and ES cell groups was observed. Finally, mice receiving miR-1-ES cell transplantation post-MI had significantly improved heart function compared with respective controls (P < 0.05). Our data suggest miR-1 drives cardiac myocyte differentiation from transplanted ES cells and inhibits apoptosis post-MI, ultimately giving rise to enhanced cardiac repair, regeneration, and function.
Collapse
Affiliation(s)
- Carley Glass
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | | |
Collapse
|
21
|
Shi C, Li Q, Zhao Y, Chen W, Chen B, Xiao Z, Lin H, Nie L, Wang D, Dai J. Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration. Biomaterials 2011; 32:2508-15. [DOI: 10.1016/j.biomaterials.2010.12.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/15/2010] [Indexed: 11/28/2022]
|