1
|
Silva A, Carpena M, Cassani L, Grosso C, Garcia-Oliveira P, Delerue-Matos C, Simal-Gandara J, Barroso MF, Prieto MA. Optimization and Bioactive Evaluation of Bifurcaria bifurcata Antioxidant-Rich Extracts for Functional Food and Pharmaceutical Applications. Antioxidants (Basel) 2024; 13:1189. [PMID: 39456443 PMCID: PMC11505410 DOI: 10.3390/antiox13101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
In recent years, consumers have been increasingly interested in natural, healthier, functional foods, with a focus on sea-based products such as algae. Bifurcaria bifurcata (BB) is a macroalga that belongs to the Phaeophyceae class. These brown algae are recognized as the source of bioactive molecules of great interest to the pharmaceutical and nutraceutical industries. The present work applied response surface methodology to optimize the microwave-assisted extraction of the poorly studied algae. The optimization variables were time, pressure, and solvent composition (ethanol/water) and the response parameters selected were yield, total phenolic and flavonoid content, and the antioxidant profile by evaluating DPPH•+, ABTS•+ scavenging activity, and β-carotene discoloration capacity. The results obtained reveal remarkable bioactivity of the crude extract of BB with positive results as an antioxidant and antimicrobial agent. Furthermore, the BB extract's capacity to inhibit enzymes related to neurodegenerative diseases and its anti-inflammatory and anti-proliferation activity open the possibility of future food or pharmaceutical applications.
Collapse
Affiliation(s)
- Aurora Silva
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Maria Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Lucia Cassani
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Paula Garcia-Oliveira
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| | - Maria Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Miguel A. Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, 36310 Vigo, Spain; (A.S.); (M.C.); (P.G.-O.); (J.S.-G.)
| |
Collapse
|
2
|
Coelho M, Pacheco R. Anti-Hypercholesterolemia Effects of Edible Seaweed Extracts and Metabolomic Changes in Hep-G2 and Caco-2 Cell Lines. Life (Basel) 2023; 13:1325. [PMID: 37374108 PMCID: PMC10305398 DOI: 10.3390/life13061325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Hypercholesterolemia is a major risk for the development of cardiovascular diseases (CVDs), the main cause of mortality worldwide, and it is characterized by high levels of circulating cholesterol. The drugs currently available for hypercholesterolemia control have several side effects, so it is necessary to develop new effective and safer therapies. Seaweeds serve as sources of several bioactive compounds with claimed beneficial effects. Eisenia bicyclis (Aramé) and Porphyra tenera (Nori) are edible seaweeds that were previously recognized as rich in bioactive compounds. In the present study, we aim to evaluate the anti-hypercholesterolemia effect of these two seaweed extracts and their health potential. Both extracts, but more efficiently Aramé extract, have liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) inhibitory activity as well as the capability to reduce approximately 30% of cholesterol permeation through human Caco-2 cells by simulating the intestinal lining, which is a target for hypercholesterolemia treatments. An untargeted metabolomic assay on human intestinal Caco-2 and liver Hep-G2 cell lines exposed to Aramé and Nori extracts revealed changes in the cells' metabolism, indicating the extracts' health beneficial effects. The metabolic pathways affected by exposure to both extracts were associated with lipid metabolism, such as phospholipids, and fatty acid metabolism, amino acid pathways, cofactors, vitamins, and cellular respiration metabolism. The effects were more profound in Aramé-treated cells, but they were also observed in Nori-exposed cells. The metabolite modifications were associated with the protection against CVDs and other diseases and to the improvement of the cells' oxidative stress tolerance. The results obtained for the anti-hypercholesterolemia properties, in addition to the revelation of the positive impact on cell metabolism, offer an important contribution for further evaluation of these seaweed extracts as functional foods or for CVD prevention.
Collapse
Affiliation(s)
- Mariana Coelho
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Rua. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Rita Pacheco
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Rua. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Kwon YJ, Kwon OI, Hwang HJ, Shin HC, Yang S. Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders. Front Mol Neurosci 2023; 16:1193590. [PMID: 37305552 PMCID: PMC10249478 DOI: 10.3389/fnmol.2023.1193590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Phlorotannins are natural polyphenolic compounds produced by brown marine algae and are currently found in nutritional supplements. Although they are known to cross the blood-brain barrier, their neuropharmacological actions remain unclear. Here we review the potential therapeutic benefits of phlorotannins in the treatment of neurodegenerative diseases. In mouse models of Alzheimer's disease, ethanol intoxication and fear stress, the phlorotannin monomer phloroglucinol and the compounds eckol, dieckol and phlorofucofuroeckol A have been shown to improve cognitive function. In a mouse model of Parkinson's disease, phloroglucinol treatment led to improved motor performance. Additional neurological benefits associated with phlorotannin intake have been demonstrated in stroke, sleep disorders, and pain response. These effects may stem from the inhibition of disease-inducing plaque synthesis and aggregation, suppression of microglial activation, modulation of pro-inflammatory signaling, reduction of glutamate-induced excitotoxicity, and scavenging of reactive oxygen species. Clinical trials of phlorotannins have not reported significant adverse effects, suggesting these compounds to be promising bioactive agents in the treatment of neurological diseases. We therefore propose a putative biophysical mechanism of phlorotannin action in addition to future directions for phlorotannin research.
Collapse
Affiliation(s)
- Yoon Ji Kwon
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Oh Ig Kwon
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
| | - Hye Jeong Hwang
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Hyeon-Cheol Shin
- Botamedi Brain Health and Medical Care Company Limited, Central, Hong Kong SAR, China
- Center for Molecular Intelligence, SUNY Korea, Incheon, Republic of Korea
| | - Sungchil Yang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Edible Seaweeds Extracts: Characterization and Functional Properties for Health Conditions. Antioxidants (Basel) 2023; 12:antiox12030684. [PMID: 36978932 PMCID: PMC10045430 DOI: 10.3390/antiox12030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Seaweeds are popular foods due to claimed beneficial health effects, but for many there is a lack of scientific evidence. In this study, extracts of the edible seaweeds Aramé, Nori, and Fucus are compared. Our approach intends to clarify similarities and differences in the health properties of these seaweeds, thus contributing to target potential applications for each. Additionally, although Aramé and Fucus seaweeds are highly explored, information on Nori composition and bioactivities is scarce. The aqueous extracts of the seaweeds were obtained by decoction, then fractionated and characterized according to their composition and biological activity. It was recognized that fractioning the extracts led to bioactivity reduction, suggesting a loss of bioactive compounds synergies. The Aramé extract showed the highest antioxidant activity and Nori exhibited the highest potential for acetylcholinesterase inhibition. The identification of the bioactive compounds in the extracts allowed to see that these contained a mixture of phloroglucinol polymers, and it was suggested that Nori’s effect on acetylcholinesterase inhibition may be associated with a smaller sized phlorotannins capable of entering the enzyme active site. Overall, these results suggest a promising potential for the use of these seaweed extracts, mainly Aramé and Nori, in health improvement and management of diseases, namely those associated to oxidative stress and neurodegeneration.
Collapse
|
5
|
Potential of the Ethyl Acetate Fraction of Padina boergesenii as a Natural UV Filter in Sunscreen Cream Formulation. Life (Basel) 2023; 13:life13010239. [PMID: 36676188 PMCID: PMC9862676 DOI: 10.3390/life13010239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Brown seaweeds, due to their wide range of bioactive compounds, have a high ability to inhibit free radicals and protect against ultraviolet rays. In the present study, the ethyl acetate fraction (EF) was isolated from the Padina boergesenii brown seaweed. Antioxidant activity (by the DPPH scavenging activity method) and cytotoxicity against UVB-induced cytotoxicity in HaCaT human keratinocytes were evaluated. Then, this fraction was used as a bio-filter in the formulation of sunscreen, and the physical properties and stability were investigated. The results showed that the EF could inhibit DPPH radical scavenging (54 ± 1%) and cell viability of HaCaT keratinocytes exposed to UVB irradiation (81.2 ± 0.1%). The results of the stability study of the cream formulated with EF showed that at temperatures 4 °C and 25 °C it has high stability; and at 40 °C on the 28th day, a slight decrease in its stability was observed. The pH and Sun Protection Factor of the cream formulated with EF were reported at 5.8 and 20.55, respectively. Also, the DPPH scavenging activity of the cream was not altered for 28 days of storage at temperatures of 4-40 °C. According to our results, it was proved that the sunscreen formulated with EF of P. boergesenii brown seaweed has promising properties and characteristics that can create a new opportunity for the development of cosmetics and skin care products.
Collapse
|
6
|
Pinto S, Gaspar MM, Ascensão L, Faísca P, Reis CP, Pacheco R. Nanoformulation of Seaweed Eisenia bicyclis in Albumin Nanoparticles Targeting Cardiovascular Diseases: In Vitro and In Vivo Evaluation. Mar Drugs 2022; 20:608. [PMID: 36286431 PMCID: PMC9605150 DOI: 10.3390/md20100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products, especially those derived from seaweeds, are starting to be seen as effective against various diseases, such as cardiovascular diseases (CVDs). This study aimed to design a novel oral formulation of bovine albumin serum nanoparticles (BSA NPs) loaded with an extract of Eisenia bicyclis and to validate its beneficial health effects, particularly targeting hypercholesterolemia and CVD prevention. Small and well-defined BSA NPs loaded with Eisenia bicyclis extract were successfully prepared exhibiting high encapsulation efficiency. Antioxidant activity and cholesterol biosynthesis enzyme 3-hydroxy-3 methylutaryl coenzyme A reductase (HMGR) inhibition, as well as reduction of cholesterol permeation in intestinal lining model cells, were assessed for the extract both in free and nanoformulated forms. The nanoformulation was more efficient than the free extract, particularly in terms of HMGR inhibition and cholesterol permeation reduction. In vitro cytotoxicity and in vivo assays in Wistar rats were performed to evaluate its safety and overall effects on metabolism. The results demonstrated that the Eisenia bicyclis extract and BSA NPs were not cytotoxic against human intestinal Caco-2 and liver HepG2 cells and were also safe after oral administration in the rat model. In addition, an innovative approach was adopted to compare the metabolomic profile of the serum from the animals involved in the in vivo assay, which showed the extract and nanoformulation's impact on CVD-associated key metabolites. Altogether, these preliminary results revealed that the seaweed extract and the nanoformulation may constitute an alternative natural dosage form which is safe and simple to produce, capable of reducing cholesterol levels, and consequently helpful in preventing hypercholesterolemia, the main risk factor of CVDs.
Collapse
Affiliation(s)
- Sofia Pinto
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Avenida Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Lia Ascensão
- Centro de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Faísca
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologia, 1749-024 Lisboa, Portugal
- CBIOS-Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologia, 1749-024 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rita Pacheco
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Avenida Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Silva A, Cassani L, Grosso C, Garcia-Oliveira P, Morais SL, Echave J, Carpena M, Xiao J, Barroso MF, Simal-Gandara J, Prieto MA. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit Rev Food Sci Nutr 2022; 64:1283-1311. [PMID: 36037006 DOI: 10.1080/10408398.2022.2115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Stephanie L Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Javier Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - M Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
8
|
Tahanzadeh N, Knop M, Seidler Y, Dirndorfer S, Lürsen K, Bruchhaus I, Lang R, Rimbach G, Roeder T. An aqueous extract of the brown alga Eisenia bicyclis extends lifespan in a sex-specific manner by interfering with the Tor-FoxO axis. Aging (Albany NY) 2022; 14:6427-6448. [PMID: 35980274 PMCID: PMC9467403 DOI: 10.18632/aging.204218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 01/24/2023]
Abstract
Food has a decisive influence on our health, to the extent where even lifespan can be directly affected by it. In the present work, we have examined the effects of an aqueous extract of the marine brown alga Eisenia bicyclis in terms of its potential to extend lifespan. For this purpose, we used the fruit fly Drosophila melanogaster as a model. The experiments showed that small amounts of Eisenia extract can extend lifespan by up to 40%. This effect is not only related to the median but also to the maximum lifespan. Interestingly, this life-extending effect is sex-specific, i.e. it occurs exclusively in females. Even under stressful nutritional conditions such as a high sugar diet, this effect is detectable. Mechanistic studies showed that this life-prolonging effect depends on a functional Tor and a functional FoxO signaling pathway. It can be concluded that components of the Eisenia extract prolong lifespan by interacting with the Tor-FoxO axis. This study may serve to stimulate further investigations, which on the one hand show such a life-prolonging effect also in other organisms and on the other hand identify the substances responsible for this effect. Finally, it may also encourage the increased use of arame as a health-promoting food supplement.
Collapse
Affiliation(s)
- Navid Tahanzadeh
- Kiel University, Department Molecular Physiology, Zoology, Kiel, Germany
| | - Mirjam Knop
- Kiel University, Department Molecular Physiology, Zoology, Kiel, Germany
| | - Yvonne Seidler
- Kiel University, Institute of Human Nutrition and Food Science, Kiel, Germany
| | | | - Kai Lürsen
- Kiel University, Institute of Human Nutrition and Food Science, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht-Institute for Tropical Medicine, Department Parasitology, Hamburg, Germany
| | - Roman Lang
- Leibniz Institute for Food Systems Biology, TU Munich, Munich, Germany
| | - Gerald Rimbach
- Kiel University, Institute of Human Nutrition and Food Science, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Department Molecular Physiology, Zoology, Kiel, Germany
- DZL, German Center for Lung Research, ARCN, Airway Research Center North, Kiel, Germany
| |
Collapse
|
9
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
10
|
Kwon J, Lee K, Hwang H, Kim SH, Park SE, Durai P, Park K, Kim HS, Jang DS, Choi JS, Kwon HC. New Monocyclic Terpenoid Lactones from a Brown Algae Sargassum macrocarpum as Monoamine Oxidase Inhibitors. PLANTS (BASEL, SWITZERLAND) 2022; 11:1998. [PMID: 35956476 PMCID: PMC9370394 DOI: 10.3390/plants11151998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Algae are unique natural products that can produce various types of biologically active compounds. The 70% ethanol extract of brown algae Sargassum macrocarpum collected from the East Sea of Korea inhibited human monoamine oxidases A and B enzymes (hMAO-A and hMAO-B) at a 50 μg/mL concentration. The bioassay-guided isolation was performed through solid-phase extraction and the Sepbox system followed by serial high-performance liquid chromatography on the reverse phase condition, resulting in the identification of two new monocyclic terpenoid lactones, sargassumins A and B (1 and 2). The planar structures of the compounds were determined by a combination of spectroscopic data. The absolute configurations were determined by the interpretation of circular dichroism data. Compound 1 exhibited mild hMAO-A inhibition (42.18 ± 2.68% at 200 μM) and docked computationally into the active site of hMAO-A (-8.48 kcal/mol). Although compound 2 could not be tested due to insufficient quantity, it docked better into hMAO-A (-9.72 kcal/mol). Therefore, the above results suggest that this type of monocyclic terpenoid lactone could be one of the potential lead compounds for the treatment of psychiatric or neurological diseases.
Collapse
Affiliation(s)
- Jaeyoung Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Gangneung 25451, Korea
| | - Kyerim Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| | - Hoseong Hwang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Seong-Hwan Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
| | - Se Eun Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Seoul 05505, Korea;
| | - Prasannavenkatesh Durai
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
| | - Hyung-Seop Kim
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Dae Sik Jang
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Korea; (J.K.); (K.L.); (H.H.); (S.-H.K.); (P.D.); (K.P.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
11
|
Monteiro P, Lomartire S, Cotas J, Marques JC, Pereira L, Gonçalves AMM. Call the Eckols: Present and Future Potential Cancer Therapies. Mar Drugs 2022; 20:387. [PMID: 35736190 PMCID: PMC9230804 DOI: 10.3390/md20060387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, an increased interest in marine macroalgae bioactive compounds has been recorded due to their benefits to human health and welfare. Several of their bioactivities have been demonstrated, such as anti-inflammatory, antioxidant, anticarcinogenic, antibacterial and antiviral behavior. However, there still lacks a clear definition regarding how these compounds exert their bioactive properties. Of all the bioactive compounds derived from marine macroalgae, attention has been focused on phenolic compounds, specifically in phlorotannins, due to their potential for biomedical applications. Phlorotannins are a diverse and wide group of phenolic compounds, with several structural variations based on the monomer phloroglucinol. Among the diverse phlorotannin structures, the eckol-family of phlorotannins demonstrates remarkable bioactivity, notably their anti-tumoral properties. However, the molecular mechanisms by which this activity is achieved remain elusive and sparse. This review focuses on the described molecular mechanisms of anti-tumoral effects by the eckol family of compounds and the future prospects of these molecules for potential application in oncology therapies.
Collapse
Affiliation(s)
- Pedro Monteiro
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
| | - Silvia Lomartire
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
| | - João Cotas
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
| | - João C. Marques
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (P.M.); (S.L.); (J.C.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
13
|
Seaweed Exhibits Therapeutic Properties against Chronic Diseases: An Overview. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seaweeds or marine macroalgae are known for producing potentially bioactive substances that exhibit a wide range of nutritional, therapeutic, and nutraceutical properties. These compounds can be applied to treat chronic diseases, such as cancer, cardiovascular disease, osteoporosis, neurodegenerative diseases, and diabetes mellitus. Several studies have shown that consumption of seaweeds in Asian countries, such as Japan and Korea, has been correlated with a lower incidence of chronic diseases. In this study, we conducted a review of published papers on seaweed consumption and chronic diseases. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method for this study. We identified and screened research articles published between 2000 and 2021. We used PubMed and ScienceDirect databases and identified 107 articles. This systematic review discusses the potential use of bioactive compounds of seaweed to treat chronic diseases and identifies gaps where further research in this field is needed. In this review, the therapeutic and nutraceutical properties of seaweed for the treatment of chronic diseases such as neurodegenerative diseases, obesity, diabetes, cancer, liver disease, cardiovascular disease, osteoporosis, and arthritis were discussed. We concluded that further study on the identification of bioactive compounds of seaweed, and further study at a clinical level, are needed.
Collapse
|
14
|
Quitério E, Soares C, Ferraz R, Delerue-Matos C, Grosso C. Marine Health-Promoting Compounds: Recent Trends for Their Characterization and Human Applications. Foods 2021; 10:3100. [PMID: 34945651 PMCID: PMC8702156 DOI: 10.3390/foods10123100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/24/2022] Open
Abstract
Seaweeds represent a rich source of biologically active compounds with several applications, especially in the food, cosmetics, and medical fields. The beneficial effects of marine compounds on health have been increasingly explored, making them an excellent choice for the design of functional foods. When studying marine compounds, several aspects must be considered: extraction, identification and quantification methods, purification steps, and processes to increase their stability. Advanced green techniques have been used to extract these valuable compounds, and chromatographic methods have been developed to identify and quantify them. However, apart from the beneficial effects of seaweeds for human health, these natural sources of bioactive compounds can also accumulate undesirable toxic elements with potential health risks. Applying purification techniques of extracts from seaweeds may mitigate the amount of excessive toxic components, ensuring healthy and safer products for commercialization. Furthermore, limitations such as stability and bioavailability problems, chemical degradation reactions during storage, and sensitivity to oxidation and photo-oxidation, need to be overcome using, for example, nanoencapsulation techniques. Here we summarize recent advances in all steps of marine products identification and purification and highlight selected human applications, including food and feed applications, cosmetic, human health, and fertilizers, among others.
Collapse
Affiliation(s)
- Eva Quitério
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
| | - Cristina Soares
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas/CISA, Escola Superior de Saúde—Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (E.Q.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica Faculdade de Ciências, Universidade do Porto, R. do Campo Alegre, 4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| | - Clara Grosso
- LAQV-REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Doutor António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (C.D.-M.); (C.G.)
| |
Collapse
|
15
|
Rajan DK, Mohan K, Zhang S, Ganesan AR. Dieckol: a brown algal phlorotannin with biological potential. Biomed Pharmacother 2021; 142:111988. [PMID: 34371307 DOI: 10.1016/j.biopha.2021.111988] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Dieckol [C36H22O18], is a naturally occurring phlorotannin found in some brown algal species. Dieckol is gaining more attention in the scientific community for its potential biological activities. It has been exhibited a broad spectrum of therapeutic functions including anti-bacterial, anti-cancer, anti-oxidant, anti-aging, anti-diabetic, neuroprotective, and other medicinal applications. Distinct emphasis has been given to extraction, purification, and biomedical applications of dieckol. This critical review comprises of in vitro, in vivo, and in silico biological properties of dieckol. An attempt has been made to evaluate the effectiveness, therapeutical application, and mechanism of dieckol against various diseases. The pharmacological significance, current status and the dosage of multifunctional dieckol and its mechanisms have been discussed in this review. Dieckol plays an important role in apoptosis induction via inhibiting the PI3K, AKT, mTOR and FAK signaling molecules. Dieckol remarkably inhibited the lipid accumulation in high fat diet induced animal models. Dieckol, a multifaceted compound will be beneficial in attenuating the action of various diseases and it could be a potential pharmaceutical and nutraceutical compound. Therefore, the combined effects of dieckol with existing drugs and natural compounds will be studied in future to optimize its benefits. Besides limited information on the toxicological action and dosage administration of dieckol on the human was reported to date. Overall, dieckol is a prospective health-promoting compound for the development of a novel drug against numerous diseases.
Collapse
Affiliation(s)
- Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode 638316, Tamil Nadu, India.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Laimburg 6, I-39040 Post Auer, BZ, Italy
| |
Collapse
|
16
|
Paudel P, Seong SH, Park SE, Ryu JH, Jung HA, Choi JS. In Vitro and In Silico Characterization of G-Protein Coupled Receptor (GPCR) Targets of Phlorofucofuroeckol-A and Dieckol. Mar Drugs 2021; 19:326. [PMID: 34199834 PMCID: PMC8228075 DOI: 10.3390/md19060326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Phlorotannins are polyphenolic compounds in marine alga, especially the brown algae. Among numerous phlorotannins, dieckol and phlorofucofuroeckol-A (PFF-A) are the major ones and despite a wider biological activity profile, knowledge of the G protein-coupled receptor (GPCR) targets of these phlorotannins is lacking. This study explores prime GPCR targets of the two phlorotannins. In silico proteocheminformatics modeling predicted twenty major protein targets and in vitro functional assays showed a good agonist effect at the α2C adrenergic receptor (α2CAR) and an antagonist effect at the adenosine 2A receptor (A2AR), δ-opioid receptor (δ-OPR), glucagon-like peptide-1 receptor (GLP-1R), and 5-hydroxytryptamine 1A receptor (5-TH1AR) of both phlorotannins. Besides, dieckol showed an antagonist effect at the vasopressin 1A receptor (V1AR) and PFF-A showed a promising agonist effect at the cannabinoid 1 receptor and an antagonist effect at V1AR. In silico molecular docking simulation enabled us to investigate and identify distinct binding features of these phlorotannins to the target proteins. The docking results suggested that dieckol and PFF-A bind to the crystal structures of the proteins with good affinity involving key interacting amino acid residues comparable to reference ligands. Overall, the present study suggests α2CAR, A2AR, δ-OPR, GLP-1R, 5-TH1AR, CB1R, and V1AR as prime receptor targets of dieckol and PFF-A.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS 38677, USA
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
- Natural Products Research Division, Honam National Institute of Biological Resource, Mokpo 58762, Korea
| | - Se Eun Park
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Seoul 05505, Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Korea;
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
| |
Collapse
|
17
|
Kim YJ, Jeon SY, Choi JS, Kim NH, Goto Y, Lee YA. Alterations of amygdala-prefrontal cortical coupling and attention deficit/hyperactivity disorder-like behaviors induced by neonatal habenula lesion: normalization by Ecklonia stolonifera extract and its active compound fucosterol. Behav Pharmacol 2021; 32:308-320. [PMID: 33491993 DOI: 10.1097/fbp.0000000000000620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alterations of monoamine transmission in mesocorticolimbic regions have been suggested in the pathophysiology of attention deficit/hyperactivity disorder (ADHD). The habenula is an important brain area in regulation of monoamine transmission. In this study, we investigated behavioral and electrophysiological alterations induced by neonatal habenula lesion (NHL) in rats. In NHL rats, age-dependent behavioral alterations relevant to the ADHD symptoms, such as hyperlocomotion, impulsivity, and attention deficit, were observed. Local field potentials (LFPs) in mesocorticolimbic regions of anesthetized rats were examined with in vivo electrophysiological recordings. Abnormally enhanced synchronization of slow (delta) and fast (gamma) LFP oscillations between the amygdala (AMY) and prefrontal cortex (PFC) was found in juvenile, but not in adult, NHL rats. We further examined the effects of an extract and the active compound from the perennial large brown algae Ecklonia stolonifera (ES), which have previously been demonstrated to modulate monoamine transmission, on these NHL-induced alterations. One week of ES extract treatments normalized the NHL-induced behavioral alterations, whereas the active compound fucosterol improved attention deficit and impulsivity, but not hyperlocomotion, in NHL rats. Consistent with the behavioral effects, ES extract treatments also normalized augmented AMY-PFC coupling. These results suggest that altered limbic-cortical information processing may be involved in ADHD-like behavioral alterations induced by NHL, which could be ameliorated by the natural substance, such as ES that affects monoamine transmission.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Gyeongbuk
| | - So-Yeon Jeon
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Gyeongbuk
| | - Jae-Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan, South Korea
| | - Na-Hyun Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Gyeongbuk
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Gyeongbuk
| |
Collapse
|
18
|
Shi Y, Qi H. Effects of Different Seaweed Bioactive Compounds on Neurodegenerative Disorders, Potential Uses on Insomnia: A Mini-review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yixin Shi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
19
|
Mechanism of Delayed Convulsion in Fish: The Actions of Norepinephrine in Spinal Cord. FISHES 2021. [DOI: 10.3390/fishes6020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cranial spiking (CS) is among the most popular slaughtering methods for delaying the rigor mortis progress of fish muscles. However, it may cause a convulsion (subsequently referred to as delayed convulsion), which undermines the meat quality and taste. This study aimed to elucidate the mechanism underlying the delayed convulsion and examine its influence on ATP consumption. Ten carps, nine tilapias, ten rainbow trouts, two ayus, three greenling, thirty-five red seabreams, two striped jack and two stone flounders underwent CS around the medulla oblongata area, which induced different delayed convulsion profiles specific to each species. To investigate the norepinephrine (NE) actions related to delayed convulsion, 27 red seabreams, a representative fish species that exhibits delayed convulsion, were treated with a monoamine-depleting agent, reserpine, or with a monoamine oxidase inhibitor, pargyline, two hours before CS. Spinal cord destruction (SCD) was employed to completely prevent spinal cord functions of the fish in another group. Compared with the control group (CS only), the reserpine, pargyline, and SCD groups showed significantly inhibited delayed convulsion and ATP consumption. This suggests that delayed convulsion is the main ATP-consuming response. Our findings suggest that delayed clonic convulsion in red seabreams is associated with the rapid decrease in spinal cord NE levels, which triggered the rebound motor neuron hyperactivity.
Collapse
|
20
|
Lin L, Yang S, Xiao Z, Hong P, Sun S, Zhou C, Qian ZJ. The Inhibition Effect of the Seaweed Polyphenol, 7-Phloro-Eckol from Ecklonia Cava on Alcohol-Induced Oxidative Stress in HepG2/CYP2E1 Cells. Mar Drugs 2021; 19:158. [PMID: 33802989 PMCID: PMC8002839 DOI: 10.3390/md19030158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is vulnerable to oxidative stress-induced damage, which leads to many diseases, including alcoholic liver disease (ALD). Liver disease endanger people's health, and the incidence of ALD is increasing; therefore, prevention is very important. 7-phloro-eckol (7PE) is a seaweed polyphenol, which was isolated from Ecklonia cava in a previous study. In this study, the antioxidative stress effect of 7PE on HepG2/CYP2E1 cells was evaluated by alcohol-induced cytotoxicity, DNA damage, and expression of related inflammation and apoptosis proteins. The results showed that 7PE caused alcohol-induced cytotoxicity to abate, reduced the amount of reactive oxygen species (ROS) and nitric oxide (NO), and effectively inhibited DNA damage in HepG2/CYP2E1 cells. Additionally, the expression levels of glutathione (GSH), superoxide dismutase (SOD), B cell lymphoma 2 (Bcl-2), and Akt increased, while γ-glutamyltransferase (GGT), Bcl-2 related x (Bax), cleaved caspase-3, cleaved caspase-9, nuclear factor-κB (NF-κB), and JNK decreased. Finally, molecular docking proved that 7PE could bind to BCL-2 and GSH protein. These results indicate that 7PE can alleviate the alcohol-induced oxidative stress injury of HepG2 cells and that 7PE may have a potential application prospect in the future development of antioxidants.
Collapse
Affiliation(s)
- Liyuan Lin
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Shengtao Yang
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Zhenbang Xiao
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Pengzhi Hong
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Shengli Sun
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
| | - Chunxia Zhou
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524-088, China; (L.L.); (S.Y.); (Z.X.); (P.H.); (S.S.); (C.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524-088, China
| |
Collapse
|
21
|
Barbosa M, Valentão P, Andrade PB. Polyphenols from Brown Seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the Pursuit of Natural Alternatives to Tackle Neurodegeneration. Mar Drugs 2020; 18:E654. [PMID: 33353007 PMCID: PMC7766193 DOI: 10.3390/md18120654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Globally, the burden of neurodegenerative disorders continues to rise, and their multifactorial etiology has been regarded as among the most challenging medical issues. Bioprospecting for seaweed-derived multimodal acting products has earned increasing attention in the fight against neurodegenerative conditions. Phlorotannins (phloroglucinol-based polyphenols exclusively produced by brown seaweeds) are amongst the most promising nature-sourced compounds in terms of functionality, and though research on their neuroprotective properties is still in its infancy, phlorotannins have been found to modulate intricate events within the neuronal network. This review comprehensively covers the available literature on the neuroprotective potential of both isolated phlorotannins and phlorotannin-rich extracts/fractions, highlighting the main key findings and pointing to some potential directions for neuro research ramp-up processes on these marine-derived products.
Collapse
Affiliation(s)
| | | | - Paula B. Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313 Porto, Portugal; (M.B.); (P.V.)
| |
Collapse
|
22
|
Barbosa M, Valentão P, Ferreres F, Gil-Izquierdo Á, Andrade PB. In vitro multifunctionality of phlorotannin extracts from edible Fucus species on targets underpinning neurodegeneration. Food Chem 2020; 333:127456. [PMID: 32663750 DOI: 10.1016/j.foodchem.2020.127456] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
Bioprospecting for seaweed-derived multimodal acting products have earned increasing attention in the fight against diseases of multifactorial origin, such as neurodegenerative conditions. This is a pioneer study on the in vitro screening of neuroactive properties of phlorotannin-targeted extracts from edible Fucus species. Phlorotannin extracts exhibited multifunctional antioxidant properties, which were suggested to be responsible for counteracting glutamate toxicity in neuronal human-derived SH-SY5Y cells. They also inhibited the activity of enzymes (cholinesterases, monoaminoxidases A and B, and tyrosinase) linked to a set of events that contribute to the onset/progression of neurodegeneration. In general, the bioactivities were correlated with the total phlorotannin content and phloroglucinol tetramers were suggested to be behind the observed effects. The capacity of the phlorotannin extracts to interact with multiple in vitro targets underpinning neurodegeneration points to the potential interest of the selected seaweed species for development of new added-value products and promising neuroactive agents.
Collapse
Affiliation(s)
- Mariana Barbosa
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Kim Y, Shin J, Kang SM, Song J, Shin HC, Keum YS, Hwang HJ, Park K. Highly Regioselective Preparation and Characterization of New 6-O-Substituted Dieckol Derivatives. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Garolla A, Petre GC, Francini-Pesenti F, De Toni L, Vitagliano A, Di Nisio A, Foresta C. Dietary Supplements for Male Infertility: A Critical Evaluation of Their Composition. Nutrients 2020; 12:nu12051472. [PMID: 32438678 PMCID: PMC7284793 DOI: 10.3390/nu12051472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Dietary supplements (DS) represent a possible approach to improve sperm parameters and male fertility. A wide range of DS containing different nutrients is now available. Although many authors demonstrated benefits from some nutrients in the improvement of sperm parameters, their real effectiveness is still under debate. The aim of this study was to critically review the composition of DS using the Italian market as a sample. Active ingredients and their minimal effective daily dose (mED) on sperm parameters were identified through a literature search. Thereafter, we created a formula to classify the expected efficacy of each DS. Considering active ingredients, their concentration and the recommended daily dose, DS were scored into three classes of expected efficacy: higher, lower and none. Twenty-one DS were identified. Most of them had a large number of ingredients, frequently at doses below mED or with undemonstrated efficacy. Zinc was the most common ingredient of DS (70% of products), followed by selenium, arginine, coenzyme Q and folic acid. By applying our scoring system, 9.5% of DS fell in a higher class, 71.4% in a lower class and 19.1% in the class with no expected efficacy. DS marketed in Italy for male infertility frequently includes effective ingredients but also a large number of substances at insufficient doses or with no reported efficacy. Manufacturers and physicians should better consider the scientific evidence on effective ingredients and their doses before formulating and prescribing these products.
Collapse
Affiliation(s)
- Andrea Garolla
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, 35128 Padova, Italy; (G.C.P.); (L.D.T.); (A.D.N.); (C.F.)
- Correspondence:
| | - Gabriel Cosmin Petre
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, 35128 Padova, Italy; (G.C.P.); (L.D.T.); (A.D.N.); (C.F.)
| | | | - Luca De Toni
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, 35128 Padova, Italy; (G.C.P.); (L.D.T.); (A.D.N.); (C.F.)
| | - Amerigo Vitagliano
- Department of Women and Children’s Health, University of Padua, 35122 Padua, Italy;
- Unit of Obstetrics and Gynecology, Madonna della Navicella Hospital, Chioggia, 30015 Venice, Italy
| | - Andrea Di Nisio
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, 35128 Padova, Italy; (G.C.P.); (L.D.T.); (A.D.N.); (C.F.)
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, 35128 Padova, Italy; (G.C.P.); (L.D.T.); (A.D.N.); (C.F.)
| |
Collapse
|
25
|
Bruder M, Polo G, Trivella DBB. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Nat Prod Rep 2020; 37:488-514. [PMID: 32048675 DOI: 10.1039/c9np00064j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to 2018Over the last decade more than two hundred single natural products were confirmed as natural allosteric modulators (alloNPs) of proteins. The compounds are presented and discussed with the support of a chemical space, constructed using a principal component analysis (PCA) of molecular descriptors from chemical compounds of distinct databases. This analysis showed that alloNPs are dispersed throughout the majority of the chemical space defined by natural products in general. Moreover, a cluster of alloNPs was shown to occupy a region almost devoid of allosteric modulators retrieved from a dataset composed mainly of synthetic compounds, further highlighting the importance to explore the entire natural chemical space for probing allosteric mechanisms. The protein targets which alloNPs bind to comprised 81 different proteins, which were classified into 5 major groups, with enzymes, in particular hydrolases, being the main representative group. The review also brings a critical interpretation on the mechanisms by which alloNPs display their molecular action on proteins. In the latter analysis, alloNPs were classified according to their final effect on the target protein, resulting in 3 major categories: (i) local alteration of the orthosteric site; (ii) global alteration in protein dynamics that change function; and (iii) oligomer stabilisation or protein complex destabilisation via protein-protein interaction in sites distant from the orthosteric site. G-protein coupled receptors (GPCRs), which use a combination of the three types of allosteric regulation found, were also probed by natural products. In summary, the natural allosteric modulators reviewed herein emphasise their importance for exploring alternative chemotherapeutic strategies, potentially pushing the boundaries of the druggable space of pharmacologically relevant drug targets.
Collapse
Affiliation(s)
- Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), National Centre for Research in Energy and Materials (CNPEM), 13083-970 Campinas, SP, Brazil.
| | | | | |
Collapse
|
26
|
Seong SH, Paudel P, Jung HA, Choi JS. Identifying Phlorofucofuroeckol-A as a Dual Inhibitor of Amyloid-β 25-35 Self-Aggregation and Insulin Glycation: Elucidation of the Molecular Mechanism of Action. Mar Drugs 2019; 17:E600. [PMID: 31652867 PMCID: PMC6891666 DOI: 10.3390/md17110600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 02/07/2023] Open
Abstract
Both amyloid-β (Aβ) and insulin are amyloidogenic peptides, and they play a critical role in Alzheimer's disease (AD) and type-2 diabetes (T2D). Misfolded or aggregated Aβ and glycated insulin are commonly found in AD and T2D patients, respectively, and exhibit neurotoxicity and oxidative stress. The present study examined the anti-Aβ25-35 aggregation and anti-insulin glycation activities of five phlorotannins isolated from Ecklonia stolonifera. Thioflavin-T assay results suggest that eckol, dioxinodehydroeckol, dieckol, and phlorofucofuroeckol-A (PFFA) significantly inhibit Aβ25-35 self-assembly. Molecular docking and dynamic simulation analyses confirmed that these phlorotannins have a strong potential to interact with Aβ25-35 peptides and interrupt their self-assembly and conformational transformation, thereby inhibiting Aβ25-35 aggregation. In addition, PFFA dose-dependently inhibited d-ribose and d-glucose induced non-enzymatic insulin glycation. To understand the molecular mechanism for insulin glycation and its inhibition, we predicted the binding site of PFFA in insulin via computational analysis. Interestingly, PFFA strongly interacted with the Phe1 in insulin chain-B, and this interaction could block d-glucose access to the glycation site of insulin. Taken together, our novel findings suggest that phlorofucofuroeckol-A could be a new scaffold for AD treatment by inhibiting the formation of β-sheet rich structures in Aβ25-35 and advanced glycation end-products (AGEs) in insulin.
Collapse
Affiliation(s)
- Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
27
|
Zhang M, Zhou W, Zhao S, Li S, Yan D, Wang J. Eckol inhibits Reg3A-induced proliferation of human SW1990 pancreatic cancer cells. Exp Ther Med 2019; 18:2825-2832. [PMID: 31572529 PMCID: PMC6755494 DOI: 10.3892/etm.2019.7889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PaC) is characterized by a highly inflammatory tumor microenvironment, and inflammatory mediators are implicated in the progression of this cancer. Regenerating gene protein (Reg) 3A is significantly upregulated during pancreatic inflammation, and has been demonstrated to serve an important role during PaC progression, based on its increased expression levels in PaC and potent cell proliferation-promoting activity. The aim of the present study was to investigate the effect of eckol, a phlorotannin compound with a variety of biological activities including anti-inflammatory, anti-tumor and cytoprotective effects, on Reg3A-induced proliferation of human SW1990 PaC cells. SW1990 cells were pre-treated with eckol for 48 h at concentrations of 5, 10 and 20 µg/ml. Subsequently, Reg3A protein was added to the culture media at a final concentration of 50 ng/ml in the presence or absence of eckol for 24 h. The cytotoxicity and proliferative capacity of the SW1990 cells was determined using an MTT and flow cytometry analysis. Cell colony formation was also used to determine the effect of eckol on the anchorage-independent growth and colony-forming capacity of Reg3A-treated PaC cells. The expression levels of cyclin D1, STAT3, JAK2, and NF-κB p65 were measured with reverse transcription-quantitative PCR and western blotting. Eckol reduced Reg3A-promoted cell survival, inhibited Reg3A-induced cell cycle progression and inhibited colony growth of SW1990 cells in soft agar in a concentration-dependent manner. Additionally, the Reg3A-mediated upregulation of expression of JAK2, STAT3, NF-κBp65 and cyclin D1 was reduced when treated with eckol. Reg3A is upregulated during pancreatic inflammation and exhibits a pro-growth function and may thus serve a critical role during inflammation-driven PaC malignancies. Eckol may be a potential protective agent against progression of PaC accompanied by pancreatic inflammation.
Collapse
Affiliation(s)
- Mengya Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Weiping Zhou
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Shuqi Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Dan Yan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
28
|
Seong SH, Paudel P, Choi JW, Ahn DH, Nam TJ, Jung HA, Choi JS. Probing Multi-Target Action of Phlorotannins as New Monoamine Oxidase Inhibitors and Dopaminergic Receptor Modulators with the Potential for Treatment of Neuronal Disorders. Mar Drugs 2019; 17:E377. [PMID: 31238535 PMCID: PMC6627067 DOI: 10.3390/md17060377] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Modulation of multiple protein targets with a single compound is essential for the effective treatment of central nervous system disorders. In our previous G protein-coupled receptor (GPCR) cell-based study, a selective human monoamine oxidase (hMAO)-A inhibitor, eckol, stimulated activity of dopamine D3 and D4 receptors. This result led to our interest in marine phlorotannin-mediated modulation of hMAO enzymes and related GPCRs in neuronal disorders. Here, we evaluate the multi-target effects of phloroglucinol, phlorofucofuroeckol-A (PFF-A), and dieckol by screening their modulatory activity against hMAO-A and -B and various neuronal GPCRs. Among the tested phlorotannins, PFF-A showed the strongest inhibitory activity against both hMAO isoforms, with higher selectivity toward hMAO-B than hMAO-A. Enzyme kinetics and docking data revealed that PFF-A noncompetitively acts on hMAOs into the alternative binding pocket of enzymes with allosteric functions. In a functional assay for GPCR screening, dieckol and PFF-A exhibited a multi-target combination of D3R/D4R agonism and D1/5HT1A/NK1 antagonism. In particular, they effectively stimulated D3R and D4R, compared to other GPCRs. Docking analysis confirmed that dieckol and PFF-A successfully docked into the conserved active sites of D3R and D4R and interacted with aspartyl and serine residues in the orthosteric binding pockets of the respective receptors. Based on our experimental and computational data, we established the structure-activity relationship between tested phlorotannins and target proteins, including hMAOs and GPCRs. Our current findings suggest that hMAO inhibitors dieckol and PFF-A, major phlorotannins of edible brown algae with multi-action on GPCRs, are potential agents for treatment of psychological disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Jeong-Wook Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Dong Hyun Ahn
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| | - Taek-Jeong Nam
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
29
|
Manandhar B, Paudel P, Seong SH, Jung HA, Choi JS. Characterizing Eckol as a Therapeutic Aid: A Systematic Review. Mar Drugs 2019; 17:E361. [PMID: 31216636 PMCID: PMC6627842 DOI: 10.3390/md17060361] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022] Open
Abstract
The marine biosphere is a treasure trove of natural bioactive secondary metabolites and the richest source of structurally diverse and unique compounds, such as phlorotannins and halo-compounds, with high therapeutic potential. Eckol is a precursor compound representing the dibenzo-1,4-dioxin class of phlorotannins abundant in the Ecklonia species, which are marine brown algae having a ubiquitous distribution. In search of compounds having biological activity from macro algae during the past three decades, this particular compound has attracted massive attention for its multiple therapeutic properties and health benefits. Although several varieties of marine algae, seaweed, and phlorotannins have already been well scrutinized, eckol deserves a place of its own because of the therapeutic properties it possesses. The relevant information about this particular compound has not yet been collected in one place; therefore, this review focuses on its biological applications, including its potential health benefits and possible applications to restrain diseases leading to good health. The facts compiled in this review could contribute to novel insights into the functions of eckol and potentially enable its use in different uninvestigated fields.
Collapse
Affiliation(s)
- Bandana Manandhar
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
30
|
Paudel P, Seong SH, Wu S, Park S, Jung HA, Choi JS. Eckol as a Potential Therapeutic against Neurodegenerative Diseases Targeting Dopamine D₃/D₄ Receptors. Mar Drugs 2019; 17:md17020108. [PMID: 30744179 PMCID: PMC6409773 DOI: 10.3390/md17020108] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 01/11/2023] Open
Abstract
The G protein-coupled receptor (GPCR) family of proteins comprises signaling proteins that mediate cellular responses to various hormones and neurotransmitters, and serves as a prime target for drug discovery. Towards our goal of discovering secondary metabolites from natural sources that can function as neuronal drugs, we evaluated the modulatory effect of eckol on various GPCRs via cell-based functional assays. In addition, we conducted in silico predictions to obtain molecular insights into the functional effects of eckol. Functional assays revealed that eckol had a concentration-dependent agonist effect on dopamine D₃ and D₄ receptors. The half maximal effective concentration (EC50) of eckol for the dopamine D₃ and D₄ receptors was 48.62 ± 3.21 and 42.55 ± 2.54 µM, respectively, while the EC50 values of dopamine as a reference agonist for these two receptors were 2.9 and 3.3 nM, respectively. In silico studies revealed that a low binding energy in addition to hydrophilic, hydrophobic, π⁻alkyl, and π⁻π T-shaped interactions are potential mechanisms by which eckol binds to the dopamine receptors to exert its agonist effects. Molecular dynamics (MD) simulation revealed that Phe346 of the dopamine receptors is important for binding of eckol, similar to eticlopride and dopamine. Our results collectively suggest that eckol is a potential D₃/D₄ agonist for the management of neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Sangwook Wu
- Department of Physics, Pukyong National University, Busan 48513, Korea.
| | - Suhyun Park
- Department of Physics, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
31
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
32
|
Dhiman P, Malik N, Khatkar A. 3D-QSAR and in-silico Studies of Natural Products and Related Derivatives as Monoamine Oxidase Inhibitors. Curr Neuropharmacol 2018; 16:881-900. [PMID: 29189167 PMCID: PMC6080100 DOI: 10.2174/1570159x15666171128143650] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The computational development of human monoamine oxidase (MAO) inhibitors led to advancement in drug design and the treatment of many neurodegenerative diseases and neuropsychiatric disorders. The computational development of human monoamine oxidase (MAO) inhibitors led to advancement in drug design and the treatment of many neurodegenerative diseases and neuropsychiatric disorders. Different natural heterocyclic structures are reported to display selective MAO inhibitory activity by preclinical and in-silico modeling. OBJECTIVE Currently, the major interest is devoted to the study of natural based therapeutic agents from the different categories. Therefore, we presenting the review to critically discuss and outline the recent advances in our knowledge on the importance of natural and natural based ligand-MAO insilico methods for novel MAO inhibitors. DISCUSSION Several natural and related synthetic heterocyclic compounds such as coumarins, β- carboline, piperine, naphthoquinone, morpholine, caffeine, amphetamine moreover flavonoids, chalcones, xanthones, curcumin are discussed for their MAO inhibitory profile along with molecular docking and quantitative structure-activity relationship studies. CONCLUSION It is clear that, by this computational drug design approach, more particular, reversible and potent compounds can be proposed as MAO inhibitors by exact changes on the fundamental framework.
Collapse
Affiliation(s)
- Priyanka Dhiman
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, M.D. University, Rohtak (124001), India
| | - Neelam Malik
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, M.D. University, Rohtak (124001), India
| | - Anurag Khatkar
- Laboratory for Preservation Technology and Enzyme Inhibition Studies, Faculty of Pharmaceutical Sciences, M.D. University, Rohtak (124001), India
| |
Collapse
|
33
|
Pereira F, Aires-de-Sousa J. Computational Methodologies in the Exploration of Marine Natural Product Leads. Mar Drugs 2018; 16:md16070236. [PMID: 30011882 PMCID: PMC6070892 DOI: 10.3390/md16070236] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
Computational methodologies are assisting the exploration of marine natural products (MNPs) to make the discovery of new leads more efficient, to repurpose known MNPs, to target new metabolites on the basis of genome analysis, to reveal mechanisms of action, and to optimize leads. In silico efforts in drug discovery of NPs have mainly focused on two tasks: dereplication and prediction of bioactivities. The exploration of new chemical spaces and the application of predicted spectral data must be included in new approaches to select species, extracts, and growth conditions with maximum probabilities of medicinal chemistry novelty. In this review, the most relevant current computational dereplication methodologies are highlighted. Structure-based (SB) and ligand-based (LB) chemoinformatics approaches have become essential tools for the virtual screening of NPs either in small datasets of isolated compounds or in large-scale databases. The most common LB techniques include Quantitative Structure–Activity Relationships (QSAR), estimation of drug likeness, prediction of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, similarity searching, and pharmacophore identification. Analogously, molecular dynamics, docking and binding cavity analysis have been used in SB approaches. Their significance and achievements are the main focus of this review.
Collapse
Affiliation(s)
- Florbela Pereira
- LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Joao Aires-de-Sousa
- LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|