1
|
Wolfe JT, Chen V, Chen Y, Tefft BJ. Identification of a subpopulation of highly adherent endothelial cells for seeding synthetic vascular grafts. J Thorac Cardiovasc Surg 2024:S0022-5223(24)00550-6. [PMID: 38972570 DOI: 10.1016/j.jtcvs.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE There is an unmet clinical need for alternatives to autologous vessel grafts. Small-diameter (<6 mm) synthetic vascular grafts are not suitable because of unacceptable patency rates. This mainly occurs due to the lack of an endothelial cell (EC) monolayer to prevent platelet activation, thrombosis, and intimal hyperplasia. There are no reliable methods to endothelialize small-diameter grafts because most seeded ECs are lost due to exposure to fluid shear stress after implantation. The goal of this work is to determine if EC loss is a random process or if it is possible to predict which cells are more likely to remain adherent. METHODS In initial studies, we sorted ECs using fluid shear stress and identified a subpopulation of ECs that are more likely to resist detachment. We use RNA sequencing to examine gene expression of adherent ECs compared with the whole population. Using fluorescence activated cell sorting, we sorted ECs based on the expression level of a candidate marker and studied their retention in small-diameter vascular grafts in vitro. RESULTS Transcriptomic analysis revealed that fibronectin leucine rich transmembrane protein 2 (FLRT2), encoding protein FLRT2, is downregulated in the ECs that are more likely to resist detachment. When seeded onto vascular grafts and exposed to shear stress, ECs expressing low levels of FLRT2 exhibit 59.2% ± 7.4% retention compared with 24.5% ± 6.1% retention for the remainder of the EC population. CONCLUSIONS For the first time, we show EC detachment is not an entirely random process. This provides validation for the concept that we can seed small-diameter vascular grafts only with highly adherent ECs to maintain a stable endothelium and improve graft patency rates.
Collapse
Affiliation(s)
- Jayne T Wolfe
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wis
| | - Vaya Chen
- Versiti Blood Research Institute, Milwaukee, Wis
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, Wis; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wis
| | - Brandon J Tefft
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wis; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wis.
| |
Collapse
|
2
|
Wang F, Qin K, Wang K, Wang H, Liu Q, Qian M, Chen S, Sun Y, Hou J, Wei Y, Hu Y, Li Z, Xu Q, Zhao Q. Nitric oxide improves regeneration and prevents calcification in bio-hybrid vascular grafts via regulation of vascular stem/progenitor cells. Cell Rep 2022; 39:110981. [PMID: 35732119 DOI: 10.1016/j.celrep.2022.110981] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/29/2022] [Accepted: 05/28/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular bypass surgery continues to use autologous grafts and often suffers from a shortage of donor grafts. Decellularized xenografts derived from porcine veins provide a promising candidate because of their abundant availability and low immunogenicity. Unfortunately, transplantation outcomes are far from satisfactory because of insufficient regeneration and adverse pathologic remodeling. Herein, a nitrate-functionalized prosthesis has been incorporated into a decellularized porcine vein graft to fabricate a bio-hybrid vascular graft with local delivery of nitric oxide (NO). Exogenous NO efficiently promotes vascular regeneration and attenuates intimal hyperplasia and vascular calcification in both rabbit and mouse models. The underlying mechanism was investigated using a Sca1 2A-CreER; Rosa-RFP genetic-lineage-tracing mouse model that reveals that Sca1+ stem/progenitor cells (SPCs) are major contributors to vascular regeneration and remodeling, and NO plays a critical role in regulating SPC fate. These results support the translational potential of this off-the-shelf vascular graft.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou 256600, China
| | - Kang Qin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yijin Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingli Hou
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yongzhen Wei
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanhua Hu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China.
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Bioactive Materials (Ministry of Education), Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Motta SE, Zaytseva P, Fioretta ES, Lintas V, Breymann C, Hoerstrup SP, Emmert MY. Endothelial Progenitor Cell-Based in vitro Pre-Endothelialization of Human Cell-Derived Biomimetic Regenerative Matrices for Next-Generation Transcatheter Heart Valves Applications. Front Bioeng Biotechnol 2022; 10:867877. [PMID: 35433657 PMCID: PMC9008229 DOI: 10.3389/fbioe.2022.867877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Hemocompatibility of cardiovascular implants represents a major clinical challenge and, to date, optimal antithrombotic properties are lacking. Next-generation tissue-engineered heart valves (TEHVs) made from human-cell-derived tissue-engineered extracellular matrices (hTEMs) demonstrated their recellularization capacity in vivo and may represent promising candidates to avoid antithrombotic therapy. To further enhance their hemocompatibility, we tested hTEMs pre-endothelialization potential using human-blood-derived endothelial-colony-forming cells (ECFCs) and umbilical vein cells (control), cultured under static and dynamic orbital conditions, with either FBS or hPL. ECFCs performance was assessed via scratch assay, thereby recapitulating the surface damages occurring in transcatheter valves during crimping procedures. Our study demonstrated: feasibility to form a confluent and functional endothelium on hTEMs with expression of endothelium-specific markers; ECFCs migration and confluency restoration after crimping tests; hPL-induced formation of neo-microvessel-like structures; feasibility to pre-endothelialize hTEMs-based TEHVs and ECFCs retention on their surface after crimping. Our findings may stimulate new avenues towards next-generation pre-endothelialized implants with enhanced hemocompatibility, being beneficial for selected high-risk patients.
Collapse
Affiliation(s)
- Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Emanuela S. Fioretta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Valentina Lintas
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Christian Breymann
- Department of Obstetrics and Gynaecology, University Hospital Zurich, Obstetric Research, Feto- Maternal Haematology Research Group, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Maximilian Y. Emmert,
| |
Collapse
|
4
|
Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol 2021; 165:40-53. [PMID: 34971664 DOI: 10.1016/j.yjmcc.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.
Collapse
Affiliation(s)
- Yongzhen Wei
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Zhikun Guo
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Qiang Zhao
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China; State key Laboratory of Medicinal Chemical Biology & Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
5
|
Durán-Rey D, Crisóstomo V, Sánchez-Margallo JA, Sánchez-Margallo FM. Systematic Review of Tissue-Engineered Vascular Grafts. Front Bioeng Biotechnol 2021; 9:771400. [PMID: 34805124 PMCID: PMC8595218 DOI: 10.3389/fbioe.2021.771400] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023] Open
Abstract
Pathologies related to the cardiovascular system are the leading causes of death worldwide. One of the main treatments is conventional surgery with autologous transplants. Although donor grafts are often unavailable, tissue-engineered vascular grafts (TEVGs) show promise for clinical treatments. A systematic review of the recent scientific literature was performed using PubMed (Medline) and Web of Science databases to provide an overview of the state-of-the-art in TEVG development. The use of TEVG in human patients remains quite restricted owing to the presence of vascular stenosis, existence of thrombi, and poor graft patency. A total of 92 original articles involving human patients and animal models were analyzed. A meta-analysis of the influence of the vascular graft diameter on the occurrence of thrombosis and graft patency was performed for the different models analyzed. Although there is no ideal animal model for TEVG research, the murine model is the most extensively used. Hybrid grafting, electrospinning, and cell seeding are currently the most promising technologies. The results showed that there is a tendency for thrombosis and non-patency in small-diameter grafts. TEVGs are under constant development, and research is oriented towards the search for safe devices.
Collapse
Affiliation(s)
- David Durán-Rey
- Laparoscopy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Crisóstomo
- Cardiovascular Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan A Sánchez-Margallo
- Bioengineering and Health Technologies Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco M Sánchez-Margallo
- Centro de Investigacion Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.,Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
6
|
Rodriguez-Soto MA, Suarez Vargas N, Riveros A, Camargo CM, Cruz JC, Sandoval N, Briceño JC. Failure Analysis of TEVG's I: Overcoming the Initial Stages of Blood Material Interaction and Stabilization of the Immune Response. Cells 2021; 10:3140. [PMID: 34831361 PMCID: PMC8625197 DOI: 10.3390/cells10113140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular grafts (VG) are medical devices intended to replace the function of a diseased vessel. Current approaches use non-biodegradable materials that struggle to maintain patency under complex hemodynamic conditions. Even with the current advances in tissue engineering and regenerative medicine with the tissue engineered vascular grafts (TEVGs), the cellular response is not yet close to mimicking the biological function of native vessels, and the understanding of the interactions between cells from the blood and the vascular wall with the material in operative conditions is much needed. These interactions change over time after the implantation of the graft. Here we aim to analyze the current knowledge in bio-molecular interactions between blood components, cells and materials that lead either to an early failure or to the stabilization of the vascular graft before the wall regeneration begins.
Collapse
Affiliation(s)
- Maria A. Rodriguez-Soto
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Natalia Suarez Vargas
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Alejandra Riveros
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Carolina Muñoz Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
| | - Nestor Sandoval
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación Cardio Infantil Instituto de Cardiología, Bogotá 111711, Colombia;
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (N.S.V.); (A.R.); (C.M.C.); (J.C.C.)
- Department of Research, Fundación Cardio Infantil Instituto de Cardiología, Bogotá 111711, Colombia
| |
Collapse
|
7
|
Syedain ZH, Haynie B, Johnson SL, Lahti M, Berry J, Carney JP, Li J, Hill RC, Hansen KC, Thrivikraman G, Bianco R, Tranquillo RT. Pediatric tri-tube valved conduits made from fibroblast-produced extracellular matrix evaluated over 52 weeks in growing lambs. Sci Transl Med 2021; 13:13/585/eabb7225. [PMID: 33731437 DOI: 10.1126/scitranslmed.abb7225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
There is a need for replacement heart valves that can grow with children. We fabricated tubes of fibroblast-derived collagenous matrix that have been shown to regenerate and grow as a pulmonary artery replacement in lambs and implemented a design for a valved conduit consisting of three tubes sewn together. Seven lambs were implanted with tri-tube valved conduits in sequential cohorts and compared to bioprosthetic conduits. Valves implanted into the pulmonary artery of two lambs of the first cohort of four animals functioned with mild regurgitation and systolic pressure drops <10 mmHg up to 52 weeks after implantation, during which the valve diameter increased from 19 mm to a physiologically normal ~25 mm. In a second cohort, the valve design was modified to include an additional tube, creating a sleeve around the tri-tube valve to counteract faster root growth relative to the leaflets. Two valves exhibited trivial-to-mild regurgitation at 52 weeks with similar diameter increases to ~25 mm and systolic pressure drops of <5 mmHg, whereas the third valve showed similar findings until moderate regurgitation was observed at 52 weeks, correlating to hyperincrease in the valve diameter. In all explanted valves, the leaflets contained interstitial cells and an endothelium progressing from the base of the leaflets and remained thin and pliable with sparse, punctate microcalcifications. The tri-tube valves demonstrated reduced calcification and improved hemodynamic function compared to clinically used pediatric bioprosthetic valves tested in the same model. This tri-tube valved conduit has potential for long-term valve growth in children.
Collapse
Affiliation(s)
- Zeeshan H Syedain
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Sandra L Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew Lahti
- Experimental Surgical Services, University of Minnesota, Minneapolis, MN 55455, USA
| | - James Berry
- Experimental Surgical Services, University of Minnesota, Minneapolis, MN 55455, USA
| | - John P Carney
- Experimental Surgical Services, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jirong Li
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Greeshma Thrivikraman
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard Bianco
- Experimental Surgical Services, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA. .,Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Syedain ZH, Prunty A, Li J, Tranquillo RT. Evaluation of the probe burst test as a measure of strength for a biologically-engineered vascular graft. J Mech Behav Biomed Mater 2021; 119:104527. [PMID: 33930654 DOI: 10.1016/j.jmbbm.2021.104527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Biologically-engineered vascular grafts have the potential to provide a viable alternative to donor vessels and synthetic grafts. In congenital heart defect patients, the need is even more dire since neither has the capacity to provide somatic growth. To ensure clinically-used grafts perform to accepted standards, mechanical strength is a crucial consideration, with burst testing being considered as one key metric. While ISO 7198 standards for prosthetic vascular grafts provide multiple choices for burst testing, most studies with tissue-engineered grafts have been performed with only pressure burst testing. Here, we compare the performance of a decellularized tube of collagenous matrix grown from dermal fibroblasts, possessing circumferential fiber alignment and anisotropic tensile properties, as determined from pressure and probe burst testing. The two burst tests showed a strong correlation with each other and with tensile strength. Further, relatively weak and strong batches of grafts showed commensurate differences in pressure and probe burst values. Both probe burst and tensile strength measurements in the central and edge regions of the grafts were similar in value, consistent with homogenous collagen content and microstructure throughout the grafts as indicated by histology, in contrast to ovine femoral and carotid arteries similarly tested. Finite element analysis of the probe burst test pre-failure for a homogeneous, isotropic approximation of the matrix constitutive behavior indicated dependence of the (inferred) effective failure stress achievable on probe diameter. The results indicate a probe burst test in a sampled edge region of this biologically-engineered graft provides a representative measure of burst strength of the entire graft.
Collapse
Affiliation(s)
- Zeeshan H Syedain
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Abrielle Prunty
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jirong Li
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths. The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
10
|
Syedain ZH, Maciver R, Tranquillo RT. Vascular grafts and valves that animate, made from decellularized biologically-engineered tissue tubes. THE JOURNAL OF CARDIOVASCULAR SURGERY 2020; 61:577-585. [PMID: 32964902 DOI: 10.23736/s0021-9509.20.11615-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biologically-engineered matrix - a tissue that is grown in vitro from donor cells, decellularized, and stored prior to use as off-the-shelf allografts - offers a promising alternative to current cardiovascular biomaterials. This perspective reviews preclinical studies and clinical trials of vascular grafts and valves comprising biologically-engineered matrix, with a focus on those based on donor dermal fibroblast remodeling of fibrin gel with the capacity to heal and grow following recellularization, via animation of the matrix. It concludes with a discussion of related key clinical considerations.
Collapse
Affiliation(s)
- Zeeshan H Syedain
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Robroy Maciver
- Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA - .,Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Yuan Y, Khan S, Stewart DJ, Courtman DW. Engineering blood outgrowth endothelial cells to optimize endothelial nitric oxide synthase and extracellular matrix production for coating of blood contacting surfaces. Acta Biomater 2020; 109:109-120. [PMID: 32302726 DOI: 10.1016/j.actbio.2020.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022]
Abstract
Coverage of blood contacting surfaces by a functional endothelial layer is likely required to induce and maintain homeostasis. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source that may represent a reasonable alternative to vascular derived cells. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. We found that BOECs express markedly lower levels of eNOS protein (34% ± 13%, Western blot) and mRNA (29% ± 17%, qRT-PCR), as well as exhibiting reduced activity (49% ± 18%, Nitrite analysis) when compared to human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells. HUVECs grown on fibronectin, type I collagen, or laminin -coated surfaces exhibited significant reduction of eNOS mRNA and protein expression. However, no decrease in eNOS levels was observed in BOECs. Interestingly BOECs expressed significantly higher Collagen (Col) I compared to HUVECs, and blocking Col I synthesis significantly enhanced eNOS expression in BOECs. Inhibition of β1 integrin, focal adhesion kinase (FAK), or actin polymerization increased eNOS in both BOECs and HUVECs suggesting involvement of a signaling pathway culminating in stabilization of the cytoskeleton. Finally, we demonstrated that a Rho-associated protein kinases (ROCK) inhibitor, as a disruptor of actin stabilization, enhanced both eNOS expression and bioactivity. Taken together, our findings demonstrate that cell-ECM interactions are fundamental to the regulation of eNOS in BOECs and suggest that disruption of key intracellular pathways (such as ROCK) may be necessary to enhance functional activity of an endothelialized surface. STATEMENT OF SIGNIFICANCE: Development of biocompatible blood-contacting biomaterial surfaces has not been possible to date, leading many investigators to believe that a complete autologous endothelial layer will be necessary. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. In this study, we show that eNOS displays limited expression in cultured BOECs. We further demonstrate that a strong negative regulation of eNOS is mediated by collagen substrates and that treatment with ROCK inhibitor could enhance both eNOS expression and activity in BOECs and help to rapidly establish a functional autologous endothelial layer on cardiovascular biomaterials.
Collapse
Affiliation(s)
- Yifan Yuan
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Anaesthesiology, Yale University, 10 Amistad Rd, New Haven, CT 06519, United States
| | - Saad Khan
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David W Courtman
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
12
|
Ilanlou S, Khakbiz M, Amoabediny G, Mohammadi J. Preclinical studies of acellular extracellular matrices as small-caliber vascular grafts. Tissue Cell 2019; 60:25-32. [DOI: 10.1016/j.tice.2019.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
|
13
|
Tissue-engineered transcatheter vein valve. Biomaterials 2019; 216:119229. [DOI: 10.1016/j.biomaterials.2019.119229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/14/2019] [Accepted: 05/25/2019] [Indexed: 01/31/2023]
|
14
|
A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Acta Biomater 2019; 95:152-164. [PMID: 31271883 DOI: 10.1016/j.actbio.2019.06.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 01/12/2023]
Abstract
3D bioprinted vascular constructs have gained increased interest due to their significant potential for creating customizable alternatives to autologous vessel grafts. In this study, we developed a new approach for biofabricating fibrin-based vascular constructs using a novel rotary 3D bioprinter developed in our lab. We formulated a new bioink by incorporating fibrinogen with gelatin to achieve a desired shear-thinning property for rotary bioprinting. The blending of heat-treated gelatin with fibrinogen turned unprintable fibrinogen into a printable biomaterial for vessel bioprinting by leveraging the favorable rheological properties of gelatin. We discovered that the heat-treatment of gelatin remarkably affects the rheological properties of a gelatin-fibrinogen blended bioink, which in turn influences the printability of the ink. Further characterizations revealed that not only concentration of the gelatin but the heat treatment also affects cell viability during printing. Notably, the density of cells included in the bioinks also influenced printability and tissue volumetric changes of the printed vessel constructs during cultures. We observed increased collagen deposition and construct mechanical strength during two months of the cultures. The burst pressure of the vessel constructs reached 1110 mmHg, which is about 52% of the value of the human saphenous vein. An analysis of the tensile mechanical properties of the printed vessel constructs unveiled an increase in both the circumferential and axial elastic moduli during cultures. This study highlights important considerations for bioink formulation when bioprinting vessel constructs. STATEMENT OF SIGNIFICANCE: There has been an increased demand for small-diameter tissue-engineered vascular grafts. Vascular 3D bioprinting holds the potential to create equivalent vascular grafts but with the ability to tailor them to meet patient's needs. Here, we presented a new and innovative 3D rotary bioprinter and a new bioink formulation for printing vascular constructs using fibrinogen, a favorable biomaterial for vascular tissue engineering. The bioink was formulated by blending fibrinogen with a more printable biomaterial, gelatin. The systematic characterization of the effects of heat treatment and gelatin concentration as well as bioink cell concentration on the printability of the bioink offers new insight into the development of printable biomaterials for tissue biofabrication.
Collapse
|
15
|
Hagen MW, Hinds MT. Static spatial growth restriction micropatterning of endothelial colony forming cells influences their morphology and gene expression. PLoS One 2019; 14:e0218197. [PMID: 31188903 PMCID: PMC6561595 DOI: 10.1371/journal.pone.0218197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Endothelialization of small diameter synthetic vascular grafts is a potential solution to the thrombosis and intimal hyperplasia that plague current devices. Endothelial colony forming cells, which are blood-derived and similar to mature endothelial cells, are a potential cell source. Anisotropic spatial growth restriction micropatterning has been previously shown to affect the morphology and function of mature endothelial cells in a manner similar to unidirectional fluid shear stress. To date, endothelial colony forming cells have not been successfully micropatterned. This study addresses the hypothesis that micropatterning of endothelial colony forming cells will induce morphological elongation, cytoskeletal alignment, and changes in immunogenic and thrombogenic-related gene expression. METHODS Spatially growth restrictive test surfaces with 25 μm-wide lanes alternating between collagen-I and a blocking polymer were created using microfluidics. Case-matched endothelial colony forming cells and control mature carotid endothelial cells were statically cultured on either micropatterned or non-patterned surfaces. Cell elongation was quantified using shape index. Using confocal microscopy, cytoskeletal alignment was visualized and density and apoptotic rate were determined. Gene expression was measured using quantitative PCR to measure KLF-2, eNOS, VCAM-1, and vWF. RESULTS Endothelial colony forming cells were successfully micropatterned for up to 50 hours. Micropatterned cells displayed elongation and actin alignment. Micropatterning increased the packing densities of both cell types, but did not affect apoptotic rate, which was lower in endothelial colony forming cells. KLF-2 gene expression was increased in micropatterned relative to non-patterned endothelial colony forming cells after 50 hours. No significant differences were seen in the other genes tested. CONCLUSIONS Endothelial colony forming cells can be durably micropatterned using spatial growth restriction. Micropatterning has a significant effect on the gross and subcellular morphologies of both cell types. Further study is required to fully understand the effect of micropatterning on endothelial colony forming cell gene expression.
Collapse
Affiliation(s)
- Matthew W. Hagen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
- * E-mail:
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
| |
Collapse
|
16
|
Skovrind I, Harvald EB, Juul Belling H, Jørgensen CD, Lindholt JS, Andersen DC. Concise Review: Patency of Small-Diameter Tissue-Engineered Vascular Grafts: A Meta-Analysis of Preclinical Trials. Stem Cells Transl Med 2019; 8:671-680. [PMID: 30920771 PMCID: PMC6591545 DOI: 10.1002/sctm.18-0287] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Several patient groups undergoing small‐diameter (<6 mm) vessel bypass surgery have limited autologous vessels for use as grafts. Tissue‐engineered vascular grafts (TEVG) have been suggested as an alternative, but the ideal TEVG remains to be generated, and a systematic overview and meta‐analysis of clinically relevant studies is lacking. We systematically searched PubMed and Embase databases for (pre)clinical trials and identified three clinical and 68 preclinical trials ([>rabbit]; 873 TEVGs) meeting the inclusion criteria. Preclinical trials represented low to medium risk of bias, and binary logistic regression revealed that patency was significantly affected by recellularization, TEVG length, TEVG diameter, surface modification, and preconditioning. In contrast, scaffold types were less important. The patency was 63.5%, 89%, and 100% for TEVGs with a median diameter of 3 mm, 4 mm, and 5 mm, respectively. In the group of recellularized TEVGs, patency was not improved by using smooth muscle cells in addition to endothelial cells nor affected by the endothelial origin, but seems to benefit from a long‐term (46–240 hours) recellularization time. Finally, data showed that median TEVG length (5 cm) and median follow‐up (56 days) used in preclinical settings are relatively inadequate for direct clinical translation. In conclusion, our data imply that future studies should consider a TEVG design that at least includes endothelial recellularization and bioreactor preconditioning, and we suggest that more standard guidelines for testing and reporting TEVGs in large animals should be considered to enable interstudy comparisons and favor a robust and reproducible outcome as well as clinical translation.
Collapse
Affiliation(s)
- Ida Skovrind
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark
| | - Eva Bang Harvald
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Center for Vascular Regeneration, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark
| | - Helene Juul Belling
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark
| | | | - Jes Sanddal Lindholt
- Department of Cardiac, Thoracic, and Vascular Surgery, Odense University Hospital, Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark.,Center for Vascular Regeneration, Odense University Hospital, Odense C, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense C, Denmark.,Clinical Institute, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
17
|
Syedain ZH, Graham ML, Dunn TB, O'Brien T, Johnson SL, Schumacher RJ, Tranquillo RT. A completely biological "off-the-shelf" arteriovenous graft that recellularizes in baboons. Sci Transl Med 2018; 9:9/414/eaan4209. [PMID: 29093182 DOI: 10.1126/scitranslmed.aan4209] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 09/08/2017] [Indexed: 01/29/2023]
Abstract
Prosthetic arteriovenous grafts (AVGs) conventionally used for hemodialysis are associated with inferior primary patency rates and increased risk of infection compared with autogenous vein grafts. We tissue-engineered an AVG grown from neonatal human dermal fibroblasts entrapped in bovine fibrin gel that is then decellularized. This graft is both "off-the-shelf" (nonliving) and completely biological. Grafts that are 6 mm in diameter and about 15 cm in length were evaluated in a baboon model of hemodialysis access in an axillary-cephalic or axillary-brachial upper arm AVG construction procedure. Daily antiplatelet therapy was given. Grafts underwent both ultrasound assessment and cannulation at 1, 2, 3, and 6 months and were then explanted for analysis. Excluding grafts with cephalic vein outflow that rapidly clotted during development of the model, 3- and 6-month primary patency rates were 83% (5 of 6) and 60% (3 of 5), respectively. At explant, patent grafts were found to be extensively recellularized (including smoothelin-positive smooth muscle cells with a developing endothelium on the luminal surface). We observed no calcifications, loss of burst strength, or outflow stenosis, which are common failure modes of other graft materials. There was no overt immune response. We thus demonstrate the efficacy of an off-the-shelf AVG that is both acellular and completely biological.
Collapse
Affiliation(s)
- Zeeshan H Syedain
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melanie L Graham
- Preclinical Research Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ty B Dunn
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy O'Brien
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sandra L Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J Schumacher
- Center for Translational Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA. .,Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
La A, Tranquillo RT. Shear Conditioning of Adipose Stem Cells for Reduced Platelet Binding to Engineered Vascular Grafts. Tissue Eng Part A 2018; 24:1242-1250. [PMID: 29448915 DOI: 10.1089/ten.tea.2017.0475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Conferring antithrombogenicity to tissue-engineered vascular grafts remains a major challenge, especially for urgent bypass grafting that excludes approaches based on expanding autologous endothelial cells (ECs) that requires weeks of cell culture. Adipose-derived stem cells (ASCs) are available from most patients in sufficient number for coronary bypass graft seeding and may be effective as allogeneic cells. We thus compared the adhesion and platelet binding of human ASCs that were shear conditioned with constant and pulsatile shear stress (SS) after seeding the cells on a biologically engineered matrix suitable for arterial grafts. A monolayer of cells was maintained up to 15 dyn/cm2 constant SS and up to 15 dyn/cm2 mean pulsatile SS for 6 days of shear flow. Platelet binding was reduced from 83% to 6% of surface area and nitric oxide production was increased 23-fold with 7.5-15 dyn/cm2 constant SS, but not pulsatile SS, relative to cells cultured statically on the matrix for 6 days. The reduction in platelet binding varied from no reduction to maximum reduction over a constant shear range of ∼2 to 4 dyn/cm2, respectively. Collectively, the study supports the potential use of ASCs to seed the luminal surface of a vascular graft made from this biologically engineered matrix to confer an antithrombogenic surface during the development of an endothelium from the seeded cells or the surrounding blood and tissue.
Collapse
Affiliation(s)
- Anh La
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Robert T Tranquillo
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota.,2 Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
19
|
Shojaee M, Bashur CA. Compositions Including Synthetic and Natural Blends for Integration and Structural Integrity: Engineered for Different Vascular Graft Applications. Adv Healthc Mater 2017; 6. [PMID: 28371505 DOI: 10.1002/adhm.201700001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/13/2017] [Indexed: 11/07/2022]
Abstract
Tissue engineering approaches for small-diameter arteries require a scaffold that simultaneously maintains patency by preventing thrombosis and intimal hyperplasia, maintains its structural integrity after grafting, and allows integration. While synthetic and extracellular matrix-derived materials can provide some of these properties individually, developing a scaffold that provides the balanced properties needed for vascular graft survival in the clinic has been particularly challenging. After 30 years of research, there are now several scaffolds currently in clinical trials. However, these products are either being investigated for large-diameter applications or they require pre-seeding of endothelial cells. This progress report identifies important challenges unique to engineering vascular grafts for high pressure arteries less than 4 mm in diameter (e.g., coronary artery), and discusses limitations with the current usage of the term "small-diameter." Next, the composition and processing techniques used for generating tissue engineered vascular grafts (TEVGs) are discussed, with a focus on the benefits of blended materials. Other scaffolds for non-tissue engineering approaches and stents are also briefly mentioned for comparison. Overall, this progress report discusses the importance of defining the most critical challenges for small diameter TEVGs, developing new scaffolds to provide these properties, and determining acceptable benchmarks for scaffold responses in the body.
Collapse
|
20
|
张 家, 陈 坤, 张 福, 李 少, 吴 源, 冯 靖, 王 武, 闫 玉. [Establishment of a rabbit model of small diameter vascular graft replacement]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:687-692. [PMID: 28539296 PMCID: PMC6780461 DOI: 10.3969/j.issn.1673-4254.2017.05.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To establish an rabbit model that mimics the hemodynamics of the bypass graft after coronary artery bypass surgery. METHODS Sixteen New Zealand rabbits were randomly divided into two groups for abdominal aortic artery replacement using a 3-cm-long ePTFE graft with an inner diameter 4 mm through an incision at 1/3 from the middle to the lower part of the abdomen (group A) or in the lower abdomen (group B). The general conditions of the rabbits, operative time, number of collateral vessels that needed to be ligated, rate of massive intraoperative bleeding, fluctuation of vascular anastomosis after surgery, patency rate of the graft on day 7 after the operation were compared between the two groups. RESULTS The two groups of rabbits had similar body weight, diameter of the abdominal aortic artery, intraoperative bleeding rate and occlusion rate of the vascular graft at 7 days after the procedure. The operative time was longer in group A, but the difference was not statistically significant. In group A, the number of the vascular branches that needed to be ligated was smaller and the rate normal femoral artery pulsation was higher than those in group B. CONCLUSION It is feasible to establish models of small diameter vascular graft replacement in rabbits, and the patency rate of the graft can be monitored by observation of the general condition and ultrasound examination of the rabbits.
Collapse
Affiliation(s)
- 家庆 张
- 南方医科大学珠江医院胸心外科,广东 广州 510280Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 坤棠 陈
- 南方医科大学珠江医院胸心外科,广东 广州 510280Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 福伟 张
- 南方医科大学珠江医院胸心外科,广东 广州 510280Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 少彬 李
- 南方医科大学珠江医院胸心外科,广东 广州 510280Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 源周 吴
- 南方医科大学珠江医院胸心外科,广东 广州 510280Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 靖 冯
- 南方医科大学珠江医院胸心外科,广东 广州 510280Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - 武军 王
- 南方医科大学南方医院胸心外科,广东 广州 510515Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 玉生 闫
- 南方医科大学珠江医院胸心外科,广东 广州 510280Department of Cardiothoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
21
|
Pinnock CB, Xu Z, Lam MT. Scaling of Engineered Vascular Grafts Using 3D Printed Guides and the Ring Stacking Method. J Vis Exp 2017. [PMID: 28447994 DOI: 10.3791/55322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Coronary artery disease remains a leading cause of death, affecting millions of Americans. With the lack of autologous vascular grafts available, engineered grafts offer great potential for patient treatment. However, engineered vascular grafts are generally not easily scalable, requiring manufacture of custom molds or polymer tubes in order to customize to different sizes, constituting a time-consuming and costly practice. Human arteries range in lumen diameter from about 2.0-38 mm and in wall thickness from about 0.5-2.5 mm. We have created a method, termed the "Ring Stacking Method," in which variable size rings of tissue of the desired cell type, demonstrated here with vascular smooth muscle cells (SMCs), can be created using guides of center posts to control lumen diameter and outer shells to dictate vessel wall thickness. These tissue rings are then stacked to create a tubular construct, mimicking the natural form of a blood vessel. The vessel length can be tailored by simply stacking the number of rings required to constitute the length needed. With our technique, tissues of tubular forms, similar to a blood vessel, can be readily manufactured in a variety of dimensions and lengths to meet the needs of the clinic and patient.
Collapse
Affiliation(s)
| | - Zhengfan Xu
- Department of Biomedical Engineering, Wayne State University
| | - Mai T Lam
- Department of Biomedical Engineering, Wayne State University; Cardiovascular Research Institute, Wayne State University;
| |
Collapse
|
22
|
Morris AH, Stamer DK, Kyriakides TR. The host response to naturally-derived extracellular matrix biomaterials. Semin Immunol 2017; 29:72-91. [PMID: 28274693 DOI: 10.1016/j.smim.2017.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 12/13/2022]
Abstract
Biomaterials based on natural materials including decellularized tissues and tissue-derived hydrogels are becoming more widely used for clinical applications. Because of their native composition and structure, these biomaterials induce a distinct form of the foreign body response that differs from that of non-native biomaterials. Differences include direct interactions with cells via preserved moieties as well as the ability to undergo remodeling. Moreover, these biomaterials could elicit adaptive immune responses due to the presence of modified native molecules. Therefore, these biomaterials present unique challenges in terms of understanding the progression of the foreign body response. This review covers this response to natural materials including natural polymers, decellularized tissues, cell-derived matrix, tissue derived hydrogels, and biohybrid materials. With the expansion of the fields of regenerative medicine and tissue engineering, the current repertoire of biomaterials has also expanded and requires continuous investigation of the responses they elicit.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States
| | - D K Stamer
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - T R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Department of Pathology, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, United States.
| |
Collapse
|
23
|
Braghirolli DI, Helfer VE, Chagastelles PC, Dalberto TP, Gamba D, Pranke P. Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor increase the proliferation of endothelial progenitor cells. Biomed Mater 2017; 12:025003. [DOI: 10.1088/1748-605x/aa5bbc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Syedain Z, Reimer J, Lahti M, Berry J, Johnson S, Tranquillo RT. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun 2016; 7:12951. [PMID: 27676438 PMCID: PMC5052664 DOI: 10.1038/ncomms12951] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/18/2016] [Indexed: 01/17/2023] Open
Abstract
Treatment of congenital heart defects in children requiring right ventricular outflow tract reconstruction typically involves multiple open-heart surgeries because all existing graft materials have no growth potential. Here we present an ‘off-the-shelf' vascular graft grown from donor fibroblasts in a fibrin gel to address this critical unmet need. In a proof-of-concept study, the decellularized grafts are implanted as a pulmonary artery replacement in three young lambs and evaluated to adulthood. Longitudinal ultrasounds document dimensional growth of the grafts. The lambs show normal growth, increasing body weight by 366% and graft diameter and volume by 56% and 216%, respectively. Explanted grafts display physiological strength and stiffness, complete lumen endothelialization and extensive population by mature smooth muscle cells. The grafts also show substantial elastin deposition and a 465% increase in collagen content, without signs of calcification, aneurysm or stenosis. Collectively, our data support somatic growth of this completely biological graft. Current vessel grafts must be surgically replaced when the recipient outgrows them. Here, Syedain et al. bioengineer a tube of acellular matrix produced from sheep fibroblasts that is capable of cellularizaton and somatic growth when transplanted into growing lambs, eliminating the need for multiple graft surgeries.
Collapse
Affiliation(s)
- Zeeshan Syedain
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jay Reimer
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Matthew Lahti
- Experimental Surgical Services, Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - James Berry
- Experimental Surgical Services, Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Sandra Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Chemical Engineering &Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
25
|
Pellegata AF, Dominioni T, Ballo F, Maestroni S, Asnaghi MA, Zerbini G, Zonta S, Mantero S. Arterial Decellularized Scaffolds Produced Using an Innovative Automatic System. Cells Tissues Organs 2015; 200:363-73. [PMID: 26562773 DOI: 10.1159/000439082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 11/19/2022] Open
Abstract
There is still an unmet clinical need for small-caliber artery substitution. Decellularized scaffolds in tissue engineering represent a promising solution. We have developed an innovative system for the automatic decellularization of blood vessels, used to process pig arteries. The system is able to automatically drive a decellularization process in a safe and reliable environment, with complex time patterns, using up to three different decellularization solutions, and providing at the same time a physical stress to improve the decellularization. The decellularization of pig arteries was evaluated by means of histology, DNA quantification and mechanical testing. Outcomes showed scaffolds with no cellular or nuclear remnants and a well-preserved tissue structure, corroborated by mechanical properties similar to native tissue. Decellularized scaffolds were seeded on the inner layer with human endothelial cells and implanted as iliac artery replacement in 4 pharmacologically immune-compromised pigs. This chimeric model was performed as a very preliminary evaluation to investigate the performances of these scaffolds in vivo, and to investigate the fate of seeded cells. Recipients were sacrificed on day 14 and day 70 after surgery, and vessels were found to be patent and with no evidence of thrombi formation. The inner layer was covered by endothelial cells, and the migration of cells positive for α-smooth-muscle actin was observed from the outer layer towards the tunica media. Intriguingly, the endothelial cells on explanted vessels were entirely derived from the host while the seeded cells were lost. In conclusion, this work presents a novel tool for a safe and controlled production of arterial scaffolds, with good decellularization outcomes and a good performance in a short-term, large-animal implantation.
Collapse
Affiliation(s)
- Alessandro F Pellegata
- Department of Chemistry, Materials and Chemical Engineering x2018;Giulio Natta', Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Syedain Z, Reimer J, Schmidt J, Lahti M, Berry J, Bianco R, Tranquillo RT. 6-month aortic valve implantation of an off-the-shelf tissue-engineered valve in sheep. Biomaterials 2015; 73:175-84. [PMID: 26409002 DOI: 10.1016/j.biomaterials.2015.09.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 01/18/2023]
Abstract
Diseased aortic valves often require replacement, with over 30% of the current aortic valve surgeries performed in patients who will outlive a bioprosthetic valve. While many promising tissue-engineered valves have been created in the lab using the cell-seeded polymeric scaffold paradigm, none have been successfully tested long-term in the aortic position of a pre-clinical model. The high pressure gradients and dynamic flow across the aortic valve leaflets require engineering a tissue that has the strength and compliance to withstand high mechanical demand without compromising normal hemodynamics. A long-term preclinical evaluation of an off-the-shelf tissue-engineered aortic valve in the sheep model is presented here. The valves were made from a tube of decellularized cell-produced matrix mounted on a frame. The engineered matrix is primarily composed of collagen, with strength and organization comparable to native valve leaflets. In vitro testing showed excellent hemodynamic performance with low regurgitation, low systolic pressure gradient, and large orifice area. The implanted valves showed large-scale leaflet motion and maintained effective orifice area throughout the duration of the 6-month implant, with no calcification. After 24 weeks implantation (over 17 million cycles), the valves showed no change in tensile mechanical properties. In addition, histology and DNA quantitation showed repopulation of the engineered matrix with interstitial-like cells and endothelialization. New extracellular matrix deposition, including elastin, further demonstrates positive tissue remodeling in addition to recellularization and valve function. Long-term implantation in the sheep model resulted in functionality, matrix remodeling, and recellularization, unprecedented results for a tissue-engineered aortic valve.
Collapse
Affiliation(s)
- Zeeshan Syedain
- Departments of Biomedical Engineering, University of Minnesota, United States
| | - Jay Reimer
- Departments of Biomedical Engineering, University of Minnesota, United States
| | - Jillian Schmidt
- Departments of Biomedical Engineering, University of Minnesota, United States
| | - Matthew Lahti
- Experimental Surgical Services, University of Minnesota, United States
| | - James Berry
- Experimental Surgical Services, University of Minnesota, United States
| | - Richard Bianco
- Experimental Surgical Services, University of Minnesota, United States
| | - Robert T Tranquillo
- Departments of Biomedical Engineering, University of Minnesota, United States; Department of Chemical Engineering & Material Science, University of Minnesota, United States.
| |
Collapse
|
27
|
Reimer JM, Syedain ZH, Haynie BHT, Tranquillo RT. Pediatric tubular pulmonary heart valve from decellularized engineered tissue tubes. Biomaterials 2015; 62:88-94. [PMID: 26036175 PMCID: PMC4490908 DOI: 10.1016/j.biomaterials.2015.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023]
Abstract
Pediatric patients account for a small portion of the heart valve replacements performed, but a pediatric pulmonary valve replacement with growth potential remains an unmet clinical need. Herein we report the first tubular heart valve made from two decellularized, engineered tissue tubes attached with absorbable sutures, which can meet this need, in principle. Engineered tissue tubes were fabricated by allowing ovine dermal fibroblasts to replace a sacrificial fibrin gel with an aligned, cell-produced collagenous matrix, which was subsequently decellularized. Previously, these engineered tubes became extensively recellularized following implantation into the sheep femoral artery. Thus, a tubular valve made from these tubes may be amenable to recellularization and, ideally, somatic growth. The suture line pattern generated three equi-spaced leaflets in the inner tube, which collapsed inward when exposed to back pressure, per tubular valve design. Valve testing was performed in a pulse duplicator system equipped with a secondary flow loop to allow for root distention. All tissue-engineered valves exhibited full leaflet opening and closing, minimal regurgitation (<5%), and low systolic pressure gradients (<2.5 mmHg) under pulmonary conditions. Valve performance was maintained under various trans-root pressure gradients and no tissue damage was evident after 2 million cycles of fatigue testing.
Collapse
Affiliation(s)
- Jay M Reimer
- Department of Biomedical Engineering, University of Minnesota, USA
| | | | - Bee H T Haynie
- Department of Biomedical Engineering, University of Minnesota, USA
| | - Robert T Tranquillo
- Department of Biomedical Engineering, University of Minnesota, USA; Department of Chemical Engineering and Material Science, University of Minnesota, USA.
| |
Collapse
|
28
|
Sek AC, Xie Z, Terai K, Long LM, Nelson C, Dudek AZ, Druey KM. Endothelial Expression of Endothelin Receptor A in the Systemic Capillary Leak Syndrome. PLoS One 2015; 10:e0133266. [PMID: 26176954 PMCID: PMC4503617 DOI: 10.1371/journal.pone.0133266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/24/2015] [Indexed: 01/01/2023] Open
Abstract
Idiopathic systemic capillary leak syndrome (SCLS) is a rare and potentially fatal vascular disorder characterized by reversible bouts of hypotension and edema resulting from fluid and solute escape into soft tissues. Although spikes in permeability-inducing factors have been linked to acute SCLS flares, whether or not they act on an inherently dysfunctional endothelium is unknown. To assess the contribution of endothelial-intrinsic mechanisms in SCLS, we derived blood-outgrowth endothelial cells (BOEC) from patients and healthy controls and examined gene expression patterns. Ednra, encoding Endothelin receptor A (ETA)-the target of Endothelin 1 (ET-1)-was significantly increased in SCLS BOEC compared to healthy controls. Although vasoconstriction mediated by ET-1 through ETA activation on vascular smooth muscle cells has been well characterized, the expression and function of ETA receptors in endothelial cells (ECs) has not been described. To determine the role of ETA and its ligand ET-1 in SCLS, if any, we examined ET-1 levels in SCLS sera and functional effects of endothelial ETA expression. ETA overexpression in EAhy926 endothelioma cells led to ET-1-induced hyper-permeability through canonical mechanisms. Serum ET-1 levels were elevated in acute SCLS sera compared to remission and healthy control sera, suggesting a possible role for ET-1 and ETA in SCLS pathogenesis. However, although ET-1 alone did not induce hyper-permeability of patient-derived BOEC, an SCLS-related mediator (CXCL10) increased Edrna quantities in BOEC, suggesting a link between SCLS and endothelial ETA expression. These results demonstrate that ET-1 triggers classical mechanisms of vascular barrier dysfunction in ECs through ETA. Further studies of the ET-1-ETA axis in SCLS and in more common plasma leakage syndromes including sepsis and filovirus infection would advance our understanding of vascular integrity mechanisms and potentially uncover new treatment strategies.
Collapse
Affiliation(s)
- Albert C. Sek
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Zhihui Xie
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Kaoru Terai
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Lauren M. Long
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Celeste Nelson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Arkadiusz Z. Dudek
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kirk M. Druey
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
29
|
Tresoldi C, Pellegata AF, Mantero S. Cells and stimuli in small-caliber blood vessel tissue engineering. Regen Med 2015; 10:505-27. [DOI: 10.2217/rme.15.19] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The absence of successful solutions in treatments of small-caliber vessel diseases led to the Vascular Tissue Engineering approach to develop functional nonimmunogenic tissue engineered blood vessels. In this context, the choice of cells to be seeded and the microenvironment conditioning are pivotal. Biochemical and biomechanical stimuli seem to activate physiological regulatory pathways that induce the production of molecules and proteins stimulating stem cell differentiation toward vascular lineage and reproducing natural cross-talks among vascular cells to improve the maturation of tissue engineered blood vessels. Thus, this review focuses on (1) available cell sources, and (2) biochemical and biomechanical stimuli, with the final aim to obtain the long-term stability of the endothelium and mechanical properties suitable for withstanding physiological load.
Collapse
Affiliation(s)
- Claudia Tresoldi
- Department of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Alessandro Filippo Pellegata
- Department of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Sara Mantero
- Department of Chemistry, Materials & Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
30
|
Anderson DEJ, Glynn JJ, Song HK, Hinds MT. Engineering an endothelialized vascular graft: a rational approach to study design in a non-human primate model. PLoS One 2014; 9:e115163. [PMID: 25526637 PMCID: PMC4272299 DOI: 10.1371/journal.pone.0115163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
After many years of research, small diameter, synthetic vascular grafts still lack the necessary biologic integration to perform ideally in clinical settings. Endothelialization of vascular grafts has the potential to improve synthetic graft function, and endothelial outgrowth cells (EOCs) are a promising autologous cell source. Yet no work has established the link between endothelial cell functions and outcomes of implanted endothelialized grafts. This work utilized steady flow, oscillatory flow, and tumor necrosis factor stimulation to alter EOC phenotype and enable the formulation of a model to predict endothelialized graft performance. To accomplish this, EOC in vitro expression of coagulation and inflammatory markers was quantified. In parallel, in non-human primate (baboon) models, the platelet and fibrinogen accumulation on endothelialized grafts were quantified in an ex vivo shunt, or the tissue ingrowth on implanted grafts were characterized after 1mth. Oscillatory flow stimulation of EOCs increased in vitro coagulation markers and ex vivo platelet accumulation. Steady flow preconditioning did not affect platelet accumulation or intimal hyperplasia relative to static samples. To determine whether in vitro markers predict implant performance, a linear regression model of the in vitro data was fit to platelet accumulation data-correlating the markers with the thromboprotective performance of the EOCs. The model was tested against implant intimal hyperplasia data and found to correlate strongly with the parallel in vitro analyses. This research defines the effects of flow preconditioning on EOC regulation of coagulation in clinical vascular grafts through parallel in vitro, ex vivo, and in vivo analyses, and contributes to the translatability of in vitro tests to in vivo clinical graft performance.
Collapse
Affiliation(s)
- Deirdre E. J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
| | - Jeremy J. Glynn
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
| | - Howard K. Song
- Division of Cardiothoracic Surgery, Oregon Health & Science University, Portland, OR, United States of America
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
- * E-mail:
| |
Collapse
|
31
|
Syedain ZH, Meier LA, Lahti MT, Johnson SL, Tranquillo RT. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng Part A 2014; 20:1726-34. [PMID: 24417686 DOI: 10.1089/ten.tea.2013.0550] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The performance of completely biological, decellularized engineered allografts in a sheep model was evaluated to establish clinical potential of these unique arterial allografts. The 4-mm-diameter, 2-3-cm-long grafts were fabricated from fibrin gel remodeled into an aligned tissue tube in vitro by ovine dermal fibroblasts. Decellularization and subsequent storage had little effect on graft properties, with burst pressure exceeding 4000 mmHg and the same compliance as the ovine femoral artery. Grafts were implanted interpositionally in the femoral artery of six sheep (n=9), with contralateral sham controls (n=3). At 8 weeks (n=5) and 24 weeks (n=4), all grafts were patent and showed no evidence of dilatation or mineralization. Mid-graft lumen diameter was unchanged. Extensive recellularization occurred, with most cells expressing αSMA. Endothelialization was complete by 24 weeks with elastin deposition evident. These completely biological grafts possessed circumferential alignment/mechanical anisotropy characteristic of native arteries and were cultured only 5 weeks prior to decellularization and storage as "off-the-shelf" grafts.
Collapse
Affiliation(s)
- Zeeshan H Syedain
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | | | | | | | | |
Collapse
|