1
|
Watanabe Y, Haneda T, Kimishima A, Kuwae A, Suga T, Suzuki T, Iwabuchi Y, Honsho M, Honma S, Iwatsuki M, Matsui H, Hanaki H, Kanoh N, Abe A, Asami Y, Ōmura S. PurA is the main target of aurodox, a type III secretion system inhibitor. Proc Natl Acad Sci U S A 2024; 121:e2322363121. [PMID: 38640341 PMCID: PMC11046696 DOI: 10.1073/pnas.2322363121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024] Open
Abstract
Anti-microbial resistance (AMR) is one of the greatest threats to global health. The continual battle between the emergence of AMR and the development of drugs will be extremely difficult to stop as long as traditional anti-biotic approaches are taken. In order to overcome this impasse, we here focused on the type III secretion system (T3SS), which is highly conserved in many Gram-negative pathogenic bacteria. The T3SS is known to be indispensable in establishing disease processes but not essential for pathogen survival. Therefore, T3SS inhibitors may be innovative anti-infective agents that could dramatically reduce the evolutionary selective pressure on strains resistant to treatment. Based on this concept, we previously identified a polyketide natural product, aurodox (AD), as a specific T3SS inhibitor using our original screening system. However, despite its promise as a unique anti-infective drug of AD, the molecular target of AD has remained unclear. In this paper, using an innovative chemistry and genetic biology-based approach, we show that AD binds to adenylosuccinate synthase (PurA), which suppresses the production of the secreted proteins from T3SS, resulting in the expression of bacterial virulence both in vitro and in vivo experiments. Our findings illuminate the potential of PurA as a target of anti-infective drugs and vaccination and could open a avenue for application of PurA in the regulation of T3SS.
Collapse
Affiliation(s)
- Yoshihiro Watanabe
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Takeshi Haneda
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Aoi Kimishima
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Asaomi Kuwae
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Takuya Suga
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Takahiro Suzuki
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yoshiharu Iwabuchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Masako Honsho
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Sota Honma
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Hidehito Matsui
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Hideaki Hanaki
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Naoki Kanoh
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
- School of Pharmacy and Pharmaceutical Sciences, and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo142-8501, Japan
| | - Akio Abe
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Yukihiro Asami
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo108-8641, Japan
| |
Collapse
|
2
|
Jumppanen M, Kinnunen SM, Zore M, Välimäki MJ, Talman V, Gennäs GBA, Ruskoaho HJ, Yli-Kauhaluoma J. Affinity chromatography reveals direct binding of the GATA4-NKX2-5 interaction inhibitor (3i-1000) with GATA4. Sci Rep 2024; 14:8938. [PMID: 38637629 PMCID: PMC11026519 DOI: 10.1038/s41598-024-59418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Heart failure is a serious medical condition with a poor prognosis. Current treatments can only help manage the symptoms and slow the progression of heart failure. However, there is currently no cure to prevent and reverse cardiac remodeling. Transcription factors are in a central role in various cellular processes, and in the heart, GATA4 and NKX2-5 transcription factors mediate hypertrophic responses and remodeling. We have identified compounds that modulate the synergistic interaction of GATA4 and NKX2-5 and shown that the most promising compound (1, 3i-1000) is cardioprotective in vitro and in vivo. However, direct evidence of its binding site and mechanism of action has not been available. Due to the disordered nature of transcription factors, classical target engagement approaches cannot be utilized. Here, we synthesized a small-molecule ligand-binding pulldown probe of compound 1 to utilize affinity chromatography alongside CETSA, AlphaScreen, and molecular modeling to study ligand binding. These results provide the first evidence of direct physical binding of compound 1 selectively to GATA4. While developing drugs that target transcription factors presents challenges, advances in technologies and knowledge of intrinsically disordered proteins enable the identification of small molecules that can selectively target transcription factors.
Collapse
Affiliation(s)
- Mikael Jumppanen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, (P.O. Box 56), FI-00014, Helsinki, Finland
| | - Sini M Kinnunen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, (P.O. Box 56), FI-00014, Helsinki, Finland
| | - Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, (P.O. Box 56), FI-00014, Helsinki, Finland
| | - Mika J Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, (P.O. Box 56), FI-00014, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, (P.O. Box 56), FI-00014, Helsinki, Finland
| | - Gustav Boije Af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, (P.O. Box 56), FI-00014, Helsinki, Finland
| | - Heikki J Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, (P.O. Box 56), FI-00014, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, (P.O. Box 56), FI-00014, Helsinki, Finland.
| |
Collapse
|
3
|
Pang Z, Cravatt BF, Ye L. Deciphering Drug Targets and Actions with Single-Cell and Spatial Resolution. Annu Rev Pharmacol Toxicol 2024; 64:507-526. [PMID: 37722721 DOI: 10.1146/annurev-pharmtox-033123-123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.
Collapse
Affiliation(s)
- Zhengyuan Pang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA;
| | - Li Ye
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
4
|
Park SI, Cho SM, Atsumi S, Kawada M, Shibuya M, Lee JY, Kim JY, Kwon HJ. NDUFA12 as a Functional Target of the Anticancer Compound Ertredin in Human Hepatoma Cells As Revealed by Label-Free Chemical Proteomics. J Proteome Res 2024; 23:130-141. [PMID: 38104258 DOI: 10.1021/acs.jproteome.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Many attempts have been made to develop new agents that target EGFR mutants or regulate downstream factors in various cancers. Cell-based screening showed that a natural small molecule, Ertredin, inhibited the growth of EGFRvIII mutant cancer cells. Previous studies have shown that Ertredin effectively inhibits anchorage-independent 3D growth of sphere-forming cells transfected with EGFRvIII mutant cDNA. However, the underlying mechanism remains unclear. In this study, we investigated the target protein of Ertredin by combining drug affinity-responsive target stability (DARTS) assays with liquid chromatography-mass spectrometry using label-free Ertredin as a bait and HepG2 cell lysates as a proteome pool. NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 (NDUFA12) was identified as an Ertredin-binding protein that was responsible for its biological activity. The interaction between NDUFA12 and Ertredin was validated by DARTS and cellular thermal shift assays. In addition, the genetic knockdown of the identified target, NDUFA12, was shown to suppress cell proliferation. NDUFA12 was identified as a biologically relevant target protein of Ertredin that is responsible for its antitumor activity, and these results provide insights into the role of NDUFA12 as a downstream factor in EGFRvIII mutants.
Collapse
Affiliation(s)
- Se In Park
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sung Min Cho
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sonoko Atsumi
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku 141-0021, Tokyo, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku 141-0021, Tokyo, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki-shi, Gunma 370-1393, Japan
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang 28119, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Bailey BL, Nguyen W, Cowman AF, Sleebs BE. Chemo-proteomics in antimalarial target identification and engagement. Med Res Rev 2023; 43:2303-2351. [PMID: 37232495 PMCID: PMC10947479 DOI: 10.1002/med.21975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Humans have lived in tenuous battle with malaria over millennia. Today, while much of the world is free of the disease, areas of South America, Asia, and Africa still wage this war with substantial impacts on their social and economic development. The threat of widespread resistance to all currently available antimalarial therapies continues to raise concern. Therefore, it is imperative that novel antimalarial chemotypes be developed to populate the pipeline going forward. Phenotypic screening has been responsible for the majority of the new chemotypes emerging in the past few decades. However, this can result in limited information on the molecular target of these compounds which may serve as an unknown variable complicating their progression into clinical development. Target identification and validation is a process that incorporates techniques from a range of different disciplines. Chemical biology and more specifically chemo-proteomics have been heavily utilized for this purpose. This review provides an in-depth summary of the application of chemo-proteomics in antimalarial development. Here we focus particularly on the methodology, practicalities, merits, and limitations of designing these experiments. Together this provides learnings on the future use of chemo-proteomics in antimalarial development.
Collapse
Affiliation(s)
- Brodie L. Bailey
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - William Nguyen
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Sarma M, Abdalla M, Zothantluanga JH, Abdullah Thagfan F, Umar AK, Chetia D, Almanaa TN, Al-Shouli ST. Multi-target molecular dynamic simulations reveal glutathione-S-transferase as the most favorable drug target of knipholone in Plasmodium falciparum. J Biomol Struct Dyn 2023; 41:12808-12824. [PMID: 36752355 DOI: 10.1080/07391102.2023.2175378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/07/2023] [Indexed: 02/09/2023]
Abstract
Knipholone is an antiplasmodial phytocompound obtained from the roots of Kniphofia foliosa. Despite several available studies, the molecular drug targets of knipholone in P. falciparum remained unknown. Nowadays, in silico techniques are widely used to study the molecular interactions between compounds and proteins as they provide results quickly with high precision and accuracy. In this study, we aim to identify the potential molecular drug targets of knipholone in P. falciparum. We selected 10 proteins of P. falciparum with unique metabolic functions and we found that knipholone showed better binding affinity than the native ligands of 6 proteins. Out of the 6 proteins, knipholone showed better enzyme inhibitory potential than the native ligands of 4 proteins. We carried out a 100 ns MD simulations for knipholone and the native ligands of four proteins and this was followed by binding free energy calculations. In each step, the performance of knipholone was compared to the native ligands of the proteins. Knipholone outperformed the native ligand of Glutathione-S-Transferase (1OKT) at crucial computational studies as evidence from the lower protein-ligand root mean square deviation value, protein root mean square fluctuation value, and protein-ligand binding free energies. The ligand properties of knipholone provide additional evidence for its stability and it maintains adequate protein-ligand contacts during the entire simulation. The density functional theory study also supported the stability of knipholone at the active binding site of 1OKT. From the studied proteins, we conclude that Glutathione-S-Transferase is the most favorable drug target for knipholone in P. falciparum.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Malita Sarma
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Felwa Abdullah Thagfan
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abd Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Pathology department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Liu J, Ma L, Song C, Xing H, Cen S, Lin W. Anti-HIV Effects of Baculiferins Are Regulated by the Potential Target Protein DARS. ACS Chem Biol 2021; 16:1377-1389. [PMID: 34338505 DOI: 10.1021/acschembio.1c00148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Baculiferins are a group of marine sponge-derived polycyclic alkaloids with anti-HIV (human immunodeficiency virus) activities. To identify additional baculiferin-based congeners for SAR analysis and to investigate the mode of action, a total of 18 new baculiferin-type derivatives were synthesized. The inhibitory activities of the congeners against the HIV-1 virus were evaluated in vitro, and the relevant SAR was discussed. Compound 18 exerted the most potent activity toward VSV-G-pseudotyped HIV-1 (IC50 of 3.44 μM) and HIV-1 strain SF33 (IC50 of 2.80 μM) in vitro. To identify the cellular targets, three photoaffinity baculiferin probes were simultaneously synthesized. Photoaffinity labeling experiments together with LC-MS/MS data identified aspartate-tRNA ligase (DARS) as a putative target protein of 18. The overexpression and knockdown of DARS in HEK293T cells provided additional data to demonstrate that DARS is a potential target protein in the regulation of HIV virus infection. The modes of antiviral baculiferins 13 and 18 binding to DARS were determined by a molecular docking simulation. Thus, baculiferin 18 is considered a promising lead as a new molecular target for the development of anti-HIV agents.
Collapse
Affiliation(s)
- Jianrong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing, People’s Republic of China
| | - Ling Ma
- Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chang Song
- Division of Virology and Immunology National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Hui Xing
- Division of Virology and Immunology National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Shan Cen
- Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Xu Y, West GM, Abdelmessih M, Troutman MD, Everley RA. A Comparison of Two Stability Proteomics Methods for Drug Target Identification in OnePot 2D Format. ACS Chem Biol 2021; 16:1445-1455. [PMID: 34374519 DOI: 10.1021/acschembio.1c00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stability proteomics techniques that do not require drug modifications have emerged as an attractive alternative to affinity purification methods in drug target engagement studies. Two representative techniques include the chemical-denaturation-based SPROX (Stability of Proteins from Rates of Oxidation), which utilizes peptide-level quantification and thermal-denaturation-based TPP (Thermal Proteome Profiling), which utilizes protein-level quantification. Recently, the "OnePot" strategy was adapted for both SPROX and TPP to increase the throughput. When combined with the 2D setup which measures both the denaturation and the drug dose dimensions, the OnePot 2D format offers improved analysis specificity with higher resource efficiency. However, a systematic evaluation of the OnePot 2D format and a comparison between SPROX and TPP are still lacking. Here, we performed SPROX and TPP to identify protein targets of a well-studied pan-kinase inhibitor staurosporine with K562 lysate, in curve-fitting and OnePot 2D formats. We found that the OnePot 2D format provided ∼10× throughput, achieved ∼1.6× protein coverage and involves more straightforward data analysis. We also compared SPROX with the current "gold-standard" stability proteomics technique TPP in the OnePot 2D format. The protein coverage of TPP is ∼1.5 fold of SPROX; however, SPROX offers protein domain-level information, identifies comparable numbers of kinase hits, has higher signal (R value), and requires ∼3× less MS time. Unique SPROX hits encompass higher-molecular-weight proteins, compared to the unique TPP hits, and include atypical kinases. We also discuss hit stratification and prioritization strategies to promote the efficiency of hit followup.
Collapse
Affiliation(s)
- Yingrong Xu
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Graham M. West
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mario Abdelmessih
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew D. Troutman
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Robert A. Everley
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| |
Collapse
|
9
|
Suto N, Kamoshita S, Hosoya S, Sakurai K. Exploration of the Reactivity of Multivalent Electrophiles for Affinity Labeling: Sulfonyl Fluoride as a Highly Efficient and Selective Label. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nanako Suto
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| | - Shione Kamoshita
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| | - Shoichi Hosoya
- Institute of Research Tokyo Medical and Dental University 1-5-45, Yushima, Bunkyo-ku Tokyo 113-8510 Japan
| | - Kaori Sakurai
- Department of Bioengineering and Life Science Tokyo University of Agriculture and Technology 4-24-16, Naka-cho, Koganei-shi Tokyo 184-8588 Japan
| |
Collapse
|
10
|
Suto N, Kamoshita S, Hosoya S, Sakurai K. Exploration of the Reactivity of Multivalent Electrophiles for Affinity Labeling: Sulfonyl Fluoride as a Highly Efficient and Selective Label. Angew Chem Int Ed Engl 2021; 60:17080-17087. [PMID: 34060195 DOI: 10.1002/anie.202104347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/16/2021] [Indexed: 12/23/2022]
Abstract
Here we explored the reactivity of a set of multivalent electrophiles cofunctionalized with a carbohydrate ligand on gold nanoparticles to achieve efficient affinity labeling for target protein analysis. Evaluation of the reactivity and selectivity of the electrophiles against three different cognate binding proteins identified arylsulfonyl fluoride as the most efficient protein-reactive group in this study. We demonstrated that multivalent arylsulfonyl fluoride probe 4 at 50 nm concentration achieved selective affinity labeling and enrichment of a model protein PNA in cell lysate, which was more effective than photoaffinity probe 1 with arylazide group. Labeling site analysis by LC-MS/MS revealed that the nanoparticle-immobilized arylsulfonyl fluoride group can target multiple amino acid residues around the ligand binding site of the target proteins. Our study highlights the utility of arylsulfonyl fluoride as a highly effective multivalent affinity label suitable for covalently capturing unknown target proteins.
Collapse
Affiliation(s)
- Nanako Suto
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shione Kamoshita
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shoichi Hosoya
- Institute of Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kaori Sakurai
- Department of Bioengineering and Life Science, Tokyo University of Agriculture and Technology, 4-24-16, Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| |
Collapse
|
11
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
12
|
Furkert D, Hostachy S, Nadler-Holly M, Fiedler D. Triplexed Affinity Reagents to Sample the Mammalian Inositol Pyrophosphate Interactome. Cell Chem Biol 2020; 27:1097-1108.e4. [PMID: 32783964 DOI: 10.1016/j.chembiol.2020.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/22/2020] [Indexed: 11/15/2022]
Abstract
The inositol pyrophosphates (PP-InsPs) are a ubiquitous group of highly phosphorylated eukaryotic messengers. They have been linked to a panoply of central cellular processes, but a detailed understanding of the discrete signaling events is lacking in most cases. To create a more mechanistic picture of PP-InsP signaling, we sought to annotate the mammalian interactome of the most abundant inositol pyrophosphate 5PP-InsP5. To do so, triplexed affinity reagents were developed, in which a metabolically stable PP-InsP analog was immobilized in three different ways. Application of these triplexed reagents to mammalian lysates identified between 300 and 400 putative interacting proteins. These interactomes revealed connections between 5PP-InsP5 and central cellular regulators, such as lipid phosphatases, protein kinases, and GTPases, and identified protein domains commonly targeted by 5PP-InsP5. Both the triplexed affinity reagents, and the proteomic datasets, constitute powerful resources for the community, to launch future investigations into the multiple signaling modalities of inositol pyrophosphates.
Collapse
Affiliation(s)
- David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michal Nadler-Holly
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
13
|
Narita S, Kobayashi N, Mori K, Sakurai K. Clickable gold nanoparticles for streamlining capture, enrichment and release of alkyne-labelled proteins. Bioorg Med Chem Lett 2019; 29:126768. [PMID: 31690474 DOI: 10.1016/j.bmcl.2019.126768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023]
Abstract
Alkyne-labelled proteins are generated as key intermediates in the chemical probe-based approaches to proteomics analysis. Their efficient and selective detection and isolation is an important problem. We designed and synthesized azide-functionalized gold nanoparticles as new clickable capture reagents to streamline click chemistry-mediated capture, enrichment and release of the alkyne-labelled proteins in one-pot to expedite the post-labelling analysis. Because hydrophobic surface functionalities are known to render gold nanoparticles poorly water-dispersible, hydrophilic PEG linkers with two different lengths were explored to confer colloidal stability to the clickable capture reagents. We demonstrated the ability of the capture reagents to conjugate the alkyne containing proteins at a nanomolar concentration via click chemistry, which can be immediately followed by their enrichment and elution. Furthermore, a bifunctional clickable capture reagent bearing sulforhodamine and azide groups was shown to conveniently attach a fluorophore to the alkyne-labelled protein upon click capture, which facilitated their rapid detection in the gel analysis.
Collapse
Affiliation(s)
- Sho Narita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Naohiro Kobayashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Kanna Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
14
|
Hayashi R, Morimoto S, Tomohiro T. Tag‐Convertible Photocrosslinker with Click‐On/OffN‐Acylsulfonamide Linkage for Protein Identification. Chem Asian J 2019; 14:3145-3148. [DOI: 10.1002/asia.201900859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ryuji Hayashi
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| | - Shota Morimoto
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
- Department of Pharmaceutical SciencesSuzuka University of Medical Science Suzuka Mie 510-0293 Japan
| | - Takenori Tomohiro
- Graduate School of Medicine and Pharmaceutical SciencesUniversity of Toyama 2630 Sugitani Toyama 930-0194 Japan
| |
Collapse
|
15
|
How to Study Antimicrobial Activities of Plant Extracts: A Critical Point of View. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2018. [DOI: 10.1007/978-3-319-67045-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Abstract
Endoplasmic reticulum-mitochondrial contacts (EMCs) regulate multiple critical cellular activities, dysregulation of which correlates with various human maladies such as neurodegenerative diseases. A new study makes use of the ascorbate peroxidase proximity-labeling proteomics approach to scrutinize the components of EMCs in live cells, leading to the identification of reticulon 1A as a novel promoter of EMCs.
Collapse
Affiliation(s)
- Qingsong Lin
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Yih-Cherng Liou
- From the Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| |
Collapse
|
17
|
Jin G, Lee J, Lee K. Chemical genetics-based development of small molecules targeting hepatitis C virus. Arch Pharm Res 2017; 40:1021-1036. [PMID: 28856597 DOI: 10.1007/s12272-017-0949-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today's advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni®, Zepatier®, Technivie®, and Epclusa®. A number of reviews have been recently published describing the structure-activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug's mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.
Collapse
Affiliation(s)
- Guanghai Jin
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jisu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
18
|
Wang DY, Cao Y, Zheng LY, Chen LD, Chen XF, Hong ZY, Zhu ZY, Li X, Chai YF. Target Identification of Kinase Inhibitor Alisertib (MLN8237) by Using DNA-Programmed Affinity Labeling. Chemistry 2017; 23:10906-10914. [DOI: 10.1002/chem.201702033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Dong-Yao Wang
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Yan Cao
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Le-Yi Zheng
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Lang-Dong Chen
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Xiao-Fei Chen
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Zhan-Ying Hong
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Zhen-Yu Zhu
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Xiaoyu Li
- Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Yi-Feng Chai
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| |
Collapse
|
19
|
Chao A, Jiang N, Yang Y, Li H, Sun H. A Ni-NTA-based red fluorescence probe for protein labelling in live cells. J Mater Chem B 2017; 5:1166-1173. [DOI: 10.1039/c6tb02848a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The great success of a His6-Ni-nitrilotriaceate (Ni-NTA) system in protein purification has inspired scientists to develop novel Ni-NTA based fluoresent probes for imaging of proteins in live cells.
Collapse
Affiliation(s)
- Ailun Chao
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Nan Jiang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Ya Yang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hongyan Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hongzhe Sun
- Department of Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| |
Collapse
|
20
|
Wang D, Cao Y, Zheng L, Lv D, Chen L, Xing X, Zhu Z, Li X, Chai Y. Identification of Annexin A2 as a target protein for plant alkaloid matrine. Chem Commun (Camb) 2017; 53:5020-5023. [DOI: 10.1039/c7cc02227a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular target of matrine is identified.
Collapse
Affiliation(s)
- Dongyao Wang
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Yan Cao
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Leyi Zheng
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Diya Lv
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Langdong Chen
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Xinrui Xing
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Zhenyu Zhu
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Xiaoyu Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- China
| | - Yifeng Chai
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| |
Collapse
|
21
|
Chen X, Wong YK, Wang J, Zhang J, Lee YM, Shen HM, Lin Q, Hua ZC. Target identification with quantitative activity based protein profiling (ABPP). Proteomics 2016; 17. [PMID: 27723264 DOI: 10.1002/pmic.201600212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
As many small bioactive molecules fulfill their functions through interacting with protein targets, the identification of such targets is crucial in understanding their mechanisms of action (MOA) and side effects. With technological advancements in target identification, it has become possible to accurately and comprehensively study the MOA and side effects of small molecules. While small molecules with therapeutic potential were derived solely from nature in the past, the remodeling and synthesis of such molecules have now been made possible. Presently, while some small molecules have seen successful application as drugs, the majority remain undeveloped, requiring further understanding of their MOA and side effects to fully tap into their potential. Given the typical promiscuity of many small molecules and the complexity of the cellular proteome, a high-flux and high-accuracy method is necessary. While affinity chromatography approaches combined with MS have had successes in target identification, limitations associated with nonspecific results remain. To overcome these complications, quantitative chemical proteomics approaches have been developed including metabolic labeling, chemical labeling, and label-free methods. These new approaches are adopted in conjunction with activity-based protein profiling (ABPP), allowing for a rapid process and accurate results. This review will briefly introduce the principles involved in ABPP, then summarize current advances in quantitative chemical proteomics approaches as well as illustrate with examples how ABPP coupled with quantitative chemical proteomics has been used to detect the targets of drugs and other bioactive small molecules including natural products.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jigang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China.,Department of Biological Sciences, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research & Technology (SMART), Singapore
| | - Jianbin Zhang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, P. R., China
| | - Yew-Mun Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R., China
| |
Collapse
|
22
|
Ikeda Y, Park JH, Miyamoto T, Takamatsu N, Kato T, Iwasa A, Okabe S, Imai Y, Fujiwara K, Nakamura Y, Hasegawa K. T-LAK Cell-Originated Protein Kinase (TOPK) as a Prognostic Factor and a Potential Therapeutic Target in Ovarian Cancer. Clin Cancer Res 2016; 22:6110-6117. [PMID: 27334838 DOI: 10.1158/1078-0432.ccr-16-0207] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/27/2016] [Accepted: 06/05/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND We aimed to clarify the clinical significance of TOPK (T-lymphokine-activated killer cell-originated protein kinase) expression in ovarian cancer and evaluate the possible effect of TOPK inhibitors, OTS514 and OTS964, on ovarian cancer cells. METHODS TOPK expression was examined by immunohistochemistry using 163 samples with epithelial ovarian cancer (EOC). TOPK protein level and FOXM1 transcriptional level in ovarian cancer cell lines were examined by Western blot and RT-PCR, respectively. Half-maximum inhibitory concentration (IC50) values against TOPK inhibitors were examined by the MTT assay. Using the peritoneal dissemination model of ES-2 ovarian cancer cells, we examined the in vivo efficacy of OTS514. In addition, the cytotoxic effect of OTS514 and OTS964 on 31 patient-derived primary ovarian cancer cells was examined. RESULTS TOPK was expressed very highly in 84 (52%) of 163 EOC tissues, and high TOPK expression was significantly associated with poor progression-free survival and overall survival in early-stage cases of EOC (P = 0.008 and 0.006, respectively). Both OTS514 and OTS964 showed significant growth-inhibitory effect on ovarian cancer cell lines with IC50 values of 3.0 to 46 nmol/L and 14 to 110 nmol/L, respectively. TOPK protein and transcriptional levels of FOXM1 were reduced by TOPK inhibitor treatment. Oral administration of OTS514 significantly elongated overall survival in the ES-2 abdominal dissemination xenograft model, compared with vehicle control (P < 0.001). Two drugs showed strong growth-inhibitory effect on primary ovarian cancer cells regardless of tumor sites or histological subtypes. CONCLUSIONS Our results demonstrated the clinical significance of high TOPK expression and potential of TOPK inhibitors to treat ovarian cancer. Clin Cancer Res; 22(24); 6110-7. ©2016 AACR.
Collapse
Affiliation(s)
- Yuji Ikeda
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.,Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Jae-Hyun Park
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | | | | | - Taigo Kato
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Akiko Iwasa
- Gynecologic Oncology Translational Research Unit, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Shuhei Okabe
- OncoTherapy Science Inc., Kawasaki, Kanagawa, Japan.,Gynecologic Oncology Translational Research Unit, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yuichi Imai
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.,Gynecologic Oncology Translational Research Unit, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.,Gynecologic Oncology Translational Research Unit, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois.
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan. .,Gynecologic Oncology Translational Research Unit, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
23
|
Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. Pharmacol Ther 2016; 162:10-22. [DOI: 10.1016/j.pharmthera.2016.01.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Piggott AM, Karuso P. Identifying the cellular targets of natural products using T7 phage display. Nat Prod Rep 2016; 33:626-36. [DOI: 10.1039/c5np00128e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A description of the T7 phage biopanning procedure is provided with tips and advice suitable for setup in a chemistry laboratory.
Collapse
Affiliation(s)
- Andrew M. Piggott
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| | - Peter Karuso
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| |
Collapse
|
25
|
Farha MA, Brown ED. Strategies for target identification of antimicrobial natural products. Nat Prod Rep 2016; 33:668-80. [DOI: 10.1039/c5np00127g] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite a pervasive decline in natural product research at many pharmaceutical companies over the last two decades, natural products have undeniably been a prolific and unsurpassed source for new lead antibacterial compounds.
Collapse
Affiliation(s)
- Maya A. Farha
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| | - Eric D. Brown
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| |
Collapse
|