1
|
Li X, Xu W, Jing T. Mechanism of KLF2 in young mice with pneumonia induced by Streptococcus pneumoniae. J Cardiothorac Surg 2024; 19:509. [PMID: 39223627 PMCID: PMC11367914 DOI: 10.1186/s13019-024-02995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Streptococcus pneumoniae (Spn) is a major causative agent of pneumonia, which can disseminate to the bloodstream and brain. Pneumonia remains a leading cause of death among children aged 1-59 months worldwide. This study aims to investigate the role of Kruppel-like factor 2 (KLF2) in lung injury caused by Spn in young mice. METHODS Young mice were infected with Spn to induce pneumonia, and the bacterial load in the bronchoalveolar lavage fluid was quantified. KLF2 expression in lung tissues was analyzed using real-time quantitative polymerase chain reaction and Western blotting assays. Following KLF2 overexpression, lung tissues were assessed for lung wet-to-dry weight ratio and Myeloperoxidase activity. The effects of KLF2 on lung injury and inflammation were evaluated through hematoxylin and eosin staining and enzyme-linked immunosorbent assay. Chromatin immunoprecipitation and dual-luciferase assay were conducted to examine the binding of KLF2 to the promoter of microRNA (miR)-222-3p and cyclin-dependent kinase inhibitor 1B (CDKN1B), as well as the binding of miR-222-3p to CDKN1B. Levels of miR-222-3p and CDKN1B in lung tissues were also determined. RESULTS In young mice with pneumonia, KLF2 and CDKN1B were downregulated, while miR-222-3p was upregulated in lung tissues. Overexpression of KLF2 reduced lung injury and inflammation, evidenced by decreased bacterial load, reduced lung injury, and lower levels of proinflammatory factors. Co-transfection of miR-222-3p-WT and oe-KLF2 significantly reduced luciferase activity, suggesting that KLF2 binds to the promoter of miR-222-3p and suppresses its expression. Transfection of CDKN1B-WT with miR-222-3p mimics significantly reduced luciferase activity, indicating that miR-222-3p binds to CDKN1B and downregulates its expression. Overexpression of miR-222-3p or downregulation of CDKN1B increased bacterial load in BALF, lung wet/dry weight ratio, MPO activity, and inflammation, thereby reversing the protective effect of KLF2 overexpression on lung injury in young mice with pneumonia. CONCLUSIONS KLF2 alleviates lung injury in young mice with Spn-induced pneumonia by transcriptional regulation of the miR-222-3p/CDKN1B axis.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Department of Emergency, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, Anhui Province, 230022, China.
| | - Weihua Xu
- Department of Emergency, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, Anhui Province, 230022, China
| | - Tao Jing
- Department of Emergency, Anhui Provincial Children's Hospital, No. 39 Wangjiang East Road, Hefei, Anhui Province, 230022, China
| |
Collapse
|
2
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Chen Z, Liang Z, Li G, Das R, Chen P, An T. Online monitoring system for qualitative and quantitative analysis of bioaerosols by combined ATP bioluminescence assay with loop-mediated isothermal amplification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173404. [PMID: 38797419 DOI: 10.1016/j.scitotenv.2024.173404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Rapid detection of airborne pathogens is crucial in preventing respiratory infections and allergies. However, technologies aiming to real-time analysis of microorganisms in air remain limited due to the sparse and complex nature of bioaerosols. Here, we introduced an online bioaerosol monitoring system (OBMS) comprised of integrated units including a rotatable stainless-steel sintered filter-based sampler, a lysis unit for extracting adenosine triphosphate (ATP), and a single photon detector-based fluorescence unit. Through optimization of the ATP bioluminescence method and establishment of standard curves between relative luminescence units (RLUs) and ATP as well as microbial concentration, we achieved simultaneous detection of bioaerosols' concentration and activity. Testing OBMS with four bacterial and two fungal aerosols at a sampling flow rate of 10 to 50 L/min revealed an outstanding collection efficiency of 95 % at 30 L/min. A single OBMS measurement takes only 8 min (sampling: 5 min; lysis and detection: 3 min) with detection limits of 3 Pcs/ms photons (2.9 × 103 and 292 CFU/m3 for Staphylococcus aureus and Candida albicans aerosol). In both laboratory and field tests, OBMS detected higher concentrations of bioaerosol compared to the traditional Andersen impactor and liquid biosampler. When combined OBMS with loop-mediated isothermal amplification (LAMP), the bioaerosol can be qualitative and quantitative analyzed within 40 min without the cumbersome procedures of sample pretreatment and DNA extraction. These results offer a high compressive and humidity resistance membrane filtration sampler and validate the potential of OBMS for online measurement of bioaerosol concentration and composition.
Collapse
Affiliation(s)
- Zhen Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ranjit Das
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Kalyani, West Bengal 741245, India
| | - Pingan Chen
- Guangzhou Xiuming Environmental Protection Co., Ltd., Guangzhou 511450, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Womack E, Alibayov B, Vidal JE, Eichenbaum Z. Endogenously produced H 2O 2 is intimately involved in iron metabolism in Streptococcus pneumoniae. Microbiol Spectr 2024; 12:e0329723. [PMID: 38038454 PMCID: PMC10783112 DOI: 10.1128/spectrum.03297-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Heme degradation provides pathogens with growth essential iron, leveraging on the host heme reservoir. Bacteria typically import and degrade heme enzymatically, and here, we demonstrated a significant deviation from this dogma. We found that Streptococcus pneumoniae liberates iron from met-hemoglobin extracellularly, in a hydrogen peroxide (H2O2)- and cell-dependent manner; this activity serves as a major iron acquisition mechanism for S. pneumoniae. Inhabiting oxygen-rich environments is a major part of pneumococcal biology, and hence, H2O2-mediated heme degradation likely supplies iron during infection. Moreover, H2O2 reaction with ferrous hemoglobin but not with met-hemoglobin is known to result in heme breakdown. Therefore, the ability of pneumococci to degrade heme from met-hemoglobin is a new paradigm. Lastly, this study will inform other research as it demonstrates that extracellular degradation must be considered in the interpretations of experiments in which H2O2-producing bacteria are given heme or hemoproteins as an iron source.
Collapse
Affiliation(s)
- Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Babek Alibayov
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Schmutzler A, Stingu CS, Günther E, Lang R, Fuchs F, Koenig A, Rauch A, Hahnel S. Attachment of Respiratory Pathogens and Candida to Denture Base Materials-A Pilot Study. J Clin Med 2023; 12:6127. [PMID: 37834772 PMCID: PMC10573319 DOI: 10.3390/jcm12196127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Denture prostheses are an ideal and extensive reservoir for microorganisms to attach to their surfaces. The aim of the study was to elucidate interactions between materials for the fabrication of denture bases and the attachment of microorganisms, focusing on respiratory pathogens and Candida species. Specimens (6 mm × 1 mm) with a standardized surface roughness (Sa = 0.1 µm) were prepared from heat-pressed polymethyl methacrylate (PMMA), CAD/CAM-processed PMMA, and CAD/CAM-processed polyether ether ketone (PEEK). The specimens were randomly placed in the vestibular areas of complete upper dentures in seven patients and were removed either after 24 h without any oral hygiene measures or after a period of four weeks. The microorganisms adherent to the surface of the specimens were cultivated and subsequently analyzed using mass spectrometry (MALDI-TOF). The means and standard deviations were calculated, and the data were analyzed using a two-way analysis of variance (ANOVA) and Tukey post-hoc test where appropriate (α = 0.05). There was a significant increase (p ≤ 0.004) in the total bacterial counts (CFU/mL) between the first (24 h) and the second (four weeks) measurements. Regarding quantitative microbiological analyses, no significant differences between the various materials were identified. Respiratory microorganisms were detected in all samples at both measurement time points, with a large variance between different patients. Only after four weeks, Candida species were identified on all materials but not in all participants. Candida species and respiratory microorganisms accumulate on various denture base resins. While no significant differences were identified between the materials, there was a tendency towards a more pronounced accumulation of microorganisms on conventionally processed PMMA.
Collapse
Affiliation(s)
- Anne Schmutzler
- Department of Prosthetic Dentistry, Regensburg University Medical Center, 93042 Regensburg, Germany
| | - Catalina Suzana Stingu
- Institute for Medical Microbiology and Virology, Leipzig University Clinics, 04103 Leipzig, Germany
| | - Elena Günther
- Department of Prosthetic Dentistry and Dental Materials Science, Leipzig University, 04103 Leipzig, Germany
| | - Reinhold Lang
- Department of Prosthetic Dentistry, Regensburg University Medical Center, 93042 Regensburg, Germany
| | - Florian Fuchs
- Department of Prosthetic Dentistry and Dental Materials Science, Leipzig University, 04103 Leipzig, Germany
| | - Andreas Koenig
- Department of Prosthetic Dentistry and Dental Materials Science, Leipzig University, 04103 Leipzig, Germany
| | - Angelika Rauch
- Department of Prosthetic Dentistry, Regensburg University Medical Center, 93042 Regensburg, Germany
| | - Sebastian Hahnel
- Department of Prosthetic Dentistry, Regensburg University Medical Center, 93042 Regensburg, Germany
| |
Collapse
|
6
|
Miao C, Cui Y, Yan Z, Jiang Y. Pilus of Streptococcus pneumoniae: structure, function and vaccine potential. Front Cell Infect Microbiol 2023; 13:1270848. [PMID: 37799336 PMCID: PMC10548224 DOI: 10.3389/fcimb.2023.1270848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
The pilus is an extracellular structural part that can be detected in some Streptococcus pneumoniae (S. pneumoniae) isolates (type I pili are found in approximately 30% of strains, while type II pili are found in approximately 20%). It is anchored to the cell wall by LPXTG-like motifs on the peptidoglycan. Two kinds of pili have been discovered, namely, pilus-1 and pilus-2. The former is encoded by pilus islet 1 (PI-1) and is a polymer formed by the protein subunits RrgA, RrgB and RrgC. The latter is encoded by pilus islet 2 (PI-2) and is a polymer composed mainly of the structural protein PitB. Although pili are not necessary for the survival of S. pneumoniae, they serve as the structural basis and as virulence factors that mediate the adhesion of bacteria to host cells and play a direct role in promoting the adhesion, colonization and pathogenesis of S. pneumoniae. In addition, as candidate antigens for protein vaccines, pili have promising potential for use in vaccines with combined immunization strategies. Given the current understanding of the pili of S. pneumoniae regarding the genes, proteins, structure, biological function and epidemiological relationship with serotypes, combined with the immunoprotective efficacy of pilins as protein candidates for vaccines, we here systematically describe the research status and prospects of S. pneumoniae pili and provide new ideas for subsequent vaccine research and development.
Collapse
Affiliation(s)
- Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan, China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Khalid K, Poh CL. The Promising Potential of Reverse Vaccinology-Based Next-Generation Vaccine Development over Conventional Vaccines against Antibiotic-Resistant Bacteria. Vaccines (Basel) 2023; 11:1264. [PMID: 37515079 PMCID: PMC10385262 DOI: 10.3390/vaccines11071264] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The clinical use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, leading to the current antibiotic resistance crisis. To address this issue, next-generation vaccines are being developed to prevent antimicrobial resistance caused by MDR bacteria. Traditional vaccine platforms, such as inactivated vaccines (IVs) and live attenuated vaccines (LAVs), were effective in preventing bacterial infections. However, they have shown reduced efficacy against emerging antibiotic-resistant bacteria, including MDR M. tuberculosis. Additionally, the large-scale production of LAVs and IVs requires the growth of live pathogenic microorganisms. A more promising approach for the accelerated development of vaccines against antibiotic-resistant bacteria involves the use of in silico immunoinformatics techniques and reverse vaccinology. The bioinformatics approach can identify highly conserved antigenic targets capable of providing broader protection against emerging drug-resistant bacteria. Multi-epitope vaccines, such as recombinant protein-, DNA-, or mRNA-based vaccines, which incorporate several antigenic targets, offer the potential for accelerated development timelines. This review evaluates the potential of next-generation vaccine development based on the reverse vaccinology approach and highlights the development of safe and immunogenic vaccines through relevant examples from successful preclinical and clinical studies.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| |
Collapse
|
8
|
Mazumder L, Shahab M, Islam S, Begum M, Oliveira JIN, Begum S, Akter S. An immunoinformatics approach to epitope-based vaccine design against PspA in Streptococcus pneumoniae. J Genet Eng Biotechnol 2023; 21:57. [PMID: 37166683 PMCID: PMC10173237 DOI: 10.1186/s43141-023-00506-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Streptococcus pneumoniae (SPN) is the agent responsible for causing respiratory diseases, including pneumonia, which causes severe health hazards and child deaths globally. Antibiotics are used to treat SPN as a first-line treatment, but nowadays, SPN is showing resistance to several antibiotics. A vaccine can overcome this global problem by preventing this deadly pathogen. The conventional methods of wet-laboratory vaccine design and development are an intense, lengthy, and costly procedure. In contrast, epitope-based in silico vaccine designing can save time, money, and energy. In this study, pneumococcal surface protein A (PspA), one of the major virulence factors of SPN, is used to design a multi-epitope vaccine. METHODS For designing the vaccine, the sequence of PspA was retrieved, and then, phylogenetic analysis was performed. Several CTL epitopes, HTL epitopes, and LBL epitopes of PspA were all predicted by using several bioinformatics tools. After checking the antigenicity, allergenicity, and toxicity scores, the best epitopes were selected for the vaccine construction, and then, physicochemical and immunological properties were analyzed. Subsequently, vaccine 3D structure prediction, refinement, and validation were performed. Molecular docking, molecular dynamic simulation, and immune simulation were performed to ensure the binding between HLA and TLR4. Finally, codon adaptation and in silico cloning were performed to transfer into a suitable vector. RESULTS The constructed multi-epitope vaccine showed a strong binding affinity with the receptor molecule TLR4. Analysis of molecular dynamic simulation, C-immune simulation, codon adaptation, and in silico cloning validated that our designed vaccine is a suitable candidate against SPN. CONCLUSION The in silico analysis has proven the vaccine as an alternative medication to combat against S. pneumoniae. The designated vaccine can be further tested in the wet lab, and a novel vaccine can be developed.
Collapse
Affiliation(s)
- Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, 1100, Bangladesh
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, 1100, Bangladesh
| | - Mahmuda Begum
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Jonas Ivan Nobre Oliveira
- Departamento de Biof ́ısica E Farmacologia, Universidade Federal Do Rio Grande doNorte, Natal, RN, 59072-970, Brazil
| | - Shamima Begum
- Department of Microbiology, Jagannath University, Dhaka, 1100, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific & Industrial Research (BCSIR), Dhaka, 1205, Bangladesh.
| |
Collapse
|
9
|
Saha-Shah A, Smith JP, Konietzko J, Costell E, McHugh PM, Lo-Mont JP, Ralbovsky NM, Obando L, Wang SC, Appiah-Amponsah E, Mangion I. Real-time in situ monitoring of CRM-197 and polysaccharide conjugation reaction by fluorescence spectroscopy. Bioanalysis 2023. [PMID: 37141441 DOI: 10.4155/bio-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Aims: Process analytical technology (PAT) is increasingly being adopted within the pharmaceutical industry to build quality into a process. Development of PAT that provides real-time in situ analysis of critical quality attributes are highly desirable for rapid, improved process development. Conjugation of CRM-197 with pneumococcal polysaccharides to produce a desired pneumococcal conjugate vaccine is a significantly intricate process that can tremendously benefit from real-time process monitoring. Methods: In this work, a fluorescence-based PAT methodology is described to elucidate CRM-197-polysacharide conjugation kinetics in real time. Results & conclusion: In this work, a fluorescence-based PAT methodology is described to elucidate CRM-197-polysacharide conjugation kinetics in real time.
Collapse
Affiliation(s)
- Anumita Saha-Shah
- Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Joseph P Smith
- Analytical Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Janelle Konietzko
- Vaccines Process Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Emily Costell
- Analytical Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
- Vaccines Process Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Patrick M McHugh
- Vaccines Process Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Justin P Lo-Mont
- Analytical Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Nicole M Ralbovsky
- Analytical Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Louis Obando
- MMD, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Sheng-Ching Wang
- Vaccines Process Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Emmanuel Appiah-Amponsah
- Analytical Research & Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Ian Mangion
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
10
|
Lin Y, Zeng Z, Pan K. CIRCULAR RNA CIRC_0099188 CONTRIBUTES TO LPS-INDUCED HPAEpiC CELL INJURY BY TARGETING THE MIR-1236-3P/HMGB3 AXIS. Shock 2023; 59:734-743. [PMID: 36802224 DOI: 10.1097/shk.0000000000002100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
ABSTRACT Purpose: This study is designed to explore the role and mechanism of circ_0099188 in LPS-engendered HPAEpiC cells. Methods: Circ_0099188, microRNA-1236-3p (miR-1236-3p), and high mobility group box 3 (HMGB3) levels were measured using real-time quantitative polymerase chain reaction. Cell viability and apoptosis were assessed using cell counting kit-8 (CCK-8) and flow cytometry assays. Protein levels of B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), cleaved-caspase 3, cleaved-caspase 9, and HMGB3 were determined using Western blot assay. IL-6, IL-8, IL-1β, and TNF-α levels were analyzed using enzyme-linked immunosorbent assays. After predicting using Circinteractome and Targetscan, the binding between miR-1236-3p and circ_0099188 or HMGB3 was verified using a dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Results: Circ_0099188 and HMGB3 were highly expressed, and miR-1236-3p was decreased in LPS-stimulated HPAEpiC cells. Also, the downregulation of circ_0099188 might overturn LPS-triggered HPAEpiC cell proliferation, apoptosis, and inflammatory response. Mechanically, circ_0099188 is able to affect HMGB3 expression by sponging miR-1236-3p. Conclusion: Circ_0099188 knockdown might mitigate LPS-induced HPAEpiC cell injury by targeting the miR-1236-3p/HMGB3 axis, providing an underlying therapeutic strategy for pneumonia treatment.
Collapse
Affiliation(s)
- Yuhang Lin
- Department of Infection, The First People's Hospital of Wenling, Wenling, China
| | | | | |
Collapse
|
11
|
Wu SC, Jan HM, Vallecillo-Zúniga ML, Rathgeber MF, Stowell CS, Murdock KL, Patel KR, Nakahara H, Stowell CJ, Nahm MH, Arthur CM, Cummings RD, Stowell SR. Whole microbe arrays accurately predict interactions and overall antimicrobial activity of galectin-8 toward distinct strains of Streptococcus pneumoniae. Sci Rep 2023; 13:5324. [PMID: 37005394 PMCID: PMC10067959 DOI: 10.1038/s41598-023-27964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 04/04/2023] Open
Abstract
Microbial glycan microarrays (MGMs) populated with purified microbial glycans have been used to define the specificity of host immune factors toward microbes in a high throughput manner. However, a limitation of such arrays is that glycan presentation may not fully recapitulate the natural presentation that exists on microbes. This raises the possibility that interactions observed on the array, while often helpful in predicting actual interactions with intact microbes, may not always accurately ascertain the overall affinity of a host immune factor for a given microbe. Using galectin-8 (Gal-8) as a probe, we compared the specificity and overall affinity observed using a MGM populated with glycans harvested from various strains of Streptococcus pneumoniae to an intact microbe microarray (MMA). Our results demonstrate that while similarities in binding specificity between the MGM and MMA are apparent, Gal-8 binding toward the MMA more accurately predicted interactions with strains of S. pneumoniae, including the overall specificity of Gal-8 antimicrobial activity. Taken together, these results not only demonstrate that Gal-8 possesses antimicrobial activity against distinct strains of S. pneumoniae that utilize molecular mimicry, but that microarray platforms populated with intact microbes present an advantageous strategy when exploring host interactions with microbes.
Collapse
Affiliation(s)
- Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Hau-Ming Jan
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Mary L Vallecillo-Zúniga
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Matthew F Rathgeber
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Caleb S Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Kaleb L Murdock
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Kashyap R Patel
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Hirotomo Nakahara
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Carter J Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Moon H Nahm
- Department of Medicine, University of Alabama at Birmingham, 1720 2nd Ave South Birmingham, Alabama, 35294, USA
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Richard D Cummings
- Harvard Glycomics Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, National Center for Functional Glycomics, 630E New Research Building, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Esposito-Farèse A. [Streptococcus pneumoniae's division is regulated by PASTA repeats of the StkP kinase]. Med Sci (Paris) 2023; 39:390-391. [PMID: 37094274 DOI: 10.1051/medsci/2023045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Anna Esposito-Farèse
- École normale supérieure de Lyon, département de biologie, Master Biosciences, Lyon, France
| |
Collapse
|
13
|
Gopallawa I, Dehinwal R, Bhatia V, Gujar V, Chirmule N. A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front Immunol 2023; 14:1119564. [PMID: 37063828 PMCID: PMC10102582 DOI: 10.3389/fimmu.2023.1119564] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
Lungs are important respiratory organs primarily involved in gas exchange. Lungs interact directly with the environment and their primary function is affected by several inflammatory responses caused by allergens, inflammatory mediators, and pathogens, eventually leading to disease. The immune architecture of the lung consists of an extensive network of innate immune cells, which induce adaptive immune responses based on the nature of the pathogen(s). The balance of immune responses is critical for maintaining immune homeostasis in the lung. Infection by pathogens and physical or genetic dysregulation of immune homeostasis result in inflammatory diseases. These responses culminate in the production of a plethora of cytokines such as TSLP, IL-9, IL-25, and IL-33, which have been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Shifting the balance of Th1, Th2, Th9, and Th17 responses have been the targets of therapeutic interventions in the treatment of these diseases. Here, we have briefly reviewed the innate and adaptive i3mmune responses in the lung. Genetic and environmental factors, and infection are the major causes of dysregulation of various functions of the lung. We have elaborated on the impact of inflammatory and infectious diseases, advances in therapies, and drug delivery devices on this critical organ. Finally, we have provided a comprehensive compilation of different inflammatory and infectious diseases of the lungs and commented on the pros and cons of different inhalation devices for the management of lung diseases. The review is intended to provide a summary of the immunology of the lung, with an emphasis on drug and device development.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ruchika Dehinwal
- Department of Microbiology, Division of Infectious Disease, Brigham Women’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, United States
| | | | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Narendra Chirmule
- R&D Department, SymphonyTech Biologics, Philadelphia, PA, United States
- *Correspondence: Narendra Chirmule,
| |
Collapse
|
14
|
Increased Risk of Hospitalization for Pneumonia in Italian Adults from 2010 to 2019: Scientific Evidence for a Call to Action. Vaccines (Basel) 2023; 11:vaccines11010187. [PMID: 36680031 PMCID: PMC9862073 DOI: 10.3390/vaccines11010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Background: Understanding trends in pneumonia-associated hospitalizations can help to quantify the burden of disease and identify risk conditions and at-risk populations. This study evaluated characteristics of hospitalizations due to pneumonia that occurred in Italy in a 10-year period from 2010 to 2019. Methods: All hospitalizations with a principal or secondary diagnosis of pneumonia over the 10-year period were included, which were identified by hospital discharges for all-cause pneumonia and pneumococcal pneumonia in the anonymized hospital discharge database of the Italian Health Ministry. Results: A total of 2,481,213 patients were hospitalized for pneumonia between 2010 and 2019; patients aged 75−86 years accounted for 30.1% of hospitalizations. Most hospitalizations (88.1%) had an unspecified pneumonia discharge code. In-hospital death was recorded in 13.0% of cases. The cumulative cost for pneumonia hospitalizations of the 10-year period were EUR 11,303,461,591. Over the observation period, the incidence rate for hospitalized all-cause pneumonia in any ages increased from 100 per 100,000 in 2010 to over 160 cases per 100,000 per year in 2019 (p < 0.001). Overall, there was a significant increase in annual percent changes in hospitalization rates (+3.47 per year), in-hospital death (+4.6% per year), and costs (+3.95% per year) over the 10-year period. Conclusions: Our analysis suggests that hospitalizations for pneumonia are increasing over time in almost all age groups, especially in the elderly. Given the substantial burden of pneumonia in terms of mortality, healthcare resources, and economic costs, greater public health efforts should thus be made to promote vaccinations against influenza and pneumococcus, particularly in high-risk groups.
Collapse
|
15
|
Cima Cabal MD, Molina F, López-Sánchez JI, Pérez-Santín E, Del Mar García-Suárez M. Pneumolysin as a target for new therapies against pneumococcal infections: A systematic review. PLoS One 2023; 18:e0282970. [PMID: 36947540 PMCID: PMC10032530 DOI: 10.1371/journal.pone.0282970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND This systematic review evaluates pneumolysin (PLY) as a target for new treatments against pneumococcal infections. Pneumolysin is one of the main virulence factors produced by all types of pneumococci. This toxin (53 kDa) is a highly conserved protein that binds to cholesterol in eukaryotic cells, forming pores that lead to cell destruction. METHODS The databases consulted were MEDLINE, Web of Science, and Scopus. Articles were independently screened by title, abstract, and full text by two researchers, and using consensus to resolve any disagreements that occurred. Articles in other languages different from English, patents, cases report, notes, chapter books and reviews were excluded. Searches were restricted to the years 2000 to 2021. Methodological quality was evaluated using OHAT framework. RESULTS Forty-one articles describing the effects of different molecules that inhibit PLY were reviewed. Briefly, the inhibitory molecules found were classified into three main groups: those exerting a direct effect by binding and/or blocking PLY, those acting indirectly by preventing its effects on host cells, and those whose mechanisms are unknown. Although many molecules are proposed as toxin blockers, only some of them, such as antibiotics, peptides, sterols, and statins, have the probability of being implemented as clinical treatment. In contrast, for other molecules, there are limited studies that demonstrate efficacy in animal models with sufficient reliability. DISCUSSION Most of the studies reviewed has a good level of confidence. However, one of the limitations of this systematic review is the lack of homogeneity of the studies, what prevented to carry out a statistical comparison of the results or meta-analysis. CONCLUSION A panel of molecules blocking PLY activity are associated with the improvement of the inflammatory process triggered by the pneumococcal infection. Some molecules have already been used in humans for other purposes, so they could be safe for use in patients with pneumococcal infections. These patients might benefit from a second line treatment during the initial stages of the infection preventing acute respiratory distress syndrome and invasive pneumococcal diseases. Additional research using the presented set of compounds might further improve the clinical management of these patients.
Collapse
Affiliation(s)
- María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Felipe Molina
- Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José Ignacio López-Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Efrén Pérez-Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - María Del Mar García-Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| |
Collapse
|
16
|
Gao C, Chen Y, Cheng X, Zhang Y, Zhang Y, Wang Y, Cui Z, Liao Y, Luo P, Wu W, Wang C, Zeng H, Zou Q, Gu J. A novel structurally identified epitope delivered by macrophage membrane-coated PLGA nanoparticles elicits protection against Pseudomonas aeruginosa. J Nanobiotechnology 2022; 20:532. [PMID: 36517801 PMCID: PMC9750051 DOI: 10.1186/s12951-022-01725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
The increasing prevalence of antibiotic resistance by Pseudomonas aeruginosa (PA) raises an urgent need for an effective vaccine. The outer membrane proteins of PA, especially those that are upregulated during infection, are ideal vaccine targets. However, the strong hydrophobicity of these proteins hinders their application for this purpose. In this study, we selected eight outer membrane proteins from PA with the most significantly upregulated expression. Their extracellular loops were analyzed and screened by using sera from patients who had recovered from PA infection. As a result, a novel immunogenic epitope (Ep167-193) from PilY1 (PA4554) was found. Moreover, we constructed a macrophage membrane-coated PLGA (poly lactic-co-glycolic acid) nanoparticle vaccine carrying PilY1 Ep167-193 (PNPs@M-Ep167-193) that elicits a Th2 immune response and confers adequate protection in mice. Our data furnished the promising vaccine candidate PNPs@M-Ep167-193 while providing additional evidence for structure-based epitope identification and vaccine design.
Collapse
Affiliation(s)
- Chen Gao
- grid.410570.70000 0004 1760 6682National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, The 30th, Gaotanyan Street, Shapingba District, Chongqing, 400038 People’s Republic of China
| | - Yin Chen
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing, Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038 China
| | - Xin Cheng
- grid.410570.70000 0004 1760 6682National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, The 30th, Gaotanyan Street, Shapingba District, Chongqing, 400038 People’s Republic of China
| | - Yi Zhang
- grid.410570.70000 0004 1760 6682National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, The 30th, Gaotanyan Street, Shapingba District, Chongqing, 400038 People’s Republic of China
| | - Yueyue Zhang
- grid.410570.70000 0004 1760 6682National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, The 30th, Gaotanyan Street, Shapingba District, Chongqing, 400038 People’s Republic of China
| | - Ying Wang
- grid.410570.70000 0004 1760 6682953Th Hospital, Shigatse Branch, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Shigatse, 857000 China
| | - Zhiyuan Cui
- grid.410570.70000 0004 1760 6682National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, The 30th, Gaotanyan Street, Shapingba District, Chongqing, 400038 People’s Republic of China
| | - Yaling Liao
- grid.410570.70000 0004 1760 6682National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, The 30th, Gaotanyan Street, Shapingba District, Chongqing, 400038 People’s Republic of China
| | - Ping Luo
- grid.410570.70000 0004 1760 6682National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, The 30th, Gaotanyan Street, Shapingba District, Chongqing, 400038 People’s Republic of China
| | - Weihui Wu
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Cheng Wang
- grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing, Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038 China
| | - Hao Zeng
- grid.410570.70000 0004 1760 6682National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, The 30th, Gaotanyan Street, Shapingba District, Chongqing, 400038 People’s Republic of China
| | - Quanming Zou
- grid.410570.70000 0004 1760 6682National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, The 30th, Gaotanyan Street, Shapingba District, Chongqing, 400038 People’s Republic of China
| | - Jiang Gu
- grid.410570.70000 0004 1760 6682National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, The 30th, Gaotanyan Street, Shapingba District, Chongqing, 400038 People’s Republic of China
| |
Collapse
|
17
|
Tang J, Ouyang Q, Li Y, Zhang P, Jin W, Qu S, Yang F, He Z, Qin M. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. Int J Mol Sci 2022; 23:ijms232415738. [PMID: 36555379 PMCID: PMC9779065 DOI: 10.3390/ijms232415738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.
Collapse
Affiliation(s)
- Jie Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qiuhong Ouyang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Correspondence: (Z.H.); (M.Q.)
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Z.H.); (M.Q.)
| |
Collapse
|
18
|
Conjugation Mechanism for Pneumococcal Glycoconjugate Vaccines: Classic and Emerging Methods. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120774. [PMID: 36550980 PMCID: PMC9774679 DOI: 10.3390/bioengineering9120774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Licensed glycoconjugate vaccines are generally prepared using native or sized polysaccharides coupled to a carrier protein through random linkages along the polysaccharide chain. These polysaccharides must be chemically modified before covalent linking to a carrier protein in order to obtain a more defined polysaccharide structure that leads to a more rational design and safer vaccines. There are classic and new methods for site-selective glycopolysaccharide conjugation, either chemical or enzymatic modification of the polysaccharide length or of specific amino acid residues of the protein carrier. Here, we discuss the state of the art and the advancement of conjugation of S. pneumoniae glycoconjugate vaccines based on pneumococcal capsular polysaccharides to improve existing vaccines.
Collapse
|
19
|
Muacevic A, Adler JR, Cunha L, Cordeiro I, Baptista A. Invasive Pneumococcal Disease and COVID-19 Coinfection: A Series of Cases Admitted to an Intensive Care Unit. Cureus 2022; 14:e31876. [PMID: 36579230 PMCID: PMC9790083 DOI: 10.7759/cureus.31876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2022] [Indexed: 11/26/2022] Open
Abstract
Pneumococcal infection is still a frequent disease. It can be classified as invasive when pneumococcus is isolated in a generally sterile fluid. Pneumonia is the most common infectious source of adult invasive pneumococcal disease (IPD), and several risk factors for IPD are well known. This case report presents three clinical cases of different manifestations of IPD. The two most severe cases had coinfection by SARS-CoV-2 at hospital admission.
Collapse
|
20
|
Silva PH, Vázquez Y, Campusano C, Retamal-Díaz A, Lay MK, Muñoz CA, González PA, Kalergis AM, Bueno SM. Non-capsular based immunization approaches to prevent Streptococcus pneumoniae infection. Front Cell Infect Microbiol 2022; 12:949469. [PMID: 36225231 PMCID: PMC9548657 DOI: 10.3389/fcimb.2022.949469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium and the leading cause of bacterial pneumonia in children and the elderly worldwide. Currently, two types of licensed vaccines are available to prevent the disease caused by this pathogen: the 23-valent pneumococcal polysaccharide-based vaccine and the 7-, 10, 13, 15 and 20-valent pneumococcal conjugate vaccine. However, these vaccines, composed of the principal capsular polysaccharide of leading serotypes of this bacterium, have some problems, such as high production costs and serotype-dependent effectiveness. These drawbacks have stimulated research initiatives into non-capsular-based vaccines in search of a universal vaccine against S. pneumoniae. In the last decades, several research groups have been developing various new vaccines against this bacterium based on recombinant proteins, live attenuated bacterium, inactivated whole-cell vaccines, and other newer platforms. Here, we review and discuss the status of non-capsular vaccines against S. pneumoniae and the future of these alternatives in a post-pandemic scenario.
Collapse
Affiliation(s)
- Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Campusano
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Christian A. Muñoz
- Unidad de Microbiología, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Susan M. Bueno,
| |
Collapse
|
21
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
22
|
Li X, Wei S, Ma X, Li H, Jing M, Liu H, Zhao Y. Efficacy and safety of Tanreqing injection combined with antibiotics against Streptococcus pneumoniae pneumonia: A systematic review and meta-analysis. J Clin Pharm Ther 2022; 47:1159-1172. [PMID: 35712904 DOI: 10.1111/jcpt.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Tanreqing injection (TRQ) is a traditional Chinese medicine injection. The goal of this study was to assess the clinical efficacy and safety of TRQ injection in combination with azithromycin or ceftriaxone, as well as azithromycin or ceftriaxone alone, in treating Streptococcus pneumoniae pneumonia (SPP). METHODS The randomized controlled trial (RCT) of TRQ injection combined with antibiotics versus antibiotics alone in the treatment of SPP was retrieved from Chinese and English databases (the control group was treated with antibiotics alone, while the experimental group received TRQ injection combined with antibiotics). The retrieval period was from the database's inception through February 2022. The data was extracted using the Cochrane Collaboration Network Quality Evaluation Standards, the methodological quality of the included literature was assessed, and the outcome indicators were calculated using RevMan5.4.1 software. RESULTS AND DISCUSSION A total of 25 RCTs were collected, including 2057 patients. TRQ injection combined with antibiotics significantly improved clinical efficacy and reduced defervescence time, lung rale disappearance time, cough disappearance time, disappearance time of chest pain, and average hospitalization time when compared to control group, according to meta-analysis results (p < 0.05). WHAT IS NEW AND CONCLUSION In the treatment of SPP, TRQ injection combination with antibiotics can significantly improve the total effect rate when compared to standard western medicine. Due to the low quality of the randomized controlled trials included in this investigation, more high-quality, multi-center, large-sample, prospective, randomized, double-blind clinical studies are needed to confirm the aforementioned conclusions.
Collapse
Affiliation(s)
- Xing Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shizhang Wei
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haotian Li
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Honghong Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Hu Y, Li L, Xu W, Wu K, Xiao J, Peng Y, Liu Y, Yin Y, Zhang X. IL-4 plays an essential role in DnaJ-ΔA146Ply-mediated immunoprotection against Streptococcus pneumoniae in mice. Mol Immunol 2022; 143:105-113. [PMID: 35114487 DOI: 10.1016/j.molimm.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
The fusion protein DnaJ-ΔA146Ply is protective against pneumococcal infections in mice. However, we found that immunized IL-4-/- mice showed significant lower survival rates and higher bacterial loads than did wild-type (WT) mice after being challenged. We explored the role of IL-4 in the protective immunity conferred by DnaJ-ΔA146Ply. Our results showed that there were no significant differences in antibody titers between immunized WT mice and IL-4-/- mice. The bacterial loads of passively immunized IL-4-/- mice were significantly higher than those of WT mice, while mice immunized with anti-DnaJ-ΔA146Ply serum from WT and IL-4-/- mice showed similar capacity for bacterial clearance. DnaJ-ΔA146Ply-dependent phagocytosis of IL-4-/- neutrophils was significant decreased compared with that of WT neutrophils. The levels of Syk and phosphor-Syk in IL-4-/- neutrophils were decreased compared with those in WT neutrophils. Additionally, Splenocytes in IL-4-/- mice triggered significantly higher levels of IFN-γ and IL-17A than did splenocytes in WT mice. Taken together, our findings illustrate that IL-4 deficiency does not influence the antibody production or antibody effect, but change the cellular immune response induced by DnaJ-ΔA146Ply. Additionally, IL-4 can enhance the antibody-dependent phagocytosis of neutrophils partially by activating Syk and participate in the protective immunity induced by DnaJ-ΔA146Ply.
Collapse
Affiliation(s)
- Yi Hu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Wenchun Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yang Peng
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yusi Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
24
|
Wang Y, Xia L, Wang G, Lu H, Wang H, Luo S, Zhang T, Gao S, Huang J, Min X. Subcutaneous immunization with the fusion protein ΔA146Ply-SP0148 confers protection against Streptococcus pneumoniae infection. Microb Pathog 2021; 162:105325. [PMID: 34848296 DOI: 10.1016/j.micpath.2021.105325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022]
Abstract
Pneumococcal SP0148 and pneumolysin (Ply) derivatives are important vaccine candidates. SP0148 is a conserved lipoprotein with high immunogenicity produced by Streptococcus pneumoniae. We have previously demonstrated that SP0148 can confer protection against fatal infections caused by S. pneumoniae. ΔA146Ply is a noncytotoxic mutant of Ply that retains the TLR4 agonistic effect and has mucosal and subcutaneous adjuvant activities suggested to induce protective immunity against S. pneumoniae infection. In this study, we constructed the fusion protein ΔA146Ply-SP0148, composed of ΔA146Ply and SP0148, and evaluated the immunoprotective effect of the fusion protein. When mice were subcutaneously immunized with the fusion protein ΔA146Ply-SP0148, high levels of anti-ΔA146Ply and anti-SP0148 IgG antibodies were induced in the serum. Specific antibodies can bind to a variety of different serotypes of S. pneumoniae. Compared with mice immunized with ΔA146Ply and SP0148 alone, mice immunized subcutaneously with the fusion protein ΔA146Ply-SP0148 with Al(OH)3 had a higher survival rate when challenged by a lethal dose of S. pneumoniae, and they also had significantly lower lung bacterial loads and milder lung inflammation. In addition, mice immunized subcutaneously with the fusion protein ΔA146Ply-SP0148 stimulated strong Th1, Th2, and Th17 cell responses. In summary, these results suggest that subcutaneous immunization with the ΔA146Ply-SP0148 fusion protein can protect mice against fatal pneumococcal infection and lung infection. The fusion protein ΔA146ply-SP0148 can be a new pneumococcal vaccine target.
Collapse
Affiliation(s)
- Yao Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lingyin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huifang Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hui Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shilu Luo
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
25
|
Influence of LncRNA NKILA on Bloodstream Infection of Hypervirulent Klebsiella pneumoniae and Its Ability to Induce Delayed Neutrophil Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6101078. [PMID: 34721638 PMCID: PMC8553458 DOI: 10.1155/2021/6101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
Objective Pneumonia due to hypervirulent Klebsiella pneumoniae (hvKP) is a high-risk subtype of pneumonia with high mortality and disability rates. An in-depth understanding of hvKP's pathogenic process and mechanism of action is the focus of achieving early disease diagnosis and early symptomatic treatment. This study conducted a preliminary analysis on the influence of lncRNA NKILA (NKILA) on hvKP, aiming at providing a new approach to the diagnosis and treatment of hvKP and laying a reliable foundation for subsequent NKILA-related studies. Methods Selected from our hospital from October 2016 to February 2018, 67 patients who were examined for the pathogenic microorganisms of alveolar lavage fluid were selected as the research subjects. Among them, 29 were diagnosed as hvKP (research group), and the other 38 had no pathogenic bacteria (control group). Serum and bronchoalveolar lavage fluid (BALF) NKILA and inflammatory factors were detected, and the clinical significance of NKILA was analyzed. In addition, neutrophils from research group were extracted and NKILA expression was increased to observe the alterations in cell apoptosis, respiratory burst intensity, and NF-kappa B inhibitor alpha (NF-κB) p65 protein. Results Serum and BALF levels of NKILA and inflammatory factors were higher in research group than in control group, and NKILA decreased in both cohorts after treatment (P < 0.05). NKILA had an excellent predictive effect on the occurrence of hvKP (P < 0.001) and was positively correlated with inflammatory factors (P < 0.05). Prognostic follow-up revealed that NKILA also had a good predictive value for death in hvKP patients (P < 0.05), and increased posttreatment levels predicted an increased risk of death (P < 0.05). In vitro, increased NKILA hindered the delayed apoptosis rate, decreased respiratory burst intensity of hvKP neutrophils, and activated NF-κB p65 protein (P < 0.05). Conclusion With an elevated expression profile in hvKP, NKILA can induce the delayed apoptosis of neutrophils, enhance the ability of releasing inflammatory mediators, and promote the progression of hvKP via activating NF-κB p65.
Collapse
|
26
|
Du QQ, Shi W, Yu D, Yao KH. Epidemiology of non-vaccine serotypes of Streptococcus pneumoniae before and after universal administration of pneumococcal conjugate vaccines. Hum Vaccin Immunother 2021; 17:5628-5637. [PMID: 34726580 DOI: 10.1080/21645515.2021.1985353] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The universal administration of pneumococcal conjugate vaccines (PCVs) had been demonstrated as an effective way to prevent Streptococcus pneumoniae infection. However, the immunity induced by PCVs protected against the infections caused by vaccine serotypes, which were usually more frequent than non-vaccine serotypes (NVTs). The prevalence and pathogenicity of NVTs after universal vaccination have caused widespread concern. We reviewed the epidemiology of non-PCV13 S. pneumoniae before and after PCV13 introduction, and explored the potential reasons for the spread of NVTs. Emerging and spreading NVTs can be regarded as the focus for future serotype epidemiological survey and vaccine optimization.AbbreviationsIPD: invasive pneumococcal disease PCV: pneumococcal conjugate vaccines VT: vaccine serotypeNVT: non-vaccine serotype.
Collapse
Affiliation(s)
- Qian-Qian Du
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics, Laboratory of Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wei Shi
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics, Laboratory of Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Dan Yu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics, Laboratory of Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Kai-Hu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics, Laboratory of Microbiology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
27
|
Semi- and fully synthetic carbohydrate vaccines against pathogenic bacteria: recent developments. Biochem Soc Trans 2021; 49:2411-2429. [PMID: 34495299 PMCID: PMC8589429 DOI: 10.1042/bst20210766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022]
Abstract
The importance of vaccine-induced protection was repeatedly demonstrated over the last three decades and emphasized during the recent COVID-19 pandemic as the safest and most effective way of preventing infectious diseases. Vaccines have controlled, and in some cases, eradicated global viral and bacterial infections with high efficiency and at a relatively low cost. Carbohydrates form the capsular sugar coat that surrounds the outer surface of human pathogenic bacteria. Specific surface-exposed bacterial carbohydrates serve as potent vaccine targets that broadened our toolbox against bacterial infections. Since first approved for commercial use, antibacterial carbohydrate-based vaccines mostly rely on inherently complex and heterogenous naturally derived polysaccharides, challenging to obtain in a pure, safe, and cost-effective manner. The introduction of synthetic fragments identical with bacterial capsular polysaccharides provided well-defined and homogenous structures that resolved many challenges of purified polysaccharides. The success of semisynthetic glycoconjugate vaccines against bacterial infections, now in different phases of clinical trials, opened up new possibilities and encouraged further development towards fully synthetic antibacterial vaccine solutions. In this mini-review, we describe the recent achievements in semi- and fully synthetic carbohydrate vaccines against a range of human pathogenic bacteria, focusing on preclinical and clinical studies.
Collapse
|
28
|
Sentinel surveillance for bacterial pneumonia and meningitis in children under the age of 5 in a tertiary pediatric hospital in Colombia - 2016. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2021; 41:62-75. [PMID: 34669279 PMCID: PMC8614369 DOI: 10.7705/biomedica.5658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 02/04/2023]
Abstract
Introduction: Bacterial pneumonia and meningitis are vaccine-preventable diseases. Sentinel surveillance provides relevant information about their behavior. Objective: To present the data from sentinel surveillance carried out at the Fundación HOMI, Fundación Hospital Pediátrico La Misericordia in 2016. Materials and methods: We conducted a descriptive study from January 1 to December 31, 2016, on the daily surveillance of patients under 5 years of age diagnosed with pneumonia or bacterial meningitis according to PAHO's definitions. We identified the microorganisms using the automated VITEKTM 2 system. Bacterial isolates were sent to the Microbiology Group at the Colombian Instituto Nacional de Salud for confirmation, serotyping, phenotypic, and genotypic characterization. Antimicrobial susceptibility profiles were established. Results: From 1,343 suspected cases of bacterial pneumonia, 654 (48.7%) were probable, 84% had complete Hib vaccination schedules, and 87% had complete pneumococcal vaccination schedules for age. Blood culture was taken in 619 (94.6%) and 41 (6.6%) were positive while S. pneumoniae was isolated in 17 (41%) of them. The most frequent serotype was 19A in five cases (29.4%), and four 19A serotypes were associated with the reference isolate ST320. The incidence rate of probable bacterial pneumonia was 7.3 cases/100 hospitalized patients, and lethality was 2.1%. As for bacterial meningitis, 22 suspected cases were reported, 12 (54%) were probable, four (33%) were confirmed: two by Escherichia coli and two by group C N. meningitidis. The incidence of probable bacterial meningitis was 0.14 cases/100 hospitalized patients. Conclusion: Streptococcus pneumoniae serotypes 19A and 3 were the most frequent cause of pneumonia. Spn19A is related to the multi-resistant clone ST320. Strengthening and continuing this strategy will allow understanding the impact of vaccination.
Collapse
|
29
|
Seixas S, Kolbe AR, Gomes S, Sucena M, Sousa C, Vaz Rodrigues L, Teixeira G, Pinto P, Tavares de Abreu T, Bárbara C, Semedo J, Mota L, Carvalho AS, Matthiesen R, Marques PI, Pérez-Losada M. Comparative analysis of the bronchoalveolar microbiome in Portuguese patients with different chronic lung disorders. Sci Rep 2021; 11:15042. [PMID: 34294826 PMCID: PMC8298389 DOI: 10.1038/s41598-021-94468-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 01/04/2023] Open
Abstract
The lung is inhabited by a diverse microbiome that originates from the oropharynx by a mechanism of micro-aspiration. Its bacterial biomass is usually low; however, this condition shifts in lung cancer (LC), chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD). These chronic lung disorders (CLD) may coexist in the same patient as comorbidities and share common risk factors, among which the microbiome is included. We characterized the microbiome of 106 bronchoalveolar lavages. Samples were initially subdivided into cancer and non-cancer and high-throughput sequenced for the 16S rRNA gene. Additionally, we used a cohort of 25 CLD patients where crossed comorbidities were excluded. Firmicutes, Proteobacteria and Bacteroidetes were the most prevalent phyla independently of the analyzed group. Streptococcus and Prevotella were associated with LC and Haemophilus was enhanced in COPD versus ILD. Although no significant discrepancies in microbial diversity were observed between cancer and non-cancer samples, statistical tests suggested a gradient across CLD where COPD and ILD displayed the highest and lowest alpha diversities, respectively. Moreover, COPD and ILD were separated in two clusters by the unweighted UniFrac distance (P value = 0.0068). Our results support the association of Streptoccocus and Prevotella with LC and of Haemophilus with COPD, and advocate for specific CLD signatures.
Collapse
Affiliation(s)
- Susana Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.
| | - Allison R Kolbe
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Sílvia Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Maria Sucena
- Pneumology Department, Centro Hospitalar de São João (CHSJ), Porto, Portugal
| | - Catarina Sousa
- Pneumology Department, Centro Hospitalar de São João (CHSJ), Porto, Portugal
| | - Luís Vaz Rodrigues
- Department of Pneumology, Unidade Local de Saúde da Guarda (USLGuarda), Guarda, Portugal
| | - Gilberto Teixeira
- Department of Pneumology, Centro Hospitalar Do Baixo Vouga (CHBV), Aveiro, Portugal
| | - Paula Pinto
- Unidade de Pneumologia de Intervenção, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Tavares de Abreu
- Unidade de Pneumologia de Intervenção, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Cristina Bárbara
- Unidade de Pneumologia de Intervenção, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal.,Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Júlio Semedo
- Unidade de Pneumologia de Intervenção, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Leonor Mota
- Unidade de Pneumologia de Intervenção, Hospital Pulido Valente, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Patrícia Isabel Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| |
Collapse
|
30
|
Analysis of Pneumonia Occurrence in Relation to Climate Change in Tanga, Tanzania. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094731. [PMID: 33946714 PMCID: PMC8125699 DOI: 10.3390/ijerph18094731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022]
Abstract
In 2018, 70% of global fatalities due to pneumonia occurred in about fifteen countries, with Tanzania being among the top eight countries contributing to these deaths. Environmental and individual factors contributing to these deaths may be multifaceted, but they have not yet been explored in Tanzania. Therefore, in this study, we explore the association between climate change and the occurrence of pneumonia in the Tanga Region, Tanzania. A time series study design was employed using meteorological and health data of the Tanga Region collected from January 2016 to December 2018 from the Tanzania Meteorological Authority and Health Management Information System, respectively. The generalized negative binomial regression technique was used to explore the associations between climate indicators (i.e., precipitation, humidity, and temperature) and the occurrence of pneumonia. There were trend differences in climate indicators and the occurrence of pneumonia between the Tanga and Handeni districts. We found a positive association between humidity and increased rates of non-severe pneumonia (incidence rate ratio (IRR) = 1.01; 95% CI: 1.01–1.02; p ≤ 0.05) and severe pneumonia (IRR = 1.02; 95% CI: 1.01–1.03; p ≤ 0.05). There was also a significant association between cold temperatures and the rate of severe pneumonia in Tanga (IRR = 1.21; 95% CI: 1.11–1.33; p ≤ 0.001). Other factors that were associated with pneumonia included age and district of residence. We found a positive relationship between humidity, temperature, and incidence of pneumonia in the Tanga Region. Policies focusing on prevention and control, as well as promotion strategies relating to climate change-related health effects should be developed and implemented.
Collapse
|
31
|
Scelfo C, Menzella F, Fontana M, Ghidoni G, Galeone C, Facciolongo NC. Pneumonia and Invasive Pneumococcal Diseases: The Role of Pneumococcal Conjugate Vaccine in the Era of Multi-Drug Resistance. Vaccines (Basel) 2021; 9:420. [PMID: 33922273 PMCID: PMC8145843 DOI: 10.3390/vaccines9050420] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae related diseases are a leading cause of morbidity and mortality, especially in children and in the elderly population. It is transmitted to other individuals through droplets and it can spread to other parts of the human host, causing a wide spectrum of clinical syndromes, affecting between 10 and 100 cases per 100,000 people in Europe and the USA. In order to reduce morbidity and mortality caused by this agent, pneumococcal vaccines have been developed over the years and have shown incredible effectiveness in reducing the spread of this bacterium and the development of related diseases, obtaining a significant reduction in mortality, especially in developing countries. However, considerable problems are emerging mainly due to the replacement phenomenon, multi-drug resistance, and the high production costs of conjugated vaccines. There is still a debate about the indications given by various countries to different age groups; this is one of the reasons for the diffusion of different serotypes. To cope with these problems, significant efforts have been made in the research field to further improve vaccination serotypes coverage. On the other hand, an equally important commitment by health care systems to all age group populations is needed to improve vaccination coverage.
Collapse
Affiliation(s)
- Chiara Scelfo
- Pneumology Unit, Department of Medical Specialties, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42100 Reggio Emilia, Italy; (F.M.); (M.F.); (G.G.); (C.G.); (N.C.F.)
| | | | | | | | | | | |
Collapse
|
32
|
Garrido-Jareño M, Puchades-Carrasco L, Orti-Pérez L, Sahuquillo-Arce JM, Del Carmen Meyer-García M, Mollar-Maseres J, Lloret-Sos C, Gil-Brusola A, López-Hontangas JL, Beltrán-Garrido JM, Pemán-García J, Pineda-Lucena A. A surface plasmon resonance based approach for measuring response to pneumococcal vaccine. Sci Rep 2021; 11:6502. [PMID: 33753824 PMCID: PMC7985148 DOI: 10.1038/s41598-021-85958-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Incidence of pneumococcal disease has increased worldwide in recent years. Response to pneumococcal vaccine is usually measured using the multiserotype enzyme-linked immunosorbent assay (ELISA) pneumococcal test. However, this approach presents several limitations. Therefore, the introduction of new and more robust analytical approaches able to provide information on the efficacy of the pneumococcal vaccine would be very beneficial for the clinical management of patients. Surface plasmon resonance (SPR) has been shown to offer a valuable understanding of vaccines' properties over the last years. The aim of this study is to evaluate the reliability of SPR for the anti-pneumococcal capsular polysaccharides (anti-PnPs) IgGs quantification in vaccinated. Fast protein liquid chromatography (FPLC) was used for the isolation of total IgGs from serum samples of vaccinated patients. Binding-SPR assays were performed to study the interaction between anti-PnPs IgGs and PCV13. A robust correlation was found between serum levels of anti-PnPs IgGs, measured by ELISA, and the SPR signal. Moreover, it was possible to correctly classify patients into "non-responder", "responder" and "high-responder" groups according to their specific SPR PCV13 response profiles. SPR technology provides a valuable tool for reliably characterize the interaction between anti-PnPs IgGs and PCV13 in a very short experimental time.
Collapse
Affiliation(s)
- Marta Garrido-Jareño
- Drug Discovery Unit, Health Research Institute La Fe, Valencia, Spain.,Microbiology Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | | | | | | - Joan Mollar-Maseres
- Preventive Medicine Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Carmina Lloret-Sos
- Microbiology Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana Gil-Brusola
- Microbiology Department, University and Polytechnic Hospital La Fe, Valencia, Spain.,Severe Infection Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | | | | | - Javier Pemán-García
- Microbiology Department, University and Polytechnic Hospital La Fe, Valencia, Spain. .,Severe Infection Group, Health Research Institute Hospital La Fe, Valencia, Spain.
| | - Antonio Pineda-Lucena
- Drug Discovery Unit, Health Research Institute La Fe, Valencia, Spain. .,Molecular Therapeutics Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.
| |
Collapse
|
33
|
Ayad S, Alyacoub R, Gergis K, Grossman D, Salamera J. Invasive Pneumococcal Disease in a Patient With COVID-19: A Case Report. Cureus 2021; 13:e13559. [PMID: 33791177 PMCID: PMC8004547 DOI: 10.7759/cureus.13559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The spread of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has resulted in a global health pandemic and caused profound morbidity and mortality worldwide. The virus is known to cause severe hypoxemic respiratory failure and has been associated with extrapulmonary manifestations and end-organ dysfunction in the setting of extensive inflammatory response. Recently, the association between COVID-19 and pneumococcal pneumonia co-infection or superinfections has gained increasing interest. In this report, we present the case of a 58-year-old man with a past medical history significant for pulmonary tuberculosis, diagnosed over two decades ago, who presented with pleuritic chest pain, myalgia, intermittent fevers, chills, and productive cough and was found to have invasive pneumococcal disease and COVID-19. To our knowledge, this is the first reported case of invasive pneumococcal infection in a patient with COVID-19.
Collapse
Affiliation(s)
- Sarah Ayad
- Internal Medicine, Rutgers-New Jersey Medical School/Trinitas Regional Medical Center, Elizabeth, USA
| | - Ramez Alyacoub
- Internal Medicine, Rutgers-New Jersey Medical School/Trinitas Regional Medical Center, Elizabeth, USA
| | | | - Daniel Grossman
- Internal Medicine, Rutgers-New Jersey Medical School/Trinitas Regional Medical Center, Elizabeth, USA
| | - Julius Salamera
- Infectious Disease, Rutgers-New Jersey Medical School/Trinitas Regional Medical Center, Elizabeth, USA
| |
Collapse
|
34
|
Yakabe K, Uchiyama J, Akiyama M, Kim YG. Understanding Host Immunity and the Gut Microbiota Inspires the New Development of Vaccines and Adjuvants. Pharmaceutics 2021; 13:163. [PMID: 33530627 PMCID: PMC7911583 DOI: 10.3390/pharmaceutics13020163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/26/2022] Open
Abstract
Vaccinations improve the mortality and morbidity rates associated with several infections through the generation of antigen-specific immune responses. Adjuvants are often used together with vaccines to improve immunogenicity. However, the immune responses induced by most on-going vaccines and adjuvants approved for human use vary in individuals; this is a limitation that must be overcome to improve vaccine efficacy. Several reports have indicated that the symbiotic bacteria, particularly the gut microbiota, impact vaccine-mediated antigen-specific immune responses and promote the induction of nonspecific responses via the "training" of innate immune cells. Therefore, the interaction between gut microbiota and innate immune cells should be considered to ensure the optimal immunogenicity of vaccines and adjuvants. In this review, we first introduce the current knowledge on the immunological mechanisms of vaccines and adjuvants. Subsequently, we discuss how the gut microbiota influences immunity and highlight the relationship between gut microbes and trained innate immunity, vaccines, and adjuvants. Understanding these complex interactions will provide insights into novel vaccine approaches centered on the gut microbiota.
Collapse
Affiliation(s)
- Kyosuke Yakabe
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Jun Uchiyama
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; (K.Y.); (J.U.); (M.A.)
| |
Collapse
|
35
|
Cools F, Delputte P, Cos P. The search for novel treatment strategies for Streptococcus pneumoniae infections. FEMS Microbiol Rev 2021; 45:6064299. [PMID: 33399826 PMCID: PMC8371276 DOI: 10.1093/femsre/fuaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
This review provides an overview of the most important novel treatment strategies against Streptococcus pneumoniae infections published over the past 10 years. The pneumococcus causes the majority of community-acquired bacterial pneumonia cases, and it is one of the prime pathogens in bacterial meningitis. Over the last 10 years, extensive research has been conducted to prevent severe pneumococcal infections, with a major focus on (i) boosting the host immune system and (ii) discovering novel antibacterials. Boosting the immune system can be done in two ways, either by actively modulating host immunity, mostly through administration of selective antibodies, or by interfering with pneumococcal virulence factors, thereby supporting the host immune system to effectively overcome an infection. While several of such experimental therapies are promising, few have evolved to clinical trials. The discovery of novel antibacterials is hampered by the high research and development costs versus the relatively low revenues for the pharmaceutical industry. Nevertheless, novel enzymatic assays and target-based drug design, allow the identification of targets and the development of novel molecules to effectively treat this life-threatening pathogen.
Collapse
Affiliation(s)
- F Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
36
|
Guo X, Sun Q, Xi H, Zhang Y, Guo M, Zhang C, Zhu S, Gu T, Kong W, Wu Y. Expression, purification, and characterization of pneumococcal PsaA-PspA fusion protein. Protein Expr Purif 2020; 178:105782. [PMID: 33122039 DOI: 10.1016/j.pep.2020.105782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is a gram-positive bacterial pathogen causing invasive pneumonia, meningitis, otitis media, and bacteremia. Owing to the current pitfalls of polysaccharide and polysaccharide-conjugate vaccines, protein vaccines are considered promising candidates against pneumonia. Pneumococcal surface protein A (PspA) and pneumococcal surface adhesin A (PsaA) are virulence proteins showing good immunogenicity and protective effects against S. pneumoniae strains in mice. In this study, we expressed the fusion protein PsaA-PspA, which consists of PsaA and the N-terminal region of PspA family 1 and 2, in Escherichia coli. We describe a novel and effective method to purify PsaA-PspA using hydroxyapatite and two-step chromatography. After determining the optimal induction conditions and a series of purification steps, we obtained PsaA-PspA fusion protein with over 95% purity at a final yield of 22.44% from the starting cell lysate. The molecular weight of PsaA-PspA was approximately 83.6 kDa and its secondary structure was evaluated by circular dichroism. Immunization with the purified protein induced high levels of IgG antibodies in mice. Collectively, these results demonstrate that our purification method can effectively produce high-purity PsaA-PspA fusion protein with biological activity and chemical integrity, which can be widely applied to the purification of other PspA subclass proteins.
Collapse
Affiliation(s)
- Xiaonan Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Qing Sun
- CSPC Biotechnology Company, Shijiazhuang, China
| | - Hualong Xi
- BCHT Biotechnology Company, Changchun, China
| | - Yue Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Mengze Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chenxing Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Shidong Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tiejun Gu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yongge Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
37
|
Echlin H, Rosch JW. Advancing Genetic Tools in Streptococcus pneumoniae. Genes (Basel) 2020; 11:genes11090965. [PMID: 32825523 PMCID: PMC7563404 DOI: 10.3390/genes11090965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is the causative agent of a multitude of diseases, and further study into its pathogenies is vital. The pneumococcus is genetically malleable, and several tools are available to manipulate this pathogen. In this study, we attempted to utilize one such tool, the Sweet Janus cassette, to replace the capsule locus with other capsule loci in our strain background and found that the efficiency of allelic replacement was low and the number of revertant false-positive colonies was high. We determined that the capacity to recombine capsule varied by the initial isolated colony, suggesting that frequency of reversion is dependent on the bacterial clone. Alternative selection markers may further expand the application of Sweet Janus. We created novel cassettes that utilized chlorinated phenylalanine as an alternative counter-selection agent in conjunction with the Janus or Sweet Janus cassette, providing a new dual or triple selection marker. Moreover, we created cassettes that do not require engineered resistance in the background strain, including both single and dual selection markers. We were able to utilize all constructs in allelic replacement of the capsule loci. These novel constructs provide a new means for generating gene deletions in S. pneumoniae that expand experimental applications.
Collapse
|
38
|
Zhang C, Ju Y, Tang N, Li Y, Zhang G, Song Y, Fang H, Yang L, Feng J. Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae. Brief Bioinform 2020; 21:1347-1355. [PMID: 31192359 DOI: 10.1093/bib/bbz056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is the most common human respiratory pathogen, and β-lactam antibiotics have been employed to treat infections caused by S. pneumoniae for decades. β-lactam resistance is steadily increasing in pneumococci and is mainly associated with the alteration in penicillin-binding proteins (PBPs) that reduce binding affinity of antibiotics to PBPs. However, the high variability of PBPs in clinical isolates and their mosaic gene structure hamper the predication of resistance level according to the PBP gene sequences. In this study, we developed a systematic strategy for applying supervised machine learning to predict S. pneumoniae antimicrobial susceptibility to β-lactam antibiotics. We combined published PBP sequences with minimum inhibitory concentration (MIC) values as labelled data and the sequences from NCBI database without MIC values as unlabelled data to develop an approach, using only a fragment from pbp2x (750 bp) and a fragment from pbp2b (750 bp) to predicate the cefuroxime and amoxicillin resistance. We further validated the performance of the supervised learning model by constructing mutants containing the randomly selected pbps and testing more clinical strains isolated from Chinese hospital. In addition, we established the association between resistance phenotypes and serotypes and sequence type of S. pneumoniae using our approach, which facilitate the understanding of the worldwide epidemiology of S. pneumonia.
Collapse
Affiliation(s)
- Chaodong Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University 60 Nanyang Drive, Singapore, Singapore
| | - Yingjiao Ju
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Na Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hailing Fang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Sanapala SR, Seco BMS, Baek JY, Awan SI, Pereira CL, Seeberger PH. Chimeric oligosaccharide conjugate induces opsonic antibodies against Streptococcus pneumoniae serotypes 19A and 19F. Chem Sci 2020; 11:7401-7407. [PMID: 34123020 PMCID: PMC8159444 DOI: 10.1039/d0sc02230f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae 19A (ST19A) and 19F (ST19F) are among the prevalent serotypes causing pneumococcal disease worldwide even after introduction of a 13-valent pneumococcal conjugate vaccine (PCV13). Synthetic glycoconjugate vaccines have defined chemical structures rather than isolated polysaccharide mixtures utilized in marketed vaccines. Ideally, a minimal number of synthetic antigens would cover as many bacterial serotypes to lower cost of goods and minimize the response to carrier proteins. To demonstrate that a chimeric oligosaccharide antigen can induce a protective immune response against multiple serotypes, we synthesized a chimeric antigen (ST19AF) that is comprised of a repeating unit of ST19A and ST19F capsular polysaccharide each. Synthetic glycan epitopes representing only ST19A, and ST19F were prepared for comparison. Semisynthetic glycoconjugates containing chimeric antigen ST19AF induced high antibody titers able to recognize native CPS from ST19A and ST19F in rabbits. The antibodies were able to kill both strains of pneumococci. Chimeric antigens are an attractive means to induce an immune response against multiple bacterial serotypes. Chimeric antigens are an attractive means to induce an immune response against multiple bacterial serotypes. The chimeric semisynthetic glycoconjugate ST19AF induced antibodies with opsonic activity able to kill ST19A and ST19F bacteria in rabbits.![]()
Collapse
Affiliation(s)
- Someswara Rao Sanapala
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany
| | - Bruna M S Seco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 D-14195 Berlin Germany
| | - Ju Yuel Baek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany
| | - Shahid I Awan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany
| | - Claney L Pereira
- Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 D-14195 Berlin Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 D-14195 Berlin Germany
| |
Collapse
|
40
|
Feng J, Dai W, Zhang C, Chen H, Chen Z, Chen Y, Pan Q, Zhou Y. Shen-ling-bai-zhu-san ameliorates inflammation and lung injury by increasing the gut microbiota in the murine model of Streptococcus pneumonia-induced pneumonia. BMC Complement Med Ther 2020; 20:159. [PMID: 32460745 PMCID: PMC7254717 DOI: 10.1186/s12906-020-02958-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
Background Shen-ling-bai-zhu-san (SLBZS) regulates inflammation and gut microbiota which are associated with Streptococcus pneumoniae (Spn)-induced pneumonia. So, we studied the therapeutic effect of SLBZS and evaluated whether gut microbiota is associated with the effects of SLBZS in improving Spn-induced pneumonia. Methods Spn-induced pneumonia NIH mice were treated by SLBZS and cefixime. A CT scan was performed and Myeloperoxidase (MPO) activity in lung homogenates was determined using the MPO Colorimetric Assay Kit. Inflammation levels in lung homogenates were measured using ELISA. Bacterial load was coated on a TSAII sheep blood agar. Intestinal gut microbiota information was analyzed according to sequencing libraries. Results SLBZS decreased bacterial load, reduced wet/dry weight ratio, inhibited myeloperoxidase activity, reduced the neutrophils count, and ameliorated lung injury. Furthermore, SLBZS inhibited interleukin (IL)-1β, IL-6, tumor necrosis factor-α, IL-2, IL-8, IL-12, and interferon-γ secretion and enhanced IL-10 secretion. These results suggest that SLBZS ameliorates lung injury in mice with Spn-induced pneumonia. Moreover, SLBZS reduced inflammatory cytokine levels in a concentration-dependent manner and increased gut microbiota abundance and diversity. After SLBZS treatment, bacteria such as Epsilonbacteraeota, Bacteroidetes, Actinobacteria, Proteobacteria, and Patescibacteria were significantly reduced, while Tenericutes and Firmicutes were significantly increased. Conclusion SLBZS ameliorates inflammation, lung injury, and gut microbiota in mice with S. pneumoniae-induced pneumonia.
Collapse
Affiliation(s)
- Jinli Feng
- Emergency department, Zhongshan Hospital of traditional Chinese Medicine, No. 3 Kangxin road, west district, Zhongshan, Guangdong, 528401, People's Republic of China.
| | - Weibo Dai
- Pharmacology laboratory, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Cheng Zhang
- Clinical laboratory, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Houjun Chen
- Emergency department, Zhongshan Hospital of traditional Chinese Medicine, No. 3 Kangxin road, west district, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Ziliang Chen
- Emergency department, Zhongshan Hospital of traditional Chinese Medicine, No. 3 Kangxin road, west district, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Yongfeng Chen
- Emergency department, Zhongshan Hospital of traditional Chinese Medicine, No. 3 Kangxin road, west district, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Qianyi Pan
- Prevention and health section, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan, Guangdong, 528401, People's Republic of China
| | - Yongmao Zhou
- Pediatrics, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan, Guangdong, 528401, People's Republic of China
| |
Collapse
|
41
|
Elicitation of integrated immunity in mice by a novel pneumococcal polysaccharide vaccine conjugated with HBV surface antigen. Sci Rep 2020; 10:6470. [PMID: 32286332 PMCID: PMC7156719 DOI: 10.1038/s41598-020-62185-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
The conjugation of polysaccharides with an effective carrier protein is critical for the development of effective bacterial polysaccharide vaccines. Therefore, the identification and optimization of carrier proteins to induce an effective immune response is necessary for developing a combined vaccine. In the current study, we utilized hepatitis B virus surface antigen (HBsAg) as a novel carrier protein combined with a capsular polysaccharide molecule to develop a new pneumococcal conjugated vaccine. The specific antibodies and T cell immune response against the capsular polysaccharide and HBsAg in the mice immunized with this conjugated vaccine were evaluated. In addition, the unique gene profiles of immune cells induced by this conjugated vaccine in the immunized mice were analyzed. Our results demonstrated that the vaccine consisting of pneumonia type 33 F capsular polysaccharide (Pn33Fps) conjugated with HBsAg can induce strong specific immune responses against both antigens in vivo in immunized mice. Furthermore, the conjugated vaccine induced higher expression of genes related to the activation of immunity and higher antibody titers against Pn33Fps and HBsAg in mice than those obtained via vaccination with a single antigen. Analyses of the dynamic expression changes in immunity-related genes in mice immunized with Pn33Fps_HBs, Pn33Fps, or HBsAg indicated the potent immunogenicity of the conjugated vaccine. In addition, a pathological evaluation of the organs from immunized mice further suggested that the conjugated vaccine is safe. Together, these results indicate that a conjugated vaccine consisting of Pn33Fps with HBsAg is a novel and effective vaccine.
Collapse
|
42
|
Valour F, Conrad A, Ader F, Launay O. Vaccination in adult liver transplantation candidates and recipients. Clin Res Hepatol Gastroenterol 2020; 44:126-134. [PMID: 31607643 DOI: 10.1016/j.clinre.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
In patients with chronic liver disease and liver transplant recipients, cirrhosis-associated immune dysfunction syndrome and immunosuppressant drug regimens required to prevent graft rejection lead to a high risk of severe infections, associated with acute liver decompensation, graft loss and increased mortality. In addition to maintain their global health status, vaccination represents a major preventive measure against specific infectious risks of particular concern in this population, such as invasive pneumococcal diseases, influenza or viral hepatitis A and B. However, immunization in this setting raises several issues: i) recommended vaccination schedules rely on sparse immunogenicity data without clinical efficacy and effectiveness trials designed for this specific population; ii) dynamics of immunosuppression makes timing of immunization challenging; iii) live attenuated vaccines are contraindicated after transplantation; and iv) vaccines tolerance is poorly known in cirrhotic patients. This review outlines the rational for vaccination in adult liver transplant candidates and recipients and available data regarding immunization in this specific population.
Collapse
Affiliation(s)
- Florent Valour
- Service des maladies infectieuses et tropicales, Hospices Civils de Lyon, 69004 Lyon, France; Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude-Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France; Université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - Anne Conrad
- Service des maladies infectieuses et tropicales, Hospices Civils de Lyon, 69004 Lyon, France; Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude-Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France; Université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - Florence Ader
- Service des maladies infectieuses et tropicales, Hospices Civils de Lyon, 69004 Lyon, France; Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude-Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France; Université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - Odile Launay
- Inserm, CIC 1417, F-CRIN, Innovative clinical research network in vaccinology (I-REIVAC), 75014 Paris, France; Université de Paris, 75014 Paris, France; Assistance Publique-Hôpitaux de Paris, CIC Cochin Pasteur, Hôpital Cochin Paris, 75014 Paris, France.
| |
Collapse
|
43
|
Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. Vaccines (Basel) 2020; 8:vaccines8010132. [PMID: 32192117 PMCID: PMC7157650 DOI: 10.3390/vaccines8010132] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is a major pathogen causing pneumonia with over 2 million deaths annually, especially in young children and the elderly. To date, at least 98 different pneumococcal capsular serotypes have been identified. Currently, the vaccines for prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes and are unable to protect against non-vaccine serotypes and unencapsulated S. pneumoniae. This has led to a rapid increase in antibiotic-resistant non-vaccine serotypes. Hence, there is an urgent need to develop new, effective, and affordable pneumococcal vaccines, which could cover a wide range of serotypes. This review discusses the new approaches to develop effective vaccines with broad serotype coverage as well as recent development of promising pneumococcal vaccines in clinical trials. New vaccine candidates are the inactivated whole-cell vaccine strain (Δpep27ΔcomD mutant) constructed by mutations of specific genes and several protein-based S. pneumoniae vaccines using conserved pneumococcal antigens, such as lipoprotein and surface-exposed protein (PspA). Among the vaccines in Phase 3 clinical trials are the pneumococcal conjugate vaccines, PCV-15 (V114) and 20vPnC. The inactivated whole-cell and several protein-based vaccines are either in Phase 1 or 2 trials. Furthermore, the recent progress of nanoparticles that play important roles as delivery systems and adjuvants to improve the performance, as well as the immunogenicity of the nanovaccines, are reviewed.
Collapse
|
44
|
Morais V, Texeira E, Suarez N. Next-Generation Whole-Cell Pneumococcal Vaccine. Vaccines (Basel) 2019; 7:E151. [PMID: 31623286 PMCID: PMC6963273 DOI: 10.3390/vaccines7040151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae remains a major public health hazard. Although Pneumococcal Conjugate Vaccines (PCVs) are available and have significantly reduced the rate of invasive pneumococcal diseases, there is still a need for new vaccines with unlimited serotype coverage, long-lasting protection, and lower cost to be developed. One of the most promising candidates is the Whole-Cell Pneumococcal Vaccine (WCV). The new generation of whole-cell vaccines is based on an unencapsulated serotype that allows the expression of many bacterial antigens at a lower cost than a recombinant vaccine. These vaccines have been extensively studied, are currently in human trial phase 1/2, and seem to be the best treatment choice for pneumococcal diseases, especially for developing countries.
Collapse
Affiliation(s)
- Victor Morais
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo 11600, Uruguay.
| | - Esther Texeira
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo 11600, Uruguay.
| | - Norma Suarez
- Department of Biotechnology, Institute of Hygiene, Faculty of Medicine, University of the Republic, Montevideo 11600, Uruguay.
| |
Collapse
|
45
|
Adnan M, Ali S, Sheikh K, Amber R. Review on antibacterial activity of Himalayan medicinal plants traditionally used to treat pneumonia and tuberculosis. J Pharm Pharmacol 2019; 71:1599-1625. [DOI: 10.1111/jphp.13156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/28/2019] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
The main objective of this review was to collect scattered literature on ethnomedicinal plants used to treat pneumonia and tuberculosis in the Himalayan region and their in-vitro validation against bacterial pathogens.
Key findings
Current review contains information on ethnomedicines of total 137 plants from Himalaya region. Out of these, 59 plants have been studied in vitro against bacteria while seven plants extracts have been checked for their toxicological effects. The most commonly used plant families for pneumonia and tuberculosis therapy in the study region were Asteraceae, Bignoniaceae and Fabaceae (seven plants in each); of these, Curcuma longa L., Punica granatum L. and Justicia adhatoda L. carried the most inhibiting potential against Staphylococcus aureus and Streptococcus pneumoniae while that of Acalypha indica L. against Mycobacterium tuberculosis. Different compounds such as ascorbic acid, curcumin, vasicine, piperine, quercetin, myricetin and gallic acid being reportedly isolated from these plants possess antibacterial potential.
Summary
Himalayan region has variety of ethnomedicinal plants used against pneumonia and tuberculosis; however, studies on in-vivo activity, toxicology and mechanism of action are very limited. Hence, detailed investigation on these aspects needs to be carried out for the development of novel antibacterial drugs from the studied plant species.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Botany, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shandana Ali
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Khushboo Sheikh
- Department of Botany, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Rahila Amber
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
46
|
Feng S, Xiong C, Wang S, Guo Z, Gu G. Semisynthetic Glycoconjugate Vaccines To Elicit T Cell-Mediated Immune Responses and Protection against Streptococcus pneumoniae Serotype 3. ACS Infect Dis 2019; 5:1423-1432. [PMID: 31126171 DOI: 10.1021/acsinfecdis.9b00103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Streptococcus pneumoniae serotype 3 (ST3) is one of the main pneumococcal strains that can cause severe invasive diseases, but its current vaccines are relatively inefficient. To develop more effective ST3 vaccines, tetanus toxoid (TT) conjugates of the synthetic penta-, hexa-, hepta-, and octasaccharide analogs of ST3 capsular polysaccharide (CPS) were systematically studied. These conjugates, especially those of penta- and hexasaccharides, were demonstrated to induce extremely robust T cell-dependent immune responses in mouse. Various studies also revealed that the induced antibodies could recognize ST3 CPS and mediate in vitro opsonophagocytic killing of ST3 cells. It was proved ultimately that immunization with the hexasaccharide-TT conjugate could completely protect mice from ST3-caused infection and lung damage and significantly elongate mouse survival. It was proposed that this conjugate functions through the help of CD4+ T cells and via promoting Th cell differentiation into carbohydrate antigen-specific Th2 cells to establish humoral immunity. In conclusion, ST3 CPS hexasaccharide-TT was identified as a particularly promising ST3 vaccine candidate worthy of further investigation and development.
Collapse
Affiliation(s)
- Shaojie Feng
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Chenghe Xiong
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Subo Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, China
| | - Zhongwu Guo
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, China
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
47
|
Lu J, Guo J, Wang D, Yu J, Gu T, Jiang C, Kong W, Wu Y. Broad protective immune responses elicited by bacterium-like particle-based intranasal pneumococcal particle vaccine displaying PspA2 and PspA4 fragments. Hum Vaccin Immunother 2018; 15:371-380. [PMID: 30235046 DOI: 10.1080/21645515.2018.1526556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pneumoniae is an infectious pathogen mainly infecting host bodies through the respiratory system. An effective pneumococcal vaccine would be targeted to the mucosa and provide not only protection against invasive infection but also against colonization in the respiratory system. In the present work, we applied bacterium-like particles (BLPs) as an adjuvant for the development of a PspA mucosal vaccine, in which the PspA protein was displayed on the surface of BLPs. Intranasal immunization with the PspA-BLP pneumococcal vaccine, comprised of PspA2 from pneumococcal family 1 and PspA4 from pneumococcal family 2, not only induced a high level of serum IgG antibodies but also a high level of mucosal SIgA antibodies. Analysis of binding of serum antibodies to intact bacteria showed a broad coverage of binding to pneumococcal strains expressing PspA from clade 1 to 5. Immunization with the PspA-BLP vaccine conferred protection against fatal intranasal challenge with both PspA family 1 and family 2 pneumococcal strains regardless of serotype. Therefore, the PspA-BLP pneumococcal vaccine was demonstrated to be a promising strategy for mucosal immunization to enhance both systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Jingcai Lu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China.,b R&D center , Changchun BCHT Biotechnology co , Changchun , China
| | - Jieshi Guo
- c Department of Neonatology , The First Hospital of Jilin University , Changchun , China
| | - Dandan Wang
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| | - Jinfei Yu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| | - Tiejun Gu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| | - Chunlai Jiang
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| | - Wei Kong
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| | - Yongge Wu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| |
Collapse
|
48
|
Tong S, Amand C, Kieffer A, Kyaw MH. Trends in healthcare utilization and costs associated with pneumonia in the United States during 2008-2014. BMC Health Serv Res 2018; 18:715. [PMID: 30217156 PMCID: PMC6137867 DOI: 10.1186/s12913-018-3529-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Pneumonia is the leading cause of morbidity and mortality worldwide. Pneumococcal conjugate vaccines have reduced the burden of pneumonia, but data on the current burden of pneumonia and its impact on the healthcare system are needed to inform the development and use of new vaccines and other preventive measures. Methods We retrospectively analyzed the frequency of pneumonia in the US during 2008–2014 using data from the MarketScan® Commercial Claims and Encounters database. Frequencies of healthcare utilization related to the index pneumonia episode were calculated using the annual number of enrolled person-years (PY) as the denominator and the number of individuals with pneumonia as the numerator. Pneumonia-associated costs were calculated as mean payment per episode during the 2 years from 2013 to 2014. Results The overall annual healthcare utilization rate for pneumonia was 15.1 per 1000 PY and decreased slightly from 2008 to 2014 (from 15.4 to 13.5 per 1000 PY). Most pneumonia-related healthcare utilization was due to office/outpatient visits (10.3 per 1000 PY; 68.3%). Emergency department/urgent care visits (2.5 per 1000 PY; 16.9%) and hospitalizations (2.2 per 1000 PY; 14.8%) contributed less. Pneumonia-related healthcare utilization was highest in children < 5 years (rate per 1000 PY = 29.7 for < 1 year, 47.9 for 1 year, and 39.5 for 2–4 years) and adults > 65 years (45.0 per 1000 PY). The mean cost per pneumonia episode (95% confidence interval) was US$429.1 ($424.8–$433.4) for office/outpatient visits, $1126.9 ($1119.5–$1134.3) for emergency department/urgent care visits, and $10,962.5 ($10,822.8–$11,102.2) for hospitalization. Conclusions The burden of pneumonia on the US healthcare system remains substantial. The results presented here can help guide new vaccination strategies and other preventive interventions for reducing the remaining burden of pneumonia. Electronic supplementary material The online version of this article (10.1186/s12913-018-3529-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabine Tong
- IVIDATA Stats, 79 Rue Baudin, 92300, Levallois-Perret, France
| | - Caroline Amand
- Sanofi, 1 Avenue Pierre Brossolette, 91380, Chilly-Mazarin, France
| | - Alexia Kieffer
- Sanofi Pasteur, 14 Espace Henry Vallée, 69007, Lyon, France
| | - Moe H Kyaw
- Sanofi Pasteur, Swiftwater, 1 Discovery Drive, Swiftwater, PA, 18370, USA. .,Present address: Boehringer Ingelheim, 900 Ridgebury Road, Ridgefield, CT, 06877, USA.
| |
Collapse
|
49
|
Miguel MG, Gago C, Antunes MD, Lagoas S, Faleiro ML, Megías C, Cortés-Giraldo I, Vioque J, Figueiredo AC. Antibacterial, Antioxidant, and Antiproliferative Activities of Corymbia citriodora and the Essential Oils of Eight Eucalyptus Species. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E61. [PMID: 29933560 PMCID: PMC6163473 DOI: 10.3390/medicines5030061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022]
Abstract
Background: Essential oils (EOs) have shown antimicrobial, antioxidant, and antiproliferative activity, which may, alone or in combination with other substances, potentially be used for the development of new drugs. However, their chemical variability, depending on the species, varieties, or geographical origin (among other factors) determines different bioactivities that need to be evaluated. Methods: The antioxidant activity of Corymbia citriodora and eight Eucalyptus species EOs was determined using two different methods: the scavenging ability of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS+•) and peroxyl free radicals or oxygen radical absorbance capacity (ORAC). Antibacterial activity was evaluated using the microorganisms Streptococcus pneumoniae (strains D39 and TIGR4), and Haemophilus influenza (strain DSM 9999). The essential oils’ minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was assessed using a microdilution method. The antiproliferative activity was determined using the THP-1 cell line (human acute monocytic leukaemia) with methylthiazolyldiphenyl-tetrazolium bromide assay (MTT). Results:Corymbia citriodora and Eucalyptus viminalis EOs showed the highest ABTS and peroxyl free radical scavenging capacity. Eucalyptus globulus EO showed a high potential to treat Streptococcus pneumoniae infections. Haemophilus influenzae was the respiratory pathogen that showed the highest resistance to all EOs, including tea tree EO. After 96 h of incubation, at 25 μg/mL, Eucalyptus radiata and Eucalyptus viminalis EOs showed highest cytotoxic activity against the THP-1 cell line. Conclusions: Despite their specific bioactivities, no single EO showed simultaneously good antioxidant, antimicrobial, and antiproliferative activity.
Collapse
Affiliation(s)
- Maria Graça Miguel
- Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, MeditBio, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Custódia Gago
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Maria Dulce Antunes
- CEOT/MeditBio Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Potugal.
| | - Soraia Lagoas
- Centre for Biomedical Research (CBMR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Potugal.
| | - Maria Leonor Faleiro
- Centre for Biomedical Research (CBMR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Potugal.
| | - Cristina Megías
- Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain.
| | - Isabel Cortés-Giraldo
- Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain.
| | - Javier Vioque
- Instituto de la Grasa (C.S.I.C.), Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain.
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal (CBV), DBV, C2, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|