1
|
Aborode AT, Olamilekan Adesola R, Idris I, Adio WS, Scott GY, Chakoma M, Oluwaseun AA, Onifade IA, Adeoye AF, Aluko BA, Abok JI. Troponin C gene mutations on cardiac muscle cell and skeletal Regulation: A comprehensive review. Gene 2024; 927:148651. [PMID: 38871035 DOI: 10.1016/j.gene.2024.148651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The troponin complex plays a crucial role in regulating skeletal and cardiac contraction. Congenital myopathies can occur due to several mutations in genes that encode skeletal troponin. Moreover, there is limited information regarding the composition of skeletal troponin. This review specifically examines a comprehensive review of the TNNC gene mutations on cardiac and skeletal regulations. MAIN BODY Troponin C (TNNC) has been linked to a newly discovered inherited muscle disorder. Genetic variations in genes that encode skeletal troponin can impair the function of sarcomeres. Various treatment approaches have been employed to mitigate the impact of variations, including the use of troponin activators, the injection of wild-type protein via AAV gene therapy, and myosin modification to enhance muscle contraction. The processes responsible for the pathophysiological implications of the variations in genes that encode skeletal troponin are not fully understood. CONCLUSION This comprehensive review will contribute to the understanding of the relationship between human cardiomyopathy and TNNC mutations and will guide the development of therapy approaches.
Collapse
Affiliation(s)
| | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Ibrahim Idris
- Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria.
| | - Waheed Sakariyau Adio
- Department of Chemistry and Biochemistry, College of Health and Natural Science, The University of Tulsa, Tulsa, USA.
| | - Godfred Yawson Scott
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Mugove Chakoma
- Department of Primary Healthcare, Faculty of Medicine and Healthcare, University of Zimbabwe, Zimbabwe.
| | | | | | | | | | - Jeremiah I Abok
- Department of Chemistry & Chemical Biology University of New Mexico, USA.
| |
Collapse
|
2
|
Kaplan JL, Rivas VN, Connolly DJ. Advancing Treatments for Feline Hypertrophic Cardiomyopathy: The Role of Animal Models and Targeted Therapeutics. Vet Clin North Am Small Anim Pract 2023; 53:1293-1308. [PMID: 37414693 DOI: 10.1016/j.cvsm.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Feline HCM is the most common cardiovascular disease in cats, leading to devastating outcomes, including congestive heart failure (CHF), arterial thromboembolism (ATE), and sudden death. Evidence demonstrating long-term survival benefit with currently available therapies is lacking. Therefore, it is imperative to explore intricate genetic and molecular pathways that drive HCM pathophysiology to inspire the development of novel therapeutics. Several clinical trials exploring new drug therapies are currently underway, including those investigating small molecule inhibitors and rapamycin. This article outlines the key work performed using cellular and animal models that has led to and continues to guide the development of new innovative therapeutic strategies.
Collapse
Affiliation(s)
- Joanna L Kaplan
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Victor N Rivas
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - David J Connolly
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
3
|
Yang Z, Marston SB, Gould IR. Modulation of Structure and Dynamics of Cardiac Troponin by Phosphorylation and Mutations Revealed by Molecular Dynamics Simulations. J Phys Chem B 2023; 127:8736-8748. [PMID: 37791815 PMCID: PMC10591477 DOI: 10.1021/acs.jpcb.3c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/08/2023] [Indexed: 10/05/2023]
Abstract
Adrenaline acts on β1 receptors in the heart muscle to enhance contractility, increase the heart rate, and increase the rate of relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. Phosphorylation of serines 22 and 23 in the N-terminal peptide of cardiac troponin I is responsible for lusitropy. Mutations associated with cardiomyopathy suppress the phosphorylation-dependent change. Key parts of troponin responsible for this modulatory system are disordered and cannot be resolved by conventional structural approaches. We performed all-atom molecular dynamics simulations (5 × 1.5 μs runs) of the troponin core (419 amino acids) in the presence of Ca2+ in the bisphosphorylated and unphosphorylated states for both wild-type troponin and the troponin C (cTnC) G159D mutant. PKA phosphorylation affects troponin dynamics. There is significant rigidification of the structure involving rearrangement of the cTnI(1-33)-cTnC interaction and changes in the distribution of the cTnC helix A/B angle, troponin I (cTnI) switch peptide (149-164) docking, and the angle between the regulatory head and ITC arm domains. The familial dilated cardiomyopathy cTnC G159D mutation whose Ca2+ sensitivity is not modulated by cTnI phosphorylation exhibits a structure inherently more rigid than the wild type, with phosphorylation reversing the direction of all metrics relative to the wild type.
Collapse
Affiliation(s)
- Zeyu Yang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| | - Steven B. Marston
- National
Heart & Lung Institute, Imperial College
London, London W12 0NN, U.K.
| | - Ian R. Gould
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd’s Bush, London W12 0BZ, U.K.
| |
Collapse
|
4
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Marston S, Pinto JR. Suppression of lusitropy as a disease mechanism in cardiomyopathies. Front Cardiovasc Med 2023; 9:1080965. [PMID: 36698941 PMCID: PMC9870330 DOI: 10.3389/fcvm.2022.1080965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
In cardiac muscle the action of adrenaline on β1 receptors of heart muscle cells is essential to adjust cardiac output to the body's needs. Adrenergic activation leads to enhanced contractility (inotropy), faster heart rate (chronotropy) and faster relaxation (lusitropy), mainly through activation of protein kinase A (PKA). Efficient enhancement of heart output under stress requires all of these responses to work together. Lusitropy is essential for shortening the heartbeat when heart rate increases. It therefore follows that, if the lusitropic response is not present, heart function under stress will be compromised. Current literature suggests that lusitropy is primarily achieved due to PKA phosphorylation of troponin I (TnI) and phospholamban (PLB). It has been well documented that PKA-induced phosphorylation of TnI releases Ca2+ from troponin C faster and increases the rate of cardiac muscle relaxation, while phosphorylation of PLB increases SERCA activity, speeding up Ca2+ removal from the cytoplasm. In this review we consider the current scientific evidences for the connection between suppression of lusitropy and cardiac dysfunction in the context of mutations in phospholamban and thin filament proteins that are associated with cardiomyopathies. We will discuss what advances have been made into understanding the physiological mechanism of lusitropy due to TnI and PLB phosphorylation and its suppression by mutations and we will evaluate the evidence whether lack of lusitropy is sufficient to cause cardiomyopathy, and under what circumstances, and consider the range of pathologies associated with loss of lusitropy. Finally, we will discuss whether suppressed lusitropy due to mutations in thin filament proteins can be therapeutically restored.
Collapse
Affiliation(s)
- Steven Marston
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
6
|
De Novo Asp219Val Mutation in Cardiac Tropomyosin Associated with Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 24:ijms24010018. [PMID: 36613463 PMCID: PMC9820293 DOI: 10.3390/ijms24010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM), caused by mutations in thin filament proteins, manifests as moderate cardiac hypertrophy and is associated with sudden cardiac death (SCD). We identified a new de novo variant, c.656A>T (p.D219V), in the TPM1 gene encoding cardiac tropomyosin 1.1 (Tpm) in a young SCD victim with post-mortem-diagnosed HCM. We produced recombinant D219V Tpm1.1 and studied its structural and functional properties using various biochemical and biophysical methods. The D219V mutation did not affect the Tpm affinity for F-actin but increased the thermal stability of the Tpm molecule and Tpm-F-actin complex. The D219V mutation significantly increased the Ca2+ sensitivity of the sliding velocity of thin filaments over cardiac myosin in an in vitro motility assay and impaired the inhibition of the filament sliding at low Ca2+ concentration. The molecular dynamics (MD) simulation provided insight into a possible molecular mechanism of the effect of the mutation that is most likely a cause of the weakening of the Tpm interaction with actin in the "closed" state and so makes it an easier transition to the “open” state. The changes in the Ca2+ regulation of the actin-myosin interaction characteristic of genetic HCM suggest that the mutation is likely pathogenic.
Collapse
|
7
|
Kawana M, Spudich JA, Ruppel KM. Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies. Front Physiol 2022; 13:975076. [PMID: 36225299 PMCID: PMC9548533 DOI: 10.3389/fphys.2022.975076] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) affects more than 1 in 500 people in the general population with an extensive burden of morbidity in the form of arrhythmia, heart failure, and sudden death. More than 25 years since the discovery of the genetic underpinnings of HCM, the field has unveiled significant insights into the primary effects of these genetic mutations, especially for the myosin heavy chain gene, which is one of the most commonly mutated genes. Our group has studied the molecular effects of HCM mutations on human β-cardiac myosin heavy chain using state-of-the-art biochemical and biophysical tools for the past 10 years, combining insights from clinical genetics and structural analyses of cardiac myosin. The overarching hypothesis is that HCM-causing mutations in sarcomere proteins cause hypercontractility at the sarcomere level, and we have shown that an increase in the number of myosin molecules available for interaction with actin is a primary driver. Recently, two pharmaceutical companies have developed small molecule inhibitors of human cardiac myosin to counteract the molecular consequences of HCM pathogenesis. One of these inhibitors (mavacamten) has recently been approved by the FDA after completing a successful phase III trial in HCM patients, and the other (aficamten) is currently being evaluated in a phase III trial. Myosin inhibitors will be the first class of medication used to treat HCM that has both robust clinical trial evidence of efficacy and that targets the fundamental mechanism of HCM pathogenesis. The success of myosin inhibitors in HCM opens the door to finding other new drugs that target the sarcomere directly, as we learn more about the genetics and fundamental mechanisms of this disease.
Collapse
Affiliation(s)
- Masataka Kawana
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States,*Correspondence: Kathleen M. Ruppel,
| |
Collapse
|
8
|
Migliore L, Galvagni F, Pierantozzi E, Sorrentino V, Rossi D. Allele-specific silencing by RNAi of R92Q and R173W mutations in cardiac troponin T. Exp Biol Med (Maywood) 2022; 247:805-814. [PMID: 35067102 PMCID: PMC9160939 DOI: 10.1177/15353702211072453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/17/2021] [Indexed: 08/30/2024] Open
Abstract
Autosomal dominant mutations in sarcomere proteins such as the cardiac troponin T (TNNT2) are the main genetic causes of human hypertrophic cardiomyopathy and dilated cardiomyopathy. Allele-specific silencing by RNA interference (ASP-RNAi) holds promise as a therapeutic strategy for downregulating a single mutant allele with minimal suppression of the corresponding wild-type allele. Here, we propose ASP-RNAi as a possible strategy to specifically knockdown mutant alleles coding for R92Q and R173W mutant TNNT2 proteins, identified in hypertrophic and dilated cardiomyopathy, respectively. Different siRNAs were designed and validated by luciferase reporter assay and following analysis in HEK293T cells expressing either the wild-type or mutant TNNT2 alleles. This study is the first exploration of ASP-RNAi on TNNT2-R173W and TNNT2-R92Q mutations in vitro and gives a base for further application of allele silencing as a therapeutic treatment for TNNT2-mutation-associated cardiomyopathies.
Collapse
Affiliation(s)
- Loredana Migliore
- Department of Molecular and
Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology,
Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and
Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and
Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and
Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
9
|
Hassoun R, Erdmann C, Schmitt S, Fujita-Becker S, Mügge A, Schröder RR, Geyer M, Borbor M, Jaquet K, Hamdani N, Mannherz HG. Functional Characterization of Cardiac Actin Mutants Causing Hypertrophic (p.A295S) and Dilated Cardiomyopathy (p.R312H and p.E361G). Int J Mol Sci 2022; 23:ijms23084465. [PMID: 35457283 PMCID: PMC9024677 DOI: 10.3390/ijms23084465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Human wild type (wt) cardiac α-actin and its mutants p.A295S or p.R312H and p.E361G correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by using the baculovirus/Sf21 insect cell system. The c-actin variants inhibited DNase I, indicating maintenance of their native state. Electron microscopy showed the formation of normal appearing actin filaments though they showed mutant specific differences in length and straightness correlating with their polymerization rates. TRITC-phalloidin staining showed that p.A295S and p.R312H exhibited reduced and the p.E361G mutant increased lengths of their formed filaments. Decoration of c-actins with cardiac tropomyosin (cTm) and troponin (cTn) conveyed Ca2+-sensitivity of the myosin-S1 ATPase stimulation, which was higher for the HCM p.A295S mutant and lower for the DCM p.R312H and p.E361G mutants than for wt c-actin. The lower Ca2+-sensitivity of myosin-S1 stimulation by both DCM actin mutants was corrected by the addition of levosimendan. Ca2+-dependency of the movement of pyrene-labeled cTm along polymerized c-actin variants decorated with cTn corresponded to the relations observed for the myosin-S1 ATPase stimulation though shifted to lower Ca2+-concentrations. The N-terminal C0C2 domain of cardiac myosin-binding protein-C increased the Ca2+-sensitivity of the pyrene-cTM movement of bovine, recombinant wt, p.A295S, and p.E361G c-actins, but not of the p.R312H mutant, suggesting decreased affinity to cTm.
Collapse
Affiliation(s)
- Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Constanze Erdmann
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
| | - Sebastian Schmitt
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Setsuko Fujita-Becker
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, D-69120 Heidelberg, Germany; (S.F.-B.); (R.R.S.)
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Rasmus R. Schröder
- Cryoelectron Microscopy, BioQuant, Medical Faculty, University of Heidelberg, D-69120 Heidelberg, Germany; (S.F.-B.); (R.R.S.)
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Mina Borbor
- Department of Neurology, University Hospital Essen, D-45147 Essen, Germany;
| | - Kornelia Jaquet
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Cardiology, St. Josef-Hospital, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany
- Correspondence: (N.H.); (H.G.M.); Tel.: +49-234-32-29412 (N.H.); Fax: +49-234-32-14040 (N.H.); +49-234-32-14474 (H.G.M.)
| | - Hans Georg Mannherz
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Medical Faculty, Ruhr University Bochum, D-44791 Bochum, Germany; (R.H.); (A.M.); (K.J.)
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
- Correspondence: (N.H.); (H.G.M.); Tel.: +49-234-32-29412 (N.H.); Fax: +49-234-32-14040 (N.H.); +49-234-32-14474 (H.G.M.)
| |
Collapse
|
10
|
Helms AS, Thompson AD, Day SM. Translation of New and Emerging Therapies for Genetic Cardiomyopathies. JACC Basic Transl Sci 2022; 7:70-83. [PMID: 35128211 PMCID: PMC8807730 DOI: 10.1016/j.jacbts.2021.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/05/2022]
Abstract
The primary etiology of a diverse range of cardiomyopathies is now understood to be genetic, creating a new paradigm for targeting treatments on the basis of the underlying molecular cause. This review provides a genetic and etiologic context for the traditional clinical classifications of cardiomyopathy, including molecular subtypes that may exhibit differential responses to existing or emerging treatments. The authors describe several emerging cardiomyopathy treatments, including gene therapy, direct targeting of myofilament function, protein quality control, metabolism, and others. The authors discuss advantages and disadvantages of these approaches and indicate areas of high potential for short- and longer term efficacy.
Collapse
Key Words
- AAV, adeno-associated virus
- ACM, arrhythmogenic cardiomyopathy
- ARVC, arrhythmogenic right ventricular cardiomyopathy
- ATPase, adenosine triphosphatase
- DCM, dilated cardiomyopathy
- DMD, Duchenne muscular dystrophy
- DNA, DNA
- DSP, desmoplakin
- FDA, U.S. Food and Drug Administration
- GRT, gene replacement therapy
- GST, gene silencing therapy
- HCM, hypertrophic cardiomyopathy
- HR, homologous recombination
- LNP, lipid nanoparticle
- LVOT, left ventricular outflow tract
- RNA, RNA
- TTR, transthyretin
- arrhythmogenic cardiomyopathy
- dilated cardiomyopathy
- genetics
- hypertrophic cardiomyopathy
- therapeutics
Collapse
Affiliation(s)
- Adam S. Helms
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea D. Thompson
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharlene M. Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Guo J, Jiang H, Oguntuyo K, Rios B, Boodram Z, Huebsch N. Interplay of Genotype and Substrate Stiffness in Driving the Hypertrophic Cardiomyopathy Phenotype in iPSC-Micro-Heart Muscle Arrays. Cell Mol Bioeng 2021; 14:409-425. [PMID: 34777601 PMCID: PMC8548480 DOI: 10.1007/s12195-021-00684-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION In clinical and animal studies, Hypertrophic Cardiomyopathy (HCM) shares many similarities with non-inherited cardiac hypertrophy induced by pressure overload (hypertension). This suggests a potential role for mechanical stress in priming tissues with mutation-induced changes in the sarcomere to develop phenotypes associated with HCM, including hypercontractility and aberrant calcium handling. Here, we tested the hypothesis that heterozygous loss of function of Myosin Binding Protein C (MYBCP3 +/- , mutations in which account for almost 50% of inherited HCM) combines with environmental stiffness to drive HCM phenotypes. METHODS We differentiated isogenic control (WTC) and MYBPC3 +/- iPSC into cardiomyocytes using small molecule manipulation of Wnt signaling, and then purified them using lactate media. The purified cardiomyocytes were seeded into "dog bone" shaped stencil molds to form micro-heart muscle arrays (μHM). To mimic changes in myocardial stiffness stemming from pressure overload, we varied the rigidity of the substrates μHM contract against. Stiffness levels ranged from those corresponding to fetal (5 kPa), healthy (15 kPa), pre-fibrotic (30 kPa) to fibrotic (65 kPa) myocardium. Substrates were embedded with a thin layer of fluorescent beads to track contractile force, and parent iPSC were engineered to express the genetic calcium indicator, GCaMP6f. High speed video microscopy and image analysis were used to quantify calcium handling and contractility of μHM. RESULTS Substrate rigidity triggered physiological adaptation for both genotypes. However, MYBPC3 +/- μHM showed a lower tolerance to substrate stiffness with the peak traction on 15 kPa, while WTC μHM had peak traction on 30 kPa. MYBPC3 +/- μHM exhibited hypercontractility, which was exaggerated by substrate rigidity. MYBPC3 +/- μHM hypercontractility was associated with longer rise times for calcium uptake and force development, along with higher overall Ca2+ intake. CONCLUSION We found MYBPC3 +/- mutations cause iPSC-μHM to exhibit hypercontractility, and also a lower tolerance for mechanical stiffness. Understanding how genetics work in combination with mechanical stiffness to trigger and/or exacerbate pathophysiology may lead to more effective therapies for HCM. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s12195-021-00684-x).
Collapse
Affiliation(s)
- Jingxuan Guo
- Department of Mechanical Engineering and Material Science, Washington University in Saint Louis, Saint Louis, USA
| | - Huanzhu Jiang
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Brandon Rios
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Zoë Boodram
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, USA
- NSF Science and Technology Center for Engineering Mechanobiology, McKelvey School of Engineering, Saint Louis, USA
- Center for Cardiovascular Research, Center for Regenerative Medicine, Center for Investigation of Membrane Excitability Diseases, Washington University in Saint Louis, Saint Louis, USA
| |
Collapse
|
12
|
Erdmann C, Hassoun R, Schmitt S, Kikuti C, Houdusse A, Mazur AJ, Mügge A, Hamdani N, Geyer M, Jaquet K, Mannherz HG. Integration of Cardiac Actin Mutants Causing Hypertrophic (p.A295S) and Dilated Cardiomyopathy (p.R312H and p.E361G) into Cellular Structures. Antioxidants (Basel) 2021; 10:antiox10071082. [PMID: 34356314 PMCID: PMC8301065 DOI: 10.3390/antiox10071082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023] Open
Abstract
The human mutant cardiac α-actins p.A295S or p.R312H and p.E361G, correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by the baculovirus/Sf21 insect cell system and purified to homogeneity. The purified cardiac actins maintained their native state but showed differences in Ca2+-sensitivity to stimulate the myosin-subfragment1 ATPase. Here we analyzed the interactions of these c-actins with actin-binding and -modifying proteins implicated in cardiomyocyte differentiation. We demonstrate that Arp2/3 complex and the formin mDia3 stimulated the polymerization rate and extent of the c-actins, albeit to different degrees. In addition, we tested the effect of the MICAL-1 monooxygenase, which modifies the supramolecular actin organization during development and adaptive processes. MICAL-1 oxidized these c-actin variants and induced their de-polymerization, albeit at different rates. Transfection experiments using MDCK cells demonstrated the preferable incorporation of wild type and p.A295S c-actins into their microfilament system but of p.R312H and p.E361G actins into the submembranous actin network. Transduction of neonatal rat cardiomyocytes with adenoviral constructs coding HA-tagged c-actin variants showed their incorporation into microfilaments after one day in culture and thereafter into thin filaments of nascent sarcomeric structures at their plus ends (Z-lines) except the p.E361G mutant, which preferentially incorporated at the minus ends.
Collapse
Affiliation(s)
- Constanze Erdmann
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, D-44780 Bochum, Germany; (R.H.); (A.M.); (N.H.); (K.J.)
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Sebastian Schmitt
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Carlos Kikuti
- Institut Curie, Structural Motility Team, F-75005 Paris, France; (C.K.); (A.H.)
| | - Anne Houdusse
- Institut Curie, Structural Motility Team, F-75005 Paris, France; (C.K.); (A.H.)
| | - Antonina J. Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Pl-50-383 Wroclaw, Poland;
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, D-44780 Bochum, Germany; (R.H.); (A.M.); (N.H.); (K.J.)
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, D-44780 Bochum, Germany; (R.H.); (A.M.); (N.H.); (K.J.)
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, D-53127 Bonn, Germany; (S.S.); (M.G.)
| | - Kornelia Jaquet
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, D-44780 Bochum, Germany; (R.H.); (A.M.); (N.H.); (K.J.)
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, D-44780 Bochum, Germany;
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, D-44780 Bochum, Germany; (R.H.); (A.M.); (N.H.); (K.J.)
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, D-44780 Bochum, Germany
- Correspondence: ; Fax: +49-234-3214474
| |
Collapse
|
13
|
Suay-Corredera C, Pricolo MR, Velázquez-Carreras D, Pathak D, Nandwani N, Pimenta-Lopes C, Sánchez-Ortiz D, Urrutia-Irazabal I, Vilches S, Dominguez F, Frisso G, Monserrat L, García-Pavía P, de Sancho D, Spudich JA, Ruppel KM, Herrero-Galán E, Alegre-Cebollada J. Nanomechanical Phenotypes in Cardiac Myosin-Binding Protein C Mutants That Cause Hypertrophic Cardiomyopathy. ACS NANO 2021; 15:10203-10216. [PMID: 34060810 PMCID: PMC8514129 DOI: 10.1021/acsnano.1c02242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments. Using single-molecule atomic force spectroscopy, we have quantified mechanical folding and unfolding transitions in cMyBP-C domains targeted by HCM mutations that do not induce RNA splicing alterations or protein thermodynamic destabilization. Our results show that domains containing mutation R495W are mechanically weaker than wild-type at forces below 40 pN and that R502Q mutant domains fold faster than wild-type. None of these alterations are found in control, nonpathogenic variants, suggesting that nanomechanical phenotypes induced by pathogenic cMyBP-C mutations contribute to HCM development. We propose that mutation-induced nanomechanical alterations may be common in mechanical proteins involved in human pathologies.
Collapse
Affiliation(s)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy
| | | | - Divya Pathak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - David Sánchez-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | | - Silvia Vilches
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
| | - Fernando Dominguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate, scarl, 80145, Naples, Italy
| | | | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
- Universidad Francisco de Vitoria (UFV), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20018, Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | |
Collapse
|
14
|
Lehman W, Pavadai E, Rynkiewicz MJ. C-terminal troponin-I residues trap tropomyosin in the muscle thin filament blocked-state. Biochem Biophys Res Commun 2021; 551:27-32. [PMID: 33714756 DOI: 10.1016/j.bbrc.2021.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Tropomyosin and troponin regulate muscle contraction by participating in a macromolecular scale steric-mechanism to control myosin-crossbridge - actin interactions and consequently contraction. At low-Ca2+, the C-terminal 30% of troponin subunit-I (TnI) is proposed to trap tropomyosin in a position on thin filaments that sterically interferes with myosin-binding, thus causing muscle relaxation. In contrast, at high-Ca2+, inhibition is released after the C-terminal domains dissociate from F-actin-tropomyosin as its component switch-peptide domain binds to the N-lobe of troponin-C (TnC). Recent, paradigm-shifting, cryo-EM reconstructions by the Namba group have revealed density attributed to TnI along cardiac muscle thin filaments at both low- and high-Ca2+ concentration. Modeling the reconstructions showed expected high-Ca2+ hydrophobic interactions of the TnI switch-peptide and TnC. However, under low-Ca2+ conditions, sparse interactions of TnI and tropomyosin, and in particular juxtaposition of non-polar switch-peptide residues and charged tropomyosin amino acids in the published model seem difficult to reconcile with an expected steric-blocking conformation. This anomaly is likely due to inaccurate fitting of tropomyosin into the cryo-EM volume. In the current study, the low-Ca2+ cryo-EM volume was fitted with a more accurate tropomyosin model and representation of cardiac TnI. Our results show that at low-Ca2+ a cluster of hydrophobic residues at the TnI switch-peptide and adjacent H4 helix (Ala149, Ala151, Met 154, Leu159, Gly160, Ala161, Ala163, Leu167, Leu169, Ala171, Leu173) draw-in tropomyosin surface residues (Ile143, Ile146, Ala151, Ile154), presumably attracting the entire tropomyosin cable to its myosin-blocking position on actin. The modeling confirms that neighboring TnI "inhibitory domain" residues (Arg145, Arg148) bind to thin filaments at actin residue Asp25, as previously suggested. ClusPro docking of TnI residues 137-184 to actin-tropomyosin, including the TnI inhibitory-domain, switch-peptide and Helix H4, verified the modeled configuration. Our residue-to-residue contact-mapping of the TnI-tropomyosin association lends itself to experimental validation and functional localization of disease-bearing mutations.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Elumalai Pavadai
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Michael J Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
15
|
Parijat P, Kondacs L, Alexandrovich A, Gautel M, Cobb AJA, Kampourakis T. High Throughput Screen Identifies Small Molecule Effectors That Modulate Thin Filament Activation in Cardiac Muscle. ACS Chem Biol 2021; 16:225-235. [PMID: 33315370 DOI: 10.1021/acschembio.0c00908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current therapeutic interventions for both heart disease and heart failure are largely insufficient and associated with undesired side effects. Biomedical research has emphasized the role of sarcomeric protein function for the normal performance and energy efficiency of the heart, suggesting that directly targeting the contractile myofilaments themselves using small molecule effectors has therapeutic potential and will likely result in greater drug efficacy and selectivity. In this study, we developed a robust and highly reproducible fluorescence polarization-based high throughput screening (HTS) assay that directly targets the calcium-dependent interaction between cardiac troponin C (cTnC) and the switch region of cardiac troponin I (cTnISP), with the aim of identifying small molecule effectors of the cardiac thin filament activation pathway. We screened a commercially available small molecule library and identified several hit compounds with both inhibitory and activating effects. We used a range of biophysical and biochemical methods to characterize hit compounds and identified fingolimod, a sphingosin-1-phosphate receptor modulator, as a new troponin-based small molecule effector. Fingolimod decreased the ATPase activity and calcium sensitivity of demembranated cardiac muscle fibers in a dose-dependent manner, suggesting that the compound acts as a calcium desensitizer. We investigated fingolimod's mechanism of action using a combination of computational studies, biophysical methods, and synthetic chemistry, showing that fingolimod bound to cTnC repels cTnISP via mainly electrostatic repulsion of its positively charged tail. These results suggest that fingolimod is a potential new lead compound/scaffold for the development of troponin-directed heart failure therapeutics.
Collapse
Affiliation(s)
- Priyanka Parijat
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Laszlo Kondacs
- Department of Chemistry, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Alexander Alexandrovich
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| | - Alexander J. A. Cobb
- Department of Chemistry, King’s College London, 7 Trinity Street, London, SE1 1DB, United Kingdom
| | - Thomas Kampourakis
- Randall Centre for Cell and Molecular Biophysics, King’s College London, and British Heart Foundation Centre of Research Excellence, London SE1 1UL, United Kingdom
| |
Collapse
|
16
|
Baulina NM, Kiselev IS, Chumakova OS, Favorova OO. Hypertrophic Cardiomyopathy as an Oligogenic Disease: Transcriptomic Arguments. Mol Biol 2021. [DOI: 10.1134/s0026893320060023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Creed HA, Tong CW. Preparation and Identification of Cardiac Myofibrils from Whole Heart Samples. Methods Mol Biol 2021; 2319:15-24. [PMID: 34331238 DOI: 10.1007/978-1-0716-1480-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mouse models are extensively studied and well-used to study cardiomyopathies due to the genetic relevance of this model organism and increasing need to identify therapeutic targets. Cardiac myofibril preparation for whole hearts has proved to be an invaluable in vitro method for determining the fundamental molecular mechanisms in heart failure. The technique described below consistently yields intact cardiac myofibrils, which can be used in subsequent techniques such as western blotting, immunofluorescence, and mass spectrometry. Here, we describe a method to optimize the separation and yield of cardiac myofibrils from murine whole tissue samples and preparation for subsequent mass spectrometry. This method allows for quick visual identification of multiple cardiac myofibril proteins.
Collapse
Affiliation(s)
- Heidi A Creed
- Department of Medical Physiology, College of Medicine, Texas A&M University of Health Science Center, Bryan, TX, USA
| | - Carl W Tong
- Department of Medical Physiology, College of Medicine, Texas A&M University of Health Science Center, Bryan, TX, USA.
| |
Collapse
|
18
|
Ribitsch I, Baptista PM, Lange-Consiglio A, Melotti L, Patruno M, Jenner F, Schnabl-Feichter E, Dutton LC, Connolly DJ, van Steenbeek FG, Dudhia J, Penning LC. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Front Bioeng Biotechnol 2020; 8:972. [PMID: 32903631 PMCID: PMC7438731 DOI: 10.3389/fbioe.2020.00972] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rapid developments in Regenerative Medicine and Tissue Engineering has witnessed an increasing drive toward clinical translation of breakthrough technologies. However, the progression of promising preclinical data to achieve successful clinical market authorisation remains a bottleneck. One hurdle for progress to the clinic is the transition from small animal research to advanced preclinical studies in large animals to test safety and efficacy of products. Notwithstanding this, to draw meaningful and reliable conclusions from animal experiments it is critical that the species and disease model of choice is relevant to answer the research question as well as the clinical problem. Selecting the most appropriate animal model requires in-depth knowledge of specific species and breeds to ascertain the adequacy of the model and outcome measures that closely mirror the clinical situation. Traditional reductionist approaches in animal experiments, which often do not sufficiently reflect the studied disease, are still the norm and can result in a disconnect in outcomes observed between animal studies and clinical trials. To address these concerns a reconsideration in approach will be required. This should include a stepwise approach using in vitro and ex vivo experiments as well as in silico modeling to minimize the need for in vivo studies for screening and early development studies, followed by large animal models which more closely resemble human disease. Naturally occurring, or spontaneous diseases in large animals remain a largely untapped resource, and given the similarities in pathophysiology to humans they not only allow for studying new treatment strategies but also disease etiology and prevention. Naturally occurring disease models, particularly for longer lived large animal species, allow for studying disorders at an age when the disease is most prevalent. As these diseases are usually also a concern in the chosen veterinary species they would be beneficiaries of newly developed therapies. Improved awareness of the progress in animal models is mutually beneficial for animals, researchers, human and veterinary patients. In this overview we describe advantages and disadvantages of various animal models including domesticated and companion animals used in regenerative medicine and tissue engineering to provide an informed choice of disease-relevant animal models.
Collapse
Affiliation(s)
- Iris Ribitsch
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pedro M. Baptista
- Laboratory of Organ Bioengineering and Regenerative Medicine, Health Research Institute of Aragon (IIS Aragon), Zaragoza, Spain
| | - Anna Lange-Consiglio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Florien Jenner
- Veterm, Department for Companion Animals and Horses, University Equine Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Schnabl-Feichter
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Luke C. Dutton
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - David J. Connolly
- Clinical Unit of Small Animal Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Frank G. van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Viswanathan MC, Schmidt W, Franz P, Rynkiewicz MJ, Newhard CS, Madan A, Lehman W, Swank DM, Preller M, Cammarato A. A role for actin flexibility in thin filament-mediated contractile regulation and myopathy. Nat Commun 2020; 11:2417. [PMID: 32415060 PMCID: PMC7229152 DOI: 10.1038/s41467-020-15922-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Striated muscle contraction is regulated by the translocation of troponin-tropomyosin strands over the thin filament surface. Relaxation relies partly on highly-favorable, conformation-dependent electrostatic contacts between actin and tropomyosin, which position tropomyosin such that it impedes actomyosin associations. Impaired relaxation and hypercontractile properties are hallmarks of various muscle disorders. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation lies near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here, we investigate M305L actin in vivo, in vitro, and in silico to resolve emergent pathological properties and disease mechanisms. Our data suggest the mutation reduces actin flexibility and distorts the actin-tropomyosin electrostatic energy landscape that, in muscle, result in aberrant contractile inhibition and excessive force. Thus, actin flexibility may be required to establish and maintain interfacial contacts with tropomyosin as well as facilitate its movement over distinct actin surface features and is, therefore, likely necessary for proper regulation of contraction. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation is located near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here the authors assessed M305L actin in vivo, in vitro, and in silico to characterize emergent pathological properties and define the mechanistic basis of disease.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - William Schmidt
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street St, Boston, MA, 02118, USA
| | - Christopher S Newhard
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Aditi Madan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street St, Boston, MA, 02118, USA
| | - Douglas M Swank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA. .,Department of Physiology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Matyushenko AM, Levitsky DI. Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point Mutations in the Tropomyosin Genes. BIOCHEMISTRY (MOSCOW) 2020; 85:S20-S33. [PMID: 32087052 DOI: 10.1134/s0006297920140023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is devoted to tropomyosin (Tpm) - actin-binding protein, which plays a crucial role in the regulation of contraction of skeletal and cardiac muscles. Special attention is paid to myopathies and cardiomyopathies - severe hereditary diseases of skeletal and cardiac muscles associated with point mutations in Tpm genes. The current views on the molecular mechanisms of these diseases and the effects of such mutations on the Tpm structure and functions are considered in detail. Besides, some part of the review is devoted to analysis of the properties of Tpm homodimers and heterodimers with myopathic substitutions of amino acid residues in only one of the two chains of the Tpm dimeric molecule.
Collapse
Affiliation(s)
- A M Matyushenko
- Bach Institute of Biochemistry, Federal Research Center on Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - D I Levitsky
- Bach Institute of Biochemistry, Federal Research Center on Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
21
|
The relation between sarcomere energetics and the rate of isometric tension relaxation in healthy and diseased cardiac muscle. J Muscle Res Cell Motil 2019; 42:47-57. [PMID: 31745760 PMCID: PMC7932984 DOI: 10.1007/s10974-019-09566-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Full muscle relaxation happens when [Ca2+] falls below the threshold for force activation. Several experimental models, from whole muscle organs and intact muscle down to skinned fibers, have been used to explore the cascade of kinetic events leading to mechanical relaxation. The use of single myofibrils together with fast solution switching techniques, has provided new information about the role of cross-bridge (CB) dissociation in the time course of isometric force decay. Myofibril’s relaxation is biphasic starting with a slow seemingly linear phase, with a rate constant, slow kREL, followed by a fast mono-exponential phase. Sarcomeres remain isometric during the slow force decay that reflects CB detachment under isometric conditions while the final fast relaxation phase begins with a sudden give of few sarcomeres and is then dominated by intersarcomere dynamics. Based on a simple two-state model of the CB cycle, myofibril slow kREL represents the apparent forward rate with which CBs leave force generating states (gapp) under isometric conditions and correlates with the energy cost of tension generation (ATPase/tension ratio); in short slow kREL ~ gapp ~ tension cost. The validation of this relationship is obtained by simultaneously measuring maximal isometric force and ATP consumption in skinned myocardial strips that provide an unambiguous determination of the relation between contractile and energetic properties of the sarcomere. Thus, combining kinetic experiments in isolated myofibrils and mechanical and energetic measurements in multicellular cardiac strips, we are able to provide direct evidence for a positive linear correlation between myofibril isometric relaxation kinetics (slow kREL) and the energy cost of force production both measured in preparations from the same cardiac sample. This correlation remains true among different types of muscles with different ATPase activities and also when CB kinetics are altered by cardiomyopathy-related mutations. Sarcomeric mutations associated to hypertrophic cardiomyopathy (HCM), a primary cardiac disorder caused by mutations in genes encoding sarcomeric proteins, have been often found to accelerate CB turnover rate and increase the energy cost of myocardial contraction. Here we review data showing that faster CB detachment results in a proportional increase in the energetic cost of tension generation in heart samples from both HCM patients and mouse models of the disease.
Collapse
|
22
|
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and defined by unexplained isolated progressive myocardial hypertrophy, systolic and diastolic ventricular dysfunction, arrhythmias, sudden cardiac death and histopathologic changes, such as myocyte disarray and myocardial fibrosis. Mutations in genes encoding for proteins of the contractile apparatus of the cardiomyocyte, such as β-myosin heavy chain and myosin binding protein C, have been identified as cause of the disease. Disease is caused by altered biophysical properties of the cardiomyocyte, disturbed calcium handling, and abnormal cellular metabolism. Mutations in sarcomere genes can also activate other signaling pathways via transcriptional activation and can influence non-cardiac cells, such as fibroblasts. Additional environmental, genetic and epigenetic factors result in heterogeneous disease expression. The clinical course of the disease varies greatly with some patients presenting during childhood while others remain asymptomatic until late in life. Patients can present with either heart failure symptoms or the first symptom can be sudden death due to malignant ventricular arrhythmias. The morphological and pathological heterogeneity results in prognosis uncertainty and makes patient management challenging. Current standard therapeutic measures include the prevention of sudden death by prohibition of competitive sport participation and the implantation of cardioverter-defibrillators if indicated, as well as symptomatic heart failure therapies or cardiac transplantation. There exists no causal therapy for this monogenic autosomal-dominant inherited disorder, so that the focus of current management is on early identification of asymptomatic patients at risk through molecular diagnostic and clinical cascade screening of family members, optimal sudden death risk stratification, and timely initiation of preventative therapies to avoid disease progression to the irreversible adverse myocardial remodeling stage. Genetic diagnosis allowing identification of asymptomatic affected patients prior to clinical disease onset, new imaging technologies, and the establishment of international guidelines have optimized treatment and sudden death risk stratification lowering mortality dramatically within the last decade. However, a thorough understanding of underlying disease pathogenesis, regular clinical follow-up, family counseling, and preventative treatment is required to minimize morbidity and mortality of affected patients. This review summarizes current knowledge about molecular genetics and pathogenesis of HCM secondary to mutations in the sarcomere and provides an overview about current evidence and guidelines in clinical patient management. The overview will focus on clinical staging based on disease mechanism allowing timely initiation of preventative measures. An outlook about so far experimental treatments and potential for future therapies will be provided.
Collapse
Affiliation(s)
- Cordula Maria Wolf
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Technical University Munich, Munich, Germany
| |
Collapse
|
23
|
Neagoe O, Ciobanu A, Diaconu R, Mirea O, Donoiu I, Militaru C. A rare case of familial restrictive cardiomyopathy, with mutations in MYH7 and ABCC9 genes. Discoveries (Craiova) 2019; 7:e99. [PMID: 32309617 PMCID: PMC7086075 DOI: 10.15190/d.2019.12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Restrictive cardiomyopathy is the least common type of cardiomyopathy, being defined by diastolic dysfunction and often unimpaired systolic function. Restrictive cardiomyopathies can be classified as familial or non-familial. Patients with familial restrictive cardiomyopathy can develop signs and symptoms of this condition anytime from childhood to adulthood. The evolution of the disease is towards signs and symptoms of pulmonary and systemic congestion and, without treatment, there is a five-year mortality rate of approximately 30% in these patients. We discuss the case of a 43-year-old patient diagnosed with familial restrictive cardiomyopathy with positive genetic tests for mutations of MYH7 gene and ABCC9 gene, who was first hospitalized in 2011 for palpitations. The echocardiography performed in evolution showed a continuous alteration of right ventricle function, without important differences of left ventricular function. She developed heart failure symptoms six years after diagnosis and she had seven hospitalizations in the past two years, currently with an increasing need of diuretics and persistent hepatic dysfunction. Cardiac transplantation or left ventricular assist device therapy should be considered in patients with severe heart failure symptoms and no longer effective treatment. However, elevated pulmonary vascular resistance excludes the patient from cardiac transplantation.
Collapse
Affiliation(s)
- Oana Neagoe
- Department of Cardiology, Emergency County Hospital, Craiova, Romania
| | - Anda Ciobanu
- Department of Cardiology, Emergency County Hospital, Craiova, Romania
| | - Rodica Diaconu
- Department of Cardiology, Emergency County Hospital, Craiova, Romania
| | - Oana Mirea
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, Romania
| | - Ionuț Donoiu
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, Romania
| | - Constantin Militaru
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
24
|
Nielles-Vallespin S, Scott A, Ferreira P, Khalique Z, Pennell D, Firmin D. Cardiac Diffusion: Technique and Practical Applications. J Magn Reson Imaging 2019; 52:348-368. [PMID: 31482620 DOI: 10.1002/jmri.26912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The 3D microarchitecture of the cardiac muscle underlies the mechanical and electrical properties of the heart. Cardiomyocytes are arranged helically through the depth of the wall, and their shortening leads to macroscopic torsion, twist, and shortening during cardiac contraction. Furthermore, cardiomyocytes are organized in sheetlets separated by shear layers, which reorientate, slip, and shear during macroscopic left ventricle (LV) wall thickening. Cardiac diffusion provides a means for noninvasive interrogation of the 3D microarchitecture of the myocardium. The fundamental principle of MR diffusion is that an MRI signal is attenuated by the self-diffusion of water in the presence of large diffusion-encoding gradients. Since water molecules are constrained by the boundaries in biological tissue (cell membranes, collagen layers, etc.), depicting their diffusion behavior elucidates the shape of the myocardial microarchitecture they are embedded in. Cardiac diffusion therefore provides a noninvasive means to understand not only the dynamic changes in cardiac microstructure of healthy myocardium during cardiac contraction but also the pathophysiological changes in the presence of disease. This unique and innovative technology offers tremendous potential to enable improved clinical diagnosis through novel microstructural and functional assessment. in vivo cardiac diffusion methods are immediately translatable to patients, opening new avenues for diagnostic investigation and treatment evaluation in a range of clinically important cardiac pathologies. This review article describes the 3D microstructure of the LV, explains in vivo and ex vivo cardiac MR diffusion acquisition and postprocessing techniques, as well as clinical applications to date. Level of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:348-368.
Collapse
Affiliation(s)
- Sonia Nielles-Vallespin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Andrew Scott
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Pedro Ferreira
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Zohya Khalique
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Dudley Pennell
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - David Firmin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
25
|
Reda SM, Chandra M. Dilated cardiomyopathy mutation (R174W) in troponin T attenuates the length-mediated increase in cross-bridge recruitment and myofilament Ca 2+ sensitivity. Am J Physiol Heart Circ Physiol 2019; 317:H648-H657. [PMID: 31373515 DOI: 10.1152/ajpheart.00171.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alterations in length-dependent activation (LDA) may constitute a mechanism by which cardiomyopathy mutations lead to deleterious phenotypes and compromised heart function, because LDA underlies the molecular basis by which the heart tunes myocardial force production on a beat-to-beat basis (Frank-Starling mechanism). In this study, we investigated the effect of DCM-linked mutation (R173W) in human cardiac troponin T (TnT) on myofilament LDA. R173W mutation is associated with left ventricular dilatation and systolic dysfunction and is found in multiple families. R173W mutation is in the central region (residues 80-180) of TnT, which is known to be important for myofilament cooperativity and cross-bridge (XB) recruitment. Steady-state and dynamic contractile parameters were measured in detergent-skinned guinea pig left ventricular muscle fibers reconstituted with recombinant guinea pig wild-type TnT (TnTWT) or mutant TnT (TnTR174W; guinea pig analog of human R173W mutation) at two different sarcomere lengths (SL): short (1.9 µm) and long (2.3 µm). TnTR174W decreased pCa50 (-log [Ca2+]free required for half-maximal activation) to a greater extent at long than at short SL; for example, pCa50 decreased by 0.12 pCa units at long SL and by 0.06 pCa units at short SL. Differential changes in pCa50 at short and long SL attenuated the SL-dependent increase in myofilament Ca2+ sensitivity (ΔpCa50) in TnTR174W fibers; ΔpCa50 was 0.10 units in TnTWT fibers but only 0.04 units in TnTR174W fibers. Furthermore, TnTR174W blunted the SL-dependent increase in the magnitude of XB recruitment. Our observations suggest that the R173W mutation in human cardiac TnT may impair Frank-Starling mechanism.NEW & NOTEWORTHY This work characterizes the effect of dilated cardiomyopathy mutation in cardiac troponin T (TnTR174W) on myofilament length-dependent activation. TnTR174W attenuates the length-dependent increase in cross-bridge recruitment and myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Sherif M Reda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
26
|
Mosqueira D, Smith JGW, Bhagwan JR, Denning C. Modeling Hypertrophic Cardiomyopathy: Mechanistic Insights and Pharmacological Intervention. Trends Mol Med 2019; 25:775-790. [PMID: 31324451 DOI: 10.1016/j.molmed.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular disease where cardiac dysfunction often associates with mutations in sarcomeric genes. Various models based on tissue explants, isolated cardiomyocytes, skinned myofibrils, and purified actin/myosin preparations have uncovered disease hallmarks, enabling the development of putative therapeutics, with some reaching clinical trials. Newly developed human pluripotent stem cell (hPSC)-based models could be complementary by overcoming some of the inconsistencies of earlier systems, whilst challenging and/or clarifying previous findings. In this article we compare recent progress in unveiling multiple HCM mechanisms in different models, highlighting similarities and discrepancies. We explore how insight is facilitating the design of new HCM therapeutics, including those that regulate metabolism, contraction and heart rhythm, providing a future perspective for treatment of HCM.
Collapse
Affiliation(s)
- Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - James G W Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
27
|
Marston S. Small molecule studies: the fourth wave of muscle research. J Muscle Res Cell Motil 2019; 40:69-76. [PMID: 31228047 PMCID: PMC6726831 DOI: 10.1007/s10974-019-09526-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
The study of muscle and contractility is an unusual scientific endeavour since it has from the start been focussed on one problem-What makes muscle work?-and yet has needed a vast range of different approaches and techniques to study it. Its uniqueness lies in the fundamental fascination of a large scale molecular machine that converts chemical energy into mechanical energy at ambient temperature and with high efficiency that is also controlled by an exquisitely intricate yet utterly reliable regulatory system and is an essential component of animal life. The investigation of muscle is as innovative as any other field of research. As soon as one approach appears to be played out another comes along. It is instructive to consider this as a series of waves of novel and heightened activity starting in the 1950s. The thesis of this article is that we are approaching the fourth wave with the recent rise of interest in small molecules as research tools and possible therapies for muscle diseases.
Collapse
Affiliation(s)
- Steven Marston
- Cardiovascular Division, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
28
|
Marston S, Zamora JE. Troponin structure and function: a view of recent progress. J Muscle Res Cell Motil 2019; 41:71-89. [PMID: 31030382 PMCID: PMC7109197 DOI: 10.1007/s10974-019-09513-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
Abstract
The molecular mechanism by which Ca2+ binding and phosphorylation regulate muscle contraction through Troponin is not yet fully understood. Revealing the differences between the relaxed and active structure of cTn, as well as the conformational changes that follow phosphorylation has remained a challenge for structural biologists over the years. Here we review the current understanding of how Ca2+, phosphorylation and disease-causing mutations affect the structure and dynamics of troponin to regulate the thin filament based on electron microscopy, X-ray diffraction, NMR and molecular dynamics methodologies.
Collapse
Affiliation(s)
- Steven Marston
- NHLI and Chemistry Departments, Imperial College London, W12 0NN, London, UK.
| | - Juan Eiros Zamora
- NHLI and Chemistry Departments, Imperial College London, W12 0NN, London, UK
| |
Collapse
|
29
|
Ishii S, Suzuki M, Ishiwata S, Kawai M. Functional significance of HCM mutants of tropomyosin, V95A and D175N, studied with in vitro motility assays. Biophys Physicobiol 2019; 16:28-40. [PMID: 30923661 PMCID: PMC6435021 DOI: 10.2142/biophysico.16.0_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
The majority of hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere proteins. We examined tropomyosin (Tpm)’s HCM mutants in humans, V95A and D175N, with in vitro motility assay using optical tweezers to evaluate the effects of the Tpm mutations on the actomyosin interaction at the single molecular level. Thin filaments were reconstituted using these Tpm mutants, and their sliding velocity and force were measured at varying Ca2+ concentrations. Our results indicate that the sliding velocity at pCa ≥8.0 was significantly increased in mutants, which is expected to cause a diastolic problem. The velocity that can be activated by Ca2+ decreased significantly in mutants causing a systolic problem. With sliding force, Ca2+ activatable force decreased in V95A and increased in D175N, which may cause a systolic problem. Our results further demonstrate that the duty ratio determined at the steady state of force generation in saturating [Ca2+] decreased in V95A and increased in D175N. The Ca2+ sensitivity and cooperativity were not significantly affected by the mutations. These results suggest that the two mutants modulate molecular processes of the actomyosin interaction differently, but to result in the same pathology known as HCM.
Collapse
Affiliation(s)
- Shuya Ishii
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Kresin N, Stücker S, Krämer E, Flenner F, Mearini G, Münch J, Patten M, Redwood C, Carrier L, Friedrich FW. Analysis of Contractile Function of Permeabilized Human Hypertrophic Cardiomyopathy Multicellular Heart Tissue. Front Physiol 2019; 10:239. [PMID: 30984009 PMCID: PMC6447666 DOI: 10.3389/fphys.2019.00239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/22/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Nico Kresin
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sabrina Stücker
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elisabeth Krämer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Frederik Flenner
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Julia Münch
- University Heart Center Hamburg, Hamburg, Germany
| | | | - Charles Redwood
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Felix W Friedrich
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
31
|
Schmidt W, Cammarato A. The actin 'A-triad's' role in contractile regulation in health and disease. J Physiol 2019; 598:2897-2908. [PMID: 30770548 DOI: 10.1113/jp276741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Striated muscle contraction is regulated by Ca2+ -dependent modulation of myosin cross-bridge binding to F-actin by the thin filament troponin (Tn)-tropomyosin (Tm) complex. In the absence of Ca2+ , Tn binds to actin and constrains Tm to an azimuthal location where it sterically occludes myosin binding sites along the thin filament surface. This limits force production and promotes muscle relaxation. In addition to Tn-actin interactions, inhibitory Tm positioning requires associations between other thin filament constituents. For example, the actin 'A-triad', composed of residues K326, K328 and R147, forms numerous, highly favourable electrostatic contacts with Tm that are critical for establishing its inhibitory azimuthal binding position. Here, we review recent findings, including the identification and interrogation of modifications within and proximal to the A-triad that are associated with disease and/or altered muscle behaviour, which highlight the surface feature's role in F-actin-Tm interactions and contractile regulation.
Collapse
Affiliation(s)
- William Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA.,Department of Physiology, Johns Hopkins University School of Medicine, 733 N Broadway, 21205, Baltimore, MD, USA
| |
Collapse
|
32
|
Risi C, Belknap B, Forgacs-Lonart E, Harris SP, Schröder GF, White HD, Galkin VE. N-Terminal Domains of Cardiac Myosin Binding Protein C Cooperatively Activate the Thin Filament. Structure 2018; 26:1604-1611.e4. [PMID: 30270174 PMCID: PMC6281772 DOI: 10.1016/j.str.2018.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/25/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Muscle contraction relies on interaction between myosin-based thick filaments and actin-based thin filaments. Myosin binding protein C (MyBP-C) is a key regulator of actomyosin interactions. Recent studies established that the N'-terminal domains (NTDs) of MyBP-C can either activate or inhibit thin filaments, but the mechanism of their collective action is poorly understood. Cardiac MyBP-C (cMyBP-C) harbors an extra NTD, which is absent in skeletal isoforms of MyBP-C, and its role in regulation of cardiac contraction is unknown. Here we show that the first two domains of human cMyPB-C (i.e., C0 and C1) cooperate to activate the thin filament. We demonstrate that C1 interacts with tropomyosin via a positively charged loop and that this interaction, stabilized by the C0 domain, is required for thin filament activation by cMyBP-C. Our data reveal a mechanism by which cMyBP-C can modulate cardiac contraction and demonstrate a function of the C0 domain.
Collapse
Affiliation(s)
- Cristina Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 West Olney Road, Lewis Hall, Room 3126, Norfolk, VA 23507, USA
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 West Olney Road, Lewis Hall, Room 3126, Norfolk, VA 23507, USA
| | - Eva Forgacs-Lonart
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 West Olney Road, Lewis Hall, Room 3126, Norfolk, VA 23507, USA
| | - Samantha P Harris
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Gunnar F Schröder
- Institute of Complex Systems ICS-6, Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 West Olney Road, Lewis Hall, Room 3126, Norfolk, VA 23507, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 West Olney Road, Lewis Hall, Room 3126, Norfolk, VA 23507, USA.
| |
Collapse
|
33
|
Yang KC, Breitbart A, De Lange WJ, Hofsteen P, Futakuchi-Tsuchida A, Xu J, Schopf C, Razumova MV, Jiao A, Boucek R, Pabon L, Reinecke H, Kim DH, Ralphe JC, Regnier M, Murry CE. Novel Adult-Onset Systolic Cardiomyopathy Due to MYH7 E848G Mutation in Patient-Derived Induced Pluripotent Stem Cells. JACC Basic Transl Sci 2018; 3:728-740. [PMID: 30623132 PMCID: PMC6314962 DOI: 10.1016/j.jacbts.2018.08.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022]
Abstract
A novel myosin heavy chain 7 mutation (E848G) identified in a familial cardiomyopathy was studied in patient-specific induced pluripotent stem cell-derived cardiomyocytes. The cardiomyopathic human induced pluripotent stem cell-derived cardiomyocytes exhibited reduced contractile function as single cells and engineered heart tissues, and genome-edited isogenic cells confirmed the pathogenic nature of the E848G mutation. Reduced contractility may result from impaired interaction between myosin heavy chain 7 and cardiac myosin binding protein C.
Collapse
Key Words
- Ad-GFP, green fluorescent protein–encoding adenovirus
- DCM, dilated cardiomyopathy
- EHT, engineered heart tissue
- FCM, familial cardiomyopathy
- HCM, hypertrophic cardiomyopathy
- KO, knockout
- MOI, multiplicity of infections
- MYH, myosin heavy chain
- WT, wild-type
- cMyBP-C, cardiac myosin-binding protein C
- disease-modeling
- engineered heart tissue
- genetic cardiomyopathy
- hiPSC-CM, human induced pluripotent stem cell–derived cardiomyocyte
- iPSC-CM, induced pluripotent stem cell–derived cardiomyocyte
- induced pluripotent stem cells
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Medicine/Cardiology, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Astrid Breitbart
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Willem J. De Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Peter Hofsteen
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Akiko Futakuchi-Tsuchida
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Joy Xu
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Cody Schopf
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Maria V. Razumova
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Alex Jiao
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Robert Boucek
- Department of Pediatrics, Seattle’s Children’s Hospital and the University of Washington, Seattle, Washington
| | - Lil Pabon
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Hans Reinecke
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Deok-Ho Kim
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - J. Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Michael Regnier
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Charles E. Murry
- Department of Medicine/Cardiology, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
34
|
Smith JGW, Owen T, Bhagwan JR, Mosqueira D, Scott E, Mannhardt I, Patel A, Barriales-Villa R, Monserrat L, Hansen A, Eschenhagen T, Harding SE, Marston S, Denning C. Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits. Stem Cell Reports 2018; 11:1226-1243. [PMID: 30392975 PMCID: PMC6235010 DOI: 10.1016/j.stemcr.2018.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary disorder of contractility in heart muscle. To gain mechanistic insight and guide pharmacological rescue, this study models HCM using isogenic pairs of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the E99K-ACTC1 cardiac actin mutation. In both 3D engineered heart tissues and 2D monolayers, arrhythmogenesis was evident in all E99K-ACTC1 hiPSC-CMs. Aberrant phenotypes were most common in hiPSC-CMs produced from the heterozygote father. Unexpectedly, pathological phenotypes were less evident in E99K-expressing hiPSC-CMs from the two sons. Mechanistic insight from Ca2+ handling expression studies prompted pharmacological rescue experiments, wherein dual dantroline/ranolazine treatment was most effective. Our data are consistent with E99K mutant protein being a central cause of HCM but the three-way interaction between the primary genetic lesion, background (epi)genetics, and donor patient age may influence the pathogenic phenotype. This illustrates the value of isogenic hiPSC-CMs in genotype-phenotype correlations.
Collapse
Affiliation(s)
- James G W Smith
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK.
| | - Thomas Owen
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Jamie R Bhagwan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Diogo Mosqueira
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Elizabeth Scott
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ingra Mannhardt
- Institute of Experimental Pharmacology and Toxicology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Asha Patel
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Department of Gene Therapy, National Heart and Lung Institute, Imperial College London SW3 6LR, UK
| | - Roberto Barriales-Villa
- Inherited Cardiovascular Diseases Unit, Cardiology Service, Complexo Hospitalario Universitario A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Lorenzo Monserrat
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain; Health in Code S.L., Cardiology Department, A Coruña, Spain
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Steve Marston
- National Heart and Lung Institute, Imperial College, London W12 0NN, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
35
|
The Molecular Mechanisms of Mutations in Actin and Myosin that Cause Inherited Myopathy. Int J Mol Sci 2018; 19:ijms19072020. [PMID: 29997361 PMCID: PMC6073311 DOI: 10.3390/ijms19072020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/23/2022] Open
Abstract
The discovery that mutations in myosin and actin genes, together with mutations in the other components of the muscle sarcomere, are responsible for a range of inherited muscle diseases (myopathies) has revolutionized the study of muscle, converting it from a subject of basic science to a relevant subject for clinical study and has been responsible for a great increase of interest in muscle studies. Myopathies are linked to mutations in five of the myosin heavy chain genes, three of the myosin light chain genes, and three of the actin genes. This review aims to determine to what extent we can explain disease phenotype from the mutant genotype. To optimise our chances of finding the right mechanism we must study a myopathy where there are a large number of different mutations that cause a common phenotype and so are likely to have a common mechanism: a corollary to this criterion is that if any mutation causes the disease phenotype but does not correspond to the proposed mechanism, then the whole mechanism is suspect. Using these criteria, we consider two cases where plausible genotype-phenotype mechanisms have been proposed: the actin “A-triad” and the myosin “mesa/IHD” models.
Collapse
|
36
|
Do Actomyosin Single-Molecule Mechanics Data Predict Mechanics of Contracting Muscle? Int J Mol Sci 2018; 19:ijms19071863. [PMID: 29941816 PMCID: PMC6073448 DOI: 10.3390/ijms19071863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
In muscle, but not in single-molecule mechanics studies, actin, myosin and accessory proteins are incorporated into a highly ordered myofilament lattice. In view of this difference we compare results from single-molecule studies and muscle mechanics and analyze to what degree data from the two types of studies agree with each other. There is reasonable correspondence in estimates of the cross-bridge power-stroke distance (7–13 nm), cross-bridge stiffness (~2 pN/nm) and average isometric force per cross-bridge (6–9 pN). Furthermore, models defined on the basis of single-molecule mechanics and solution biochemistry give good fits to experimental data from muscle. This suggests that the ordered myofilament lattice, accessory proteins and emergent effects of the sarcomere organization have only minor modulatory roles. However, such factors may be of greater importance under e.g., disease conditions. We also identify areas where single-molecule and muscle data are conflicting: (1) whether force generation is an Eyring or Kramers process with just one major power-stroke or several sub-strokes; (2) whether the myofilaments and the cross-bridges have Hookean or non-linear elasticity; (3) if individual myosin heads slip between actin sites under certain conditions, e.g., in lengthening; or (4) if the two heads of myosin cooperate.
Collapse
|
37
|
Wang L, Bai F, Zhang Q, Song W, Messer A, Kawai M. Development of apical hypertrophic cardiomyopathy with age in a transgenic mouse model carrying the cardiac actin E99K mutation. J Muscle Res Cell Motil 2018; 38:421-435. [PMID: 29582353 DOI: 10.1007/s10974-018-9492-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
In both humans and mice, the Glu-99-Lys (E99K) mutation in the cardiac actin gene (ACTC) results in little understood apical hypertrophic cardiomyopathy (AHCM). To determine how cross-bridge kinetics change with AHCM development, we applied sinusoidal length perturbations to skinned papillary muscle fibres from 2- and 5-month old E99K transgenic (Tg) and non-transgenic (NTg) mice, and studied tension and its transients. These age groups were chosen because our preliminary studies indicated that AHCM develops with age. Fibres from 5-month old E99K mice showed significant decreases in tension, stiffness, the rate of the medium-speed exponential process and its magnitude compared to non-transgenic control. The nucleotide association constants increased with age, and they were significantly larger in E99K compared to NTg. However, there were no large differences in the rates of the cross-bridge detachment step, the rates of the force generation step, or the phosphate association constant. Our result on force/cross-bridge demonstrates that the decreased active tension of E99K fibres was caused by a decreased amount of force generated per each cross-bridge. The effects were generally less or insignificant at 2 months. A pCa-tension study showed increased Ca2+-sensitivity (pCa50) with age in both the E99K and NTg sample groups, and pCa50 was significantly larger (but only for 0.05-0.06 pCa units) in E99K than in NTg groups. A significant decrease in cooperativity (nH) was observed only in 5-month old E99K mice. We conclude that the AHCM-causing ACTC E99K mutation is associated with progressive alterations in biomechanical parameters, with changes smaller at 2 months but larger at 5 months, correlating with the development of AHCM.
Collapse
Affiliation(s)
- Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.,Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Fan Bai
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Qing Zhang
- School of Nursing, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Weihua Song
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
38
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
39
|
Rowlands CT, Owen T, Lawal S, Cao S, Pandey SS, Yang HY, Song W, Wilkinson R, Alvarez-Laviada A, Gehmlich K, Marston SB, MacLeod KT. Age- and strain-related aberrant Ca 2+ release is associated with sudden cardiac death in the ACTC E99K mouse model of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2017; 313:H1213-H1226. [PMID: 28887330 DOI: 10.1152/ajpheart.00244.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with hypertrophic cardiomyopathy, particularly young adults, can die from arrhythmia, but the mechanism underlying abnormal rhythm formation remains unknown. C57Bl6 × CBA/Ca mice carrying a cardiac actin ( ACTC) E99K (Glu99Lys) mutation reproduce many aspects of human hypertrophic cardiomyopathy, including increased myofilament Ca2+ sensitivity and sudden death in a proportion (up to 40%) of young (28-40 day old) animals. We studied the hearts of transgenic (TG; ACTC E99K) mice and their non-TG (NTG) littermates when they were in their vulnerable period (28-40 days old) and when they were adult (8-12 wk old). Ventricular myocytes were isolated from the hearts of TG and NTG mice at these two time points. We also examined the hearts of mice that died suddenly (SCD). SCD animals had approximately four times more collagen compared with age-matched NTG mice, yet myocyte cell size was normal. Young TG mice had double the collagen content of NTG mice. Contraction and Ca2+ transients were greater in cells from young TG mice compared with their NTG littermates but not in cells from adult mice (TG or NTG). Cells from young TG mice had a greater propensity for Ca2+ waves than NTG littermates, and, despite similar sarcoplasmic reticulum Ca2+ content, a proportion of these cells had larger Ca2+ spark mass. We found that the probability of SCD in young TG mice was increased when the mutation was expressed in animals with a CBA/Ca2+ background and almost eliminated in mice bred on a C57Bl6 background. The latter TG mice had normal cellular Ca2+ homeostasis. NEW & NOTEWORTHY Mice with the actin Glu99Lys hypertrophic cardiomyopathy mutation ( ACTC E99K) are prone to sudden cardiac death around 40 days, associated with increased Ca2+ transients, spark mass, and fibrosis. However, adult survivors have normal Ca2+ transients and spark density accompanied by hypertrophy. Penetrance of the sudden cardiac death phenotype depends on the genetic background of the mouse. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/calcium-regulation-in-e99k-mouse-heart/ .
Collapse
Affiliation(s)
- Christina T Rowlands
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Thomas Owen
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Saheed Lawal
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Shuangyi Cao
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Samata S Pandey
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Hsiang-Yu Yang
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Weihua Song
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Ross Wilkinson
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Anita Alvarez-Laviada
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Katja Gehmlich
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Steven B Marston
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| | - Kenneth T MacLeod
- National Heart & Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College, Hammersmith Hospital , London , United Kingdom
| |
Collapse
|
40
|
Marian AJ, van Rooij E, Roberts R. Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders. J Am Coll Cardiol 2017; 68:2831-2849. [PMID: 28007145 DOI: 10.1016/j.jacc.2016.09.968] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023]
Abstract
This is the first of 2 review papers on genetics and genomics appearing as part of the series on "omics." Genomics pertains to all components of an organism's genes, whereas genetics involves analysis of a specific gene or genes in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper.
Collapse
Affiliation(s)
- Ali J Marian
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, and Texas Heart Institute, Houston, Texas.
| | - Eva van Rooij
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert Roberts
- University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
41
|
Messer AE, Chan J, Daley A, Copeland O, Marston SB, Connolly DJ. Investigations into the Sarcomeric Protein and Ca 2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats ( Felix catus). Front Physiol 2017. [PMID: 28642712 DOI: 10.3389/fphys.2017.00348.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20-44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model.
Collapse
Affiliation(s)
- Andrew E Messer
- Myocardial Function, NHLI, Imperial College LondonLondon, United Kingdom
| | - Jasmine Chan
- The Royal Veterinary CollegeHatfield, United Kingdom
| | - Alex Daley
- The Royal Veterinary CollegeHatfield, United Kingdom
| | - O'Neal Copeland
- Myocardial Function, NHLI, Imperial College LondonLondon, United Kingdom
| | - Steven B Marston
- Myocardial Function, NHLI, Imperial College LondonLondon, United Kingdom
| | | |
Collapse
|
42
|
Alamo L, Ware JS, Pinto A, Gillilan RE, Seidman JG, Seidman CE, Padrón R. Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes. eLife 2017; 6:e24634. [PMID: 28606303 PMCID: PMC5469618 DOI: 10.7554/elife.24634] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Cardiac β-myosin variants cause hypertrophic (HCM) or dilated (DCM) cardiomyopathy by disrupting sarcomere contraction and relaxation. The locations of variants on isolated myosin head structures predict contractility effects but not the prominent relaxation and energetic deficits that characterize HCM. During relaxation, pairs of myosins form interacting-heads motif (IHM) structures that with other sarcomere proteins establish an energy-saving, super-relaxed (SRX) state. Using a human β-cardiac myosin IHM quasi-atomic model, we defined interactions sites between adjacent myosin heads and associated protein partners, and then analyzed rare variants from 6112 HCM and 1315 DCM patients and 33,370 ExAC controls. HCM variants, 72% that changed electrostatic charges, disproportionately altered IHM interaction residues (expected 23%; HCM 54%, p=2.6×10-19; DCM 26%, p=0.66; controls 20%, p=0.23). HCM variant locations predict impaired IHM formation and stability, and attenuation of the SRX state - accounting for altered contractility, reduced diastolic relaxation, and increased energy consumption, that fully characterizes HCM pathogenesis.
Collapse
Affiliation(s)
- Lorenzo Alamo
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute for Medical Sciences, Imperial College London, London, United Kingdom
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Antonio Pinto
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Richard E Gillilan
- Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source, Ithaca, United States
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, United States
- Cardiovascular Division, Brigham and Women’s Hospital and Howard Hughes Medical Institute, Boston, United States
| | - Raúl Padrón
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| |
Collapse
|
43
|
Messer AE, Chan J, Daley A, Copeland O, Marston SB, Connolly DJ. Investigations into the Sarcomeric Protein and Ca 2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats ( Felix catus). Front Physiol 2017. [PMID: 28642712 PMCID: PMC5462916 DOI: 10.3389/fphys.2017.00348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model.
Collapse
Affiliation(s)
- Andrew E Messer
- Myocardial Function, NHLI, Imperial College LondonLondon, United Kingdom
| | - Jasmine Chan
- The Royal Veterinary CollegeHatfield, United Kingdom
| | - Alex Daley
- The Royal Veterinary CollegeHatfield, United Kingdom
| | - O'Neal Copeland
- Myocardial Function, NHLI, Imperial College LondonLondon, United Kingdom
| | - Steven B Marston
- Myocardial Function, NHLI, Imperial College LondonLondon, United Kingdom
| | | |
Collapse
|
44
|
Ren X, Hensley N, Brady MB, Gao WD. The Genetic and Molecular Bases for Hypertrophic Cardiomyopathy: The Role for Calcium Sensitization. J Cardiothorac Vasc Anesth 2017; 32:478-487. [PMID: 29203298 DOI: 10.1053/j.jvca.2017.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 11/11/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) affects millions of people around the world as one of the most common genetic heart disorders and leads to cardiac ischemia, heart failure, dysfunction of other organ systems, and increased risk for sudden unexpected cardiac deaths. HCM can be caused by single-point mutations, insertion or deletion mutations, or truncation of cardiac myofilament proteins. The molecular mechanism that leads to disease progression and presentation is still poorly understood, despite decades of investigations. However, recent research has made dramatic advances in the understanding of HCM disease development. Studies have shown that increased calcium sensitivity is a universal feature in HCM. At the molecular level, increased crossbridge force (or power) generation resulting in hypercontractility is the prominent feature. Thus, calcium sensitization/hypercontractility is emerging as the primary stimulus for HCM disease development and phenotypic expression. Cross-bridge inhibition has been shown to halt HCM presentation, and myofilament desensitization appears to reduce lethal arrhythmias in animal models of HCM. These advances in basic research will continue to deepen the knowledge of HCM pathogenesis and are beginning to revolutionize the management of HCM.
Collapse
Affiliation(s)
- Xianfeng Ren
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Nadia Hensley
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mary Beth Brady
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
45
|
Ramratnam M, Salama G, Sharma RK, Wang DWR, Smith SH, Banerjee SK, Huang XN, Gifford LM, Pruce ML, Gabris BE, Saba S, Shroff SG, Ahmad F. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS One 2016; 11:e0167681. [PMID: 27936050 PMCID: PMC5147943 DOI: 10.1371/journal.pone.0167681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/18/2016] [Indexed: 02/06/2023] Open
Abstract
Most studies of the mechanisms leading to hereditary dilated cardiomyopathy (DCM) have been performed in reconstituted in vitro systems. Genetically engineered murine models offer the opportunity to dissect these mechanisms in vivo. We generated a gene-targeted knock-in murine model of the autosomal dominant Arg141Trp (R141W) mutation in Tnnt2, which was first described in a human family with DCM. Mice heterozygous for the mutation (Tnnt2R141W/+) recapitulated the human phenotype, developing left ventricular dilation and reduced contractility. There was a gene dosage effect, so that the phenotype in Tnnt2R141W/+mice was attenuated by transgenic overexpression of wildtype Tnnt2 mRNA transcript. Male mice exhibited poorer survival than females. Biomechanical studies on skinned fibers from Tnnt2R141W/+ hearts showed a significant decrease in pCa50 (-log[Ca2+] required for generation of 50% of maximal force) relative to wildtype hearts, indicating Ca2+ desensitization. Optical mapping studies of Langendorff-perfused Tnnt2R141W/+ hearts showed marked increases in diastolic and peak systolic intracellular Ca2+ ([Ca2+]i), and prolonged systolic rise and diastolic fall of [Ca2+]i. Perfused Tnnt2R141W/+ hearts had slower intrinsic rates in sinus rhythm and reduced peak heart rates in response to isoproterenol. Tnnt2R141W/+ hearts exhibited a reduction in phosphorylated phospholamban relative to wildtype mice. However, crossing Tnnt2R141W/+ mice with phospholamban knockout (Pln-/-) mice, which exhibit increased Ca2+ transients and contractility, had no effect on the DCM phenotype. We conclude that the Tnnt2 R141W mutation causes a Ca2+ desensitization and mice adapt by increasing Ca2+-transient amplitudes, which impairs Ca2+ handling dynamics, metabolism and responses to β-adrenergic activation.
Collapse
Affiliation(s)
- Mohun Ramratnam
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI, United States of America
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI, United States of America
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Guy Salama
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ravi K. Sharma
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David Wen Rui Wang
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Stephen H. Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sanjay K. Banerjee
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xueyin N. Huang
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Lindsey M. Gifford
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States of America
| | - Michele L. Pruce
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Bethann E. Gabris
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Samir Saba
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sanjeev G. Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ferhaan Ahmad
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
46
|
Månsson A. Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? J Muscle Res Cell Motil 2016; 37:181-194. [PMID: 27864648 PMCID: PMC5383694 DOI: 10.1007/s10974-016-9458-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 12/26/2022]
Abstract
Bridging the gaps between experimental systems on different hierarchical scales is needed to overcome remaining challenges in the understanding of muscle contraction. Here, a mathematical model with well-characterized structural and biochemical actomyosin states is developed to that end. We hypothesize that this model accounts for generation of force and motion from single motor molecules to the large ensembles of muscle. In partial support of this idea, a wide range of contractile phenomena are reproduced without the need to invoke cooperative interactions or ad hoc states/transitions. However, remaining limitations exist, associated with ambiguities in available data for model definition e.g.: (1) the affinity of weakly bound cross-bridges, (2) the characteristics of the cross-bridge elasticity and (3) the exact mechanistic relationship between the force-generating transition and phosphate release in the actomyosin ATPase. Further, the simulated number of attached myosin heads in the in vitro motility assay differs several-fold from duty ratios, (fraction of strongly attached ATPase cycle times) derived in standard analysis. After addressing the mentioned issues the model should be useful in fundamental studies, for engineering of myosin motors as well as for studies of muscle disease and drug development.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
47
|
Papadaki M, Marston SB. The Importance of Intrinsically Disordered Segments of Cardiac Troponin in Modulating Function by Phosphorylation and Disease-Causing Mutations. Front Physiol 2016; 7:508. [PMID: 27853436 PMCID: PMC5089987 DOI: 10.3389/fphys.2016.00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
Troponin plays a central role in regulation of muscle contraction. It is the Ca2+ switch of striated muscles including the heart and in the cardiac muscle it is physiologically modulated by PKA-dependent phosphorylation at Ser22 and 23. Many cardiomyopathy-related mutations affect Ca2+ regulation and/or disrupt the relationship between Ca2+ binding and phosphorylation. Unlike the mechanism of heart activation, the modulation of Ca2+-sensitivity by phosphorylation of the cardiac specific N-terminal segment of TnI (1–30) is structurally subtle and has proven hard to investigate. The crystal structure of cardiac troponin describes only the relatively stable core of the molecule and the crucial mobile parts of the molecule are missing including TnI C-terminal region, TnI (1–30), TnI (134–149) (“inhibitory” peptide) and the C-terminal 28 amino acids of TnT that are intrinsically disordered. Recent studies have been performed to answer this matter by building structural models of cardiac troponin in phosphorylated and dephosphorylated states based on peptide NMR studies. Now these have been updated by more recent concepts derived from molecular dynamic simulations treating troponin as a dynamic structure. The emerging model confirms the stable core structure of troponin and the mobile structure of the intrinsically disordered segments. We will discuss how we can describe these segments in terms of dynamic transitions between a small number of states, with the probability distributions being altered by phosphorylation and by HCM or DCM-related mutations that can explain how Ca2+-sensitivity is modulated by phosphorylation and the effects of mutations.
Collapse
Affiliation(s)
- Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University of Chicago Maywood, IL, USA
| | - Steven B Marston
- Myocardial Function, National Heart and Lung Institute, Imperial College London London, UK
| |
Collapse
|
48
|
Gollapudi SK, Chandra M. Dilated Cardiomyopathy Mutation (R134W) in Mouse Cardiac Troponin T Induces Greater Contractile Deficits against α-Myosin Heavy Chain than against β-Myosin Heavy Chain. Front Physiol 2016; 7:443. [PMID: 27757084 PMCID: PMC5047882 DOI: 10.3389/fphys.2016.00443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/20/2016] [Indexed: 11/13/2022] Open
Abstract
Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM) in humans. However, it remains unclear whether a single determinant-such as myofilament Ca2+ sensitivity-is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT), which is known to modulate crossbridge (XB) recruitment dynamics in a myosin heavy chain (MHC)-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W) of the human DCM mutation (R131W), we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC) and transgenic mice (β-MHC). TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca2+ sensitivity to a greater extent in α-MHC (0.14 pCa units) than in β-MHC fiber bundles (0.08 pCa units). Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background.
Collapse
Affiliation(s)
- Sampath K Gollapudi
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| |
Collapse
|
49
|
Marston SB. Why Is there a Limit to the Changes in Myofilament Ca 2+-Sensitivity Associated with Myopathy Causing Mutations? Front Physiol 2016; 7:415. [PMID: 27725803 PMCID: PMC5035734 DOI: 10.3389/fphys.2016.00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
Mutations in striated muscle contractile proteins have been found to be the cause of a number of inherited muscle diseases; in most cases the mechanism proposed for causing the disease is derangement of the thin filament-based Ca2+-regulatory system of the muscle. When considering the results of experiments reported over the last 15 years, one feature has been frequently noted, but rarely discussed: the magnitude of changes in myofilament Ca2+-sensitivity due to myopathy-causing mutations in skeletal or heart muscle seems to be always in the range 1.5-3x EC50. Such consistency suggests it may be related to a fundamental property of muscle regulation; in this article we will investigate whether this observation is true and consider why this should be so. A literature search found 71 independent measurements of HCM mutation-induced change of EC50 ranging from 1.15 to 3.8-fold with a mean of 1.87 ± 0.07 (sem). We also found 11 independent measurements of increased Ca2+-sensitivity due to mutations in skeletal muscle proteins ranging from 1.19 to 2.7-fold with a mean of 2.00 ± 0.16. Investigation of dilated cardiomyopathy-related mutations found 42 independent determinations with a range of EC50 wt/mutant from 0.3 to 2.3. In addition we found 14 measurements of Ca2+-sensitivity changes due skeletal muscle myopathy mutations ranging from 0.39 to 0.63. Thus, our extensive literature search, although not necessarily complete, found that, indeed, the changes in myofilament Ca2+-sensitivity due to disease-causing mutations have a bimodal distribution and that the overall changes in Ca2+-sensitivity are quite small and do not extend beyond a three-fold increase or decrease in Ca2+-sensitivity. We discuss two mechanism that are not necessarily mutually exclusive. Firstly, it could be that the limit is set by the capabilities of the excitation-contraction machinery that supplies activating Ca2+ and that striated muscle cannot work in a way compatible with life outside these limits; or it may be due to a fundamental property of the troponin system and the permitted conformational transitions compatible with efficient regulation.
Collapse
Affiliation(s)
- Steven B Marston
- National Heart & Lung Institute, Imperial College London London, UK
| |
Collapse
|
50
|
Zheng W, Hitchcock-DeGregori SE, Barua B. Investigating the effects of tropomyosin mutations on its flexibility and interactions with filamentous actin using molecular dynamics simulation. J Muscle Res Cell Motil 2016; 37:131-147. [DOI: 10.1007/s10974-016-9447-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022]
|