1
|
Wang X, Xie L, Liu C. CCR2 antagonist attenuates calcium oxalate-induced kidney oxidative stress and inflammation by regulating macrophage activation. Exp Anim 2024; 73:211-222. [PMID: 38199255 PMCID: PMC11091353 DOI: 10.1538/expanim.23-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
C-C chemokine receptor type 2 (CCR2) is a monocyte chemokine associated with oxidative stress and inflammation. Kidney stones (KS) are composed of calcium oxalate (CaOx), which trigger renal oxidative stress and inflammatory. This study aims to evaluate the effects of CCR2 on KS in vivo and in vitro. Eight-week-old male C57BL/6J mice were intraperitoneally injected with glyoxylate (GOX) daily to establish a KS model, and along with CCR2 antagonist (INCB3344) treatment on days 2, 4, and 6. The results showed that CCR2 antagonist reduced renal injury markers (blood urea nitrogen and serum creatinine), alleviated renal tubular injury and CaOx crystal deposition. CCR2 antagonist also decreased CCR2 expression induced by GOX treatment and increased Nrf2 expression. GOX treatment promoted malondialdehyde (MDA) production, decreased glutathione (GSH) content, and inhibited catalase (CAT) and superoxide dismutase (SOD) activity, however, CCR2 antagonist attenuated the above effects of GOX. CCR2 antagonist had inhibitory effects on GOX-induced inflammatory cytokine expression (IL1B, IL6 and MCP1), and inhibited apoptosis by increasing Bcl-2 expression and decreasing Bax and cleaved-caspase 3 expression. In vitro experiments were performed by co-culture model of CaOx-induced damaged HK-2 cells and macrophage-like THP-1 cells. CCR2 antagonist inhibited CaOx-induced THP-1 cell M1 polarization by decreasing the TNF-α, IL6 and iNOS levels, and further alleviated CaOx-induced oxidative stress damage, inflammatory response and apoptosis of HK-2 cells. The study suggests that CCR2 antagonist may be resistant to CaOx crystals-induced oxidative stress and inflammation by inhibiting macrophage M1 polarization.
Collapse
Affiliation(s)
- Xinpeng Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, P.R. China
| | - Linguo Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, P.R. China
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin 300211, P.R. China
| |
Collapse
|
2
|
Hitefield NL, Mackay S, Hays LE, Chen S, Oduor IO, Troyer DA, Nyalwidhe JO. Differential Activation of NRF2 Signaling Pathway in Renal-Cell Carcinoma Caki Cell Lines. Biomedicines 2023; 11:biomedicines11041010. [PMID: 37189628 DOI: 10.3390/biomedicines11041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Renal-cell carcinoma (RCC) is a heterogeneous disease consisting of several subtypes based on specific genomic profiles and histological and clinical characteristics. The subtype with the highest prevalence is clear-cell RCC (ccRCC), next is papillary RCC (pRCC), and then chromophobe RCC (chRCC). The ccRCC cell lines are further subdivided into prognostic expression-based subtypes ccA or ccB. This heterogeneity necessitates the development, availability, and utilization of cell line models with the correct disease phenotypic characteristics for RCC research. In this study, we focused on characterizing proteomic differences between the Caki-1 and Caki-2 cell lines that are commonly used in ccRCC research. Both cells are primarily defined as human ccRCC cell lines. Caki-1 cell lines are metastatic, harboring wild-type VHL, whereas Caki-2 are considered as the primary ccRCC cell lines expressing wild-type von Hippel–Lindau protein (pVHL). Here, we performed a comprehensive comparative proteomic analysis of Caki-1 and Caki-2 cells using tandem mass-tag reagents together with liquid chromatography mass spectrometry (LC/MS) for the identification and quantitation of proteins in the two cell lines. Differential regulation of a subset of the proteins identified was validated using orthogonal methods including western blot, q-PCR, and immunofluorescence assays. Integrative bioinformatic analysis identifies the activation/inhibition of specific molecular pathways, upstream regulators, and causal networks that are uniquely regulated and associated with the two cell lines and RCC subtypes, and potentially the disease stage. Altogether, we have identified multiple molecular pathways, including NRF2 signaling, which is the most significantly activated pathway in Caki-2 versus Caki-1 cells. Some of the differentially regulated molecules and signaling pathways could serve as potential diagnostic and prognostic biomarkers and therapeutic targets amongst ccRCC subtypes.
Collapse
|
3
|
Naghibi N, Sadeghi A, Movahedinia S, Rahimi Naiini M, Rajizadeh MA, Bahri F, Nazari-Robati M. Ellagic acid ameliorates aging-induced renal oxidative damage through upregulating SIRT1 and NRF2. BMC Complement Med Ther 2023; 23:77. [PMID: 36899375 PMCID: PMC9999491 DOI: 10.1186/s12906-023-03907-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Aging is associated with impaired renal function and structural alterations. Oxidative stress plays a vital role in renal senescence and damage. Sirtuin 1 (SIRT1) is thought to protect cells from oxidative stress through nuclear factor erythroid 2-related factor 2 (NRF2). Ellagic acid (EA), a natural antioxidant, has been demonstrated to have renoprotective roles in vitro and in vivo. This study investigated if SIRT1 and NRF2 mediate the protective effects of EA in aged kidneys. METHODS Male Wistar rats were divided into three groups including young (4 months), old, and old + EA (25 months). Young and old groups received EA solvent, while the old + EA group was treated with EA (30 mg/kg) by gavage for 30 days. Then, the level of renal oxidative stress, SIRT1 and NRF2 expression, kidney function parameters, and histopathological indices were measured. RESULTS Treatment with EA significantly increased the level of antioxidant enzymes and reduced malondialdehyde concentration (P < 0.01). Moreover, EA administration remarkably upregulated mRNA and protein levels of SIRT1 and NRF2 as well as deacetylated NRF2 protein (P < 0.05). Additionally, EA treated rats improved kidney function and histopathological scores (P < 0.05). CONCLUSIONS These findings suggest that ellagic acid exerts protective effects on aged kidneys by activating SIRT1 and NRF2 signaling.
Collapse
Affiliation(s)
- Niloufar Naghibi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjadeh Movahedinia
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdis Rahimi Naiini
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Faegheh Bahri
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Dodson M, Shakya A, Anandhan A, Chen J, Garcia JG, Zhang DD. NRF2 and Diabetes: The Good, the Bad, and the Complex. Diabetes 2022; 71:2463-2476. [PMID: 36409792 PMCID: PMC9750950 DOI: 10.2337/db22-0623] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Despite decades of scientific effort, diabetes continues to represent an incredibly complex and difficult disease to treat. This is due in large part to the multifactorial nature of disease onset and progression and the multiple organ systems affected. An increasing body of scientific evidence indicates that a key mediator of diabetes progression is NRF2, a critical transcription factor that regulates redox, protein, and metabolic homeostasis. Importantly, while experimental studies have confirmed the critical nature of proper NRF2 function in preventing the onset of diabetic outcomes, we have only just begun to scratch the surface of understanding the mechanisms by which NRF2 modulates diabetes progression, particularly across different causative contexts. One reason for this is the contradictory nature of the current literature, which can often be accredited to model discrepancies, as well as whether NRF2 is activated in an acute or chronic manner. Furthermore, despite therapeutic promise, there are no current NRF2 activators in clinical trials for the treatment of patients with diabetes. In this review, we briefly introduce the transcriptional programs regulated by NRF2 as well as how NRF2 itself is regulated. We also review the current literature regarding NRF2 modulation of diabetic phenotypes across the different diabetes subtypes, including a brief discussion of contradictory results, as well as what is needed to progress the NRF2 diabetes field forward.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Jinjing Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
- Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
5
|
Al-Yassiri AK, Hadi NR, Altemimi M, Qassam H, Hameed AMA. NEPHROPROTECTIVE EFFECT OF OLMESARTAN ON RENAL ISCHEMIA REPERFUSION INJURY IN MALE RATS: THE ROLE OF NRF2/HO-1 SIGNALING PATHWAY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:2791-2803. [PMID: 36591770 DOI: 10.36740/wlek202211213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim: To investigate the Nephroprotective potential of Olmesartan in RIRI via modulation of the Nrf2/OH-1 signaling pathway. PATIENTS AND METHODS Materials and methods: Thirty male rats were equally divided into four groups. The sham group was exposed to surgical conditions without induction of RIRI. The control group was exposed to ischemia by clamping the renal pedicles for 30 min, followed by 2h of blood restoration. The vehicle-treated group was received dimethyl sulfoxide (DMSO) by intraperitoneal injection (IP) 30 min before clamping. RESULTS Results: Olmesartan-treated group was pretreated with Olmesartan a dose of 10 mg/kg IP; 30 min prior to induction of ischemia. Following 30 min of ischemia, the clamps were released and allowed to the reperfusion for 2 h. Blood samples were collected to examine the levels of serum urea and creatinine. Kidney tissue was used to measure the levels of cytokines (TNFα, IL6, MCP, BAX, BCL2 and isoprostane F2. Immunohistochemistry was used to assess the levels of Nrf2 and HO-1. Histological analyses were used to detect the tubular damage in the kidney. CONCLUSION Conclusions: The results showed that Olmesartan alleviates renal tissue damage through activating the antioxidant effect mediated by Nrf2 signaling.
Collapse
Affiliation(s)
- Alaa K Al-Yassiri
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Najah R Hadi
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Murooj Altemimi
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Heider Qassam
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| | - Ahmed M Abdul Hameed
- DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS, FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
6
|
Carreño M, Pires MF, Woodcock SR, Brzoska T, Ghosh S, Salvatore SR, Chang F, Khoo NKH, Dunn M, Connors N, Yuan S, Straub AC, Wendell SG, Kato GJ, Freeman BA, Ofori-Acquah SF, Sundd P, Schopfer FJ, Vitturi DA. Immunomodulatory actions of a kynurenine-derived endogenous electrophile. SCIENCE ADVANCES 2022; 8:eabm9138. [PMID: 35767602 PMCID: PMC9242454 DOI: 10.1126/sciadv.abm9138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The up-regulation of kynurenine metabolism induces immunomodulatory responses via incompletely understood mechanisms. We report that increases in cellular and systemic kynurenine levels yield the electrophilic derivative kynurenine-carboxyketoalkene (Kyn-CKA), as evidenced by the accumulation of thiol conjugates and saturated metabolites. Kyn-CKA induces NFE2 like bZIP transcription factor 2- and aryl hydrocarbon receptor-regulated genes and inhibits nuclear factor κB- and NLR family pyrin domain containing 3-dependent proinflammatory signaling. Sickle cell disease (SCD) is a hereditary hemolytic condition characterized by basal inflammation and recurrent vaso-occlusive crises. Both transgenic SCD mice and patients with SCD exhibit increased kynurenine and Kyn-CKA metabolite levels. Plasma hemin and kynurenine concentrations are positively correlated, indicating that Kyn-CKA synthesis in SCD is up-regulated during pathogenic vascular stress. Administration of Kyn-CKA abrogated pulmonary microvasculature occlusion in SCD mice, an important factor in lung injury development. These findings demonstrate that the up-regulation of kynurenine synthesis and its metabolism to Kyn-CKA is an adaptive response that attenuates inflammation and protects tissues.
Collapse
Affiliation(s)
- Mara Carreño
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria F. Pires
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R. Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tomasz Brzoska
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samit Ghosh
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sonia R. Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fei Chang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas K. H. Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Dunn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora Connors
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shuai Yuan
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Microvascular Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Solomon F. Ofori-Acquah
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francisco J. Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dario A. Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Cadmium-Induced Kidney Injury in Mice Is Counteracted by a Flavonoid-Rich Extract of Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, via the Enhancement of Different Defense Mechanisms. Biomedicines 2021; 9:biomedicines9121797. [PMID: 34944613 PMCID: PMC8698830 DOI: 10.3390/biomedicines9121797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is considered the kidney, where it accumulates. No effective treatment for Cd poisoning is available so that several therapeutic approaches were proposed to prevent damages after Cd exposure. We evaluated the effects of a flavonoid-rich extract of bergamot juice (BJe), alone or in association with curcumin (Cur) and resveratrol (Re), in the kidney of mice exposed to cadmium chloride (CdCl2). Male mice were administered with CdCl2 and treated with Cur, Re, or BJe alone or in combination for 14 days. The kidneys were processed for biochemical, structural and morphometric evaluation. Cd treatment significantly increased urea nitrogen and creatinine levels, along with tp53, Bax, Nos2 and Il1b mRNA, while reduced that of Bcl2, as well as glutathione (GSH) content and glutathione peroxidase (GPx) activity. Moreover, Cd caused damages to glomeruli and tubules, and increased Nrf2, Nqo1 and Hmox1 gene expression. Cur, Re and BJe at 40 mg/kg significantly improved all parameters, while BJe at 20 mg/kg showed a lower protective effect. After treatment with the associations of the three nutraceuticals, all parameters were close to normal, thus suggesting a new potential strategy in the protection of renal functions in subjects exposed to environmental toxicants.
Collapse
|
8
|
Bai X, Nie P, Lou Y, Zhu Y, Jiang S, Li B, Luo P. Pirfenidone is a renal protective drug: Mechanisms, signalling pathways, and preclinical evidence. Eur J Pharmacol 2021; 911:174503. [PMID: 34547247 DOI: 10.1016/j.ejphar.2021.174503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022]
Abstract
Renal fibrosis, a characteristic of all chronic kidney diseases, lacks effective therapeutic drugs currently. Pirfenidone (PFD), a small molecule drug with good oral bioavailability, is widely used in idiopathic pulmonary fibrosis and exerts anti-fibrotic, anti-inflammatory, antioxidant, and anti-apoptotic effects. These effects have been attributed to the suppression of cell growth factors (in particular, but not exclusively, transforming growth factor-β) and the epithelial-mesenchymal transition, as well as the possible down-regulation of pro-inflammatory mediators (such as tumour necrosis factor-α), the protection of mitochondrial function, and the regulation of inflammatory cells. Considering the activation of similar anti-fibrotic pathways in lung and kidney disease and the broad activity of PFD, this drug has improved the treatment of the renal fibrotic disease. In this review, we briefly summarize the pharmacokinetics and safety of PFD as well as the mechanisms of PFD focusing on kidney disease. We summarize the effects of PFD on renal function and pathological alterations based on animal experiments, as well as changes in growth factors based on both animal and renal cell experiments. Moreover, given the activation of similar profibrotic pathways in pulmonary diseases and other disorders, we reviewed in-depth the possible signalling pathways targeted by PFD to attenuate renal fibrosis and protect renal function. Finally, we provide an overview of the current clinical trials of PFD for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
9
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: Insights into disease and dysfunction networks. Life Sci 2021; 285:119943. [PMID: 34516992 DOI: 10.1016/j.lfs.2021.119943] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
10
|
Yassin NYS, AbouZid SF, El-Kalaawy AM, Ali TM, Elesawy BH, Ahmed OM. Tackling of Renal Carcinogenesis in Wistar Rats by Silybum marianum Total Extract, Silymarin, and Silibinin via Modulation of Oxidative Stress, Apoptosis, Nrf2, PPAR γ, NF- κB, and PI3K/Akt Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7665169. [PMID: 34630852 PMCID: PMC8497111 DOI: 10.1155/2021/7665169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
The present work was designed to assess the efficacy of Silybum marianum total extract (STE), silymarin (Sm), and silibinin (Sb) against experimentally induced renal carcinogenesis in male Wistar rats and their roles in regulating oxidative stress, inflammation, apoptosis, and carcinogenesis. The diethylnitrosamine (DEN)/2-acetylaminofluorene (AAF)/carbon tetrachloride (CCl4)-administered rats were orally treated with STE (200 mg/kg b.w.), Sm (150 mg/kg b.w.), and Sb (5 mg/kg b.w.) every other day either from the 1st week or from the 16th week of carcinogen administration to the end of 25th week. The treatments with STE, Sm, and Sb attenuated markers of toxicity in serum, decreased kidney lipid peroxidation (LPO), and significantly reinforced the renal antioxidant armory. The biochemical results were further confirmed by the histopathological alterations. The treatments also led to suppression of proinflammatory mediators such as NF-κβ, p65, Iκβα, and IL-6 in association with inhibition of the PI3K/Akt pathway. Furthermore, they activated the expressions of PPARs, Nrf2, and IL-4 in addition to downregulation of apoptotic proteins p53 and caspase-3 and upregulation of antiapoptotic mediator Bcl-2. The obtained data supply potent proof for the efficacy of STE, Sm, and Sb to counteract renal carcinogenesis via alteration of varied molecular pathways.
Collapse
Affiliation(s)
- Nour Y. S. Yassin
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sameh F. AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Asmaa M. El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
11
|
Abstract
Significance: Kidney diseases remain a worldwide public health problem resulting in millions of deaths each year; they are characterized by progressive destruction of renal function by sustained inflammation. Pyroptosis is a lytic type of programmed cell death involved in inflammation, as well as a key fibrotic mechanism that is critical in the development of kidney pathology. Pyroptosis is induced by the cleavage of Gasdermins by various caspases and is executed by the insertion of the N-terminal fragment of cleaved Gasdermins into the plasma membrane, creating oligomeric pores and allowing the release of diverse proinflammatory products into the extracellular space. Inflammasomes are multiprotein complexes leading to the activation of caspase-1, which will cleave Gasdermin D, releasing several proinflammatory cytokines; this results in the initiation and amplification of the inflammatory response. Recent Advances: The efficacy of Gasdermin D cleavage is reduced by a change in the redox balance. Recently, several studies have shown that the attenuation of reactive oxygen species (ROS) production induced by antioxidant pathways results in a reduction of renal pyroptosis. In this review, we discuss the role of pyroptosis in the pathogenesis of chronic kidney disease (CKD) and acute kidney disease; summarize the clinical outcomes and different molecular mechanisms leading to Gasdermin activation; and examine studies about the capacity of antioxidants, particularly Nrf2 activators, to ameliorate Gasdermin activity. Future Directions: We illustrate the potential influence of the deregulation of redox balance on inflammasome activity and pyroptosis as a novel therapeutic approach for the treatment of kidney diseases. Antioxid. Redox Signal. 35, 40-60.
Collapse
Affiliation(s)
- Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
12
|
Choi BH, Kim JM, Kwak MK. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch Pharm Res 2021; 44:263-280. [PMID: 33754307 DOI: 10.1007/s12272-021-01316-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor erythroid 2-like 2 (NEF2L2; NRF2) plays crucial roles in the defense system against electrophilic or oxidative stress by upregulating an array of genes encoding antioxidant proteins, electrophile/reactive oxygen species (ROS) detoxifying enzymes, and drug efflux transporters. In contrast to the protective roles in normal cells, the multifaceted role of NRF2 in tumor growth and progression, resistance to therapy and intratumoral stress, and metabolic adaptation is rapidly expanding, and the complex association of NRF2 with cancer signaling networks is being unveiled. In particular, the implication of NRF2 signaling in cancer stem cells (CSCs), a small population of tumor cells responsible for therapy resistance and tumor relapse, is emerging. Here, we described the dark side of NRF2 signaling in cancers discovered so far. A particular focus was put on the role of NRF2 in CSCs maintenance and therapy resistance, showing that low ROS levels and refractory drug response of CSCs are mediated by the activation of NRF2 signaling. A better understanding of the roles of the NRF2 pathway in CSCs will allow us to develop a novel therapeutic approach to control tumor relapse after therapy.
Collapse
Affiliation(s)
- Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, 42472, Republic of Korea
| | - Jin Myung Kim
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
13
|
Zhu D, Zhao Y, Luo Y, Qian X, Zhang Z, Jiang G, Guo F. Irg1-itaconate axis protects against acute kidney injury via activation of Nrf2. Am J Transl Res 2021; 13:1155-1169. [PMID: 33841646 PMCID: PMC8014393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Acute kidney injury (AKI) is a common clinical implication with increased tissue damage, uncontrolled immune responses, and risk of mortality, in which ischemia-reperfusion injury (IRI) is one of the leading causes. As critical role for metabolic remodeling in inflammation, Irg1-itaconate axis has received much attention for its immunomodulation in the control of the inflammation. However, its role in the AKI and IRI remains unknown. Here, we found that Irg1 expression was negatively correlated with the expression of inflammatory cytokines during ischemia-reperfusion injury. And Irg1 deficiency promotes renal inflammation and ischemia-reperfusion injury in vivo. Itaconate treatment promoted the survival of WT mice from lethal ischemia and protected against renal IRI and systemic inflammation. Mechanistically, dimethyl itaconate protected renal cells from oxidative stress and prevented macrophage activation by enhancing the translocation of Nrf2 into the nuclei. Our study highlighted the importance of the Irg1-itaconate axis in the protecting against ischemia-reperfusion injury and acute kidney injury, providing potential therapeutic targets to control AKI.
Collapse
Affiliation(s)
- Dongdong Zhu
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, PR China
| | - Yuanyu Zhao
- Department of Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, PR China
| | - Yi Luo
- Department of Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, PR China
| | - Xiaoqian Qian
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, PR China
| | - Zhen Zhang
- Department of Urology, The Linyi People’s HospitalLinyi, Shandong Province, PR China
| | - Gengru Jiang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, PR China
| | - Fengfu Guo
- Department of Urology, The Linyi People’s HospitalLinyi, Shandong Province, PR China
| |
Collapse
|
14
|
Food-Derived Pharmacological Modulators of the Nrf2/ARE Pathway: Their Role in the Treatment of Diseases. Molecules 2021; 26:molecules26041016. [PMID: 33671866 PMCID: PMC7918973 DOI: 10.3390/molecules26041016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress, which refers to unbalanced accumulation of reactive oxygen species (ROS) levels in cells, has been linked to acute and chronic diseases. Nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays a vital role in regulating cytoprotective genes and enzymes in response to oxidative stress. Therefore, pharmacological regulation of Nrf2/ARE pathway is an effective method to treat several diseases that are mainly characterized by oxidative stress and inflammation. Natural products that counteract oxidative stress by modulating Nrf2 have contributed significantly to disease treatment. In this review, we focus on bioactive compounds derived from food that are Nrf2/ARE pathway regulators and describe the molecular mechanisms for regulating Nrf2 to exert favorable effects in experimental models of diseases.
Collapse
|
15
|
Parisi M, Manni A, Caputo F, Trojano M, Paolicelli D. A case report of late-onset atypical Hemolytic Uremic Syndrome during interferon beta in multiple sclerosis: Open issues in literature review. Brain Behav 2021; 11:e01930. [PMID: 33325640 PMCID: PMC7821561 DOI: 10.1002/brb3.1930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND AIMS Interferon beta (IFNβ) is a well-established first-line therapy for relapsing-remitting multiple sclerosis (RRMS) patients and remains the most widely prescribed agent. Atypical hemolytic uremic syndrome (aHUS) represents a rare but severe adverse effect (AE) that could occur even after many years from the beginning of IFNβ therapy. Eculizumab is currently approved for treatment of aHUS and recently for neuromyelitis optica spectrum disorder (NMOSD) with aquaporin-4 antibodies (AQP4-IgG). In this article, we report the case of the latest onset of IFNβ-related aHUS experienced by an MS patient and we briefly review the literature on this topic. METHODS We performed a systematic review of the literature using PubMed, and we performed a retrospective analysis of RRMS patients that received IFNβ-1a in our center and developed thrombotic microangiopathy (TMA). From this search, we identified only one patient. RESULTS In the published literature, we identified 24 MS patients who received IFNβ as disease-modifying treatment (DMT) and then developed thrombotic microangiopathy with kidney injury. The aHUS has been diagnosed in 6, all received IFNβ-1a and the latest onset was after 15 years. We report a case of a 39-year-old man affected by RRMS who assumed IFNβ-1a since 1999. In July 2018, he developed an IFNβ-related aHUS. After the failure of plasma exchange, he underwent eculizumab, with an improvement of glomerular filtration rate and without new signs of MS activity. CONCLUSION To our knowledge, this case represents the latest onset of IFNβ-related aHUS in MS patients. Up to now, there are not literary reports about the possibility to reintroduce a DMT as add-on therapy to eculizumab.
Collapse
Affiliation(s)
- Mosè Parisi
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Alessia Manni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Francesca Caputo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Damiano Paolicelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
16
|
Clerici S, Boletta A. Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma. Cancers (Basel) 2020; 12:E3458. [PMID: 33233657 PMCID: PMC7699726 DOI: 10.3390/cancers12113458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
NRF2 is a transcription factor that coordinates the antioxidant response in many different tissues, ensuring cytoprotection from endogenous and exogenous stress stimuli. In the kidney, its function is essential in appropriate cellular response to oxidative stress, however its aberrant activation supports progression, metastasis, and resistance to therapies in renal cell carcinoma, similarly to what happens in other nonrenal cancers. While at the moment direct inhibitors of NRF2 are not available, understanding the molecular mechanisms that regulate its hyperactivation in specific tumor types is crucial as it may open new therapeutic perspectives. Here, we focus our attention on renal cell carcinoma, describing how NRF2 hyperactivation can contribute to tumor progression and chemoresistance. Furthermore, we highlight the mechanism whereby the many pathways that are generally altered in these tumors converge to dysregulation of the KEAP1-NRF2 axis.
Collapse
Affiliation(s)
| | - Alessandra Boletta
- IRCCS San Raffaele Scientific Institute, Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, 20132 Milan, Italy;
| |
Collapse
|
17
|
Wang Z, Wang L, Luo J, Zhang J. Protection against acute renal injury by naturally occurring medicines which act through Nrf2 signaling pathway. J Food Biochem 2020; 45:e13556. [PMID: 33152804 DOI: 10.1111/jfbc.13556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
The cellular defense pathway plays a key role in maintaining the homeostasis, tissues and organisms. Nuclear factor E2-related factor 2 (Nrf2), as a key cell signaling pathway, plays an important role in encoding detoxification enzymes and other stress response mediators. Recent studies have shown that it is closely related to the prevention and treatment of acute kidney injury (AKI). Therefore, this article reviews the protective effects of Nrf2-related signaling pathways on acute kidney injury, and summarizes the strategies of natural pharmaceutical ingredients such as flavonoids, alkaloids, terpenes, phenylpropionic acid, polyphenols, and polysaccharides to prevent and treat acute kidney injury. It is of great significance to further study the relationship between Nrf2 regulated signal pathway and kidney disease and the development of new medicines for acute kidney injury treatment. It can also provide new ideas and treatment strategies for clinical treatment of acute kidney injury. PRACTICAL APPLICATIONS: This article reviewed the mechanisms by which the active ingredients of natural medicines slow down acute kidney injury through the Nrf2 pathway. It will help us to understand the regulatory role of the Nrf2 pathway in AKI more comprehensively, and provide a theoretical basis for further exploring the mechanism of more natural drugs to reduce acute kidney injury.
Collapse
Affiliation(s)
- Zhenyi Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Lulu Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China.,Changchun Institute of Technology School of Medicine, Changchun, China
| | - Jiacheng Luo
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China.,Changchun Institute of Technology School of Medicine, Changchun, China
| |
Collapse
|
18
|
Beck KF, Pfeilschifter J. Gasotransmitter synthesis and signalling in the renal glomerulus. Implications for glomerular diseases. Cell Signal 2020; 77:109823. [PMID: 33152441 DOI: 10.1016/j.cellsig.2020.109823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023]
Abstract
Glomerular injury is a hallmark of kidney diseases such as diabetic nephropathy, IgA nephropathy or other forms of glomerulonephritis. Glomerular endothelial cells, mesangial cells, glomerular epithelial cells (podocytes) and, in an inflammatory context, infiltrating immune cells crosstalk to mediate signalling processes in the glomerulus. Under physiological conditions, mesangial cells act by the control of extracellular matrix production and degradation, by the synthesis of growth factors and by preserving a well-defined crosstalk with glomerular podocytes and endothelial cells to regulate glomerular structure and function. It is well known that mesangial cells are able to amplify an inflammatory process by the formation of cytokines, reactive oxygen species (ROS) and nitric oxide (NO). This exaggerated reaction may result in a vicious cycle with subsequent damage of neighboured podocytes and endothelial cells, loss of the filtration barrier and, finally destruction of the whole glomerulus. Unfortunately, all efforts to develop new therapies for the treatment of glomerular diseases by controlling unbridled ROS or NO production directly had so far no success. However, on-going research on ROS and NO defined these autacoids more as important signalling molecules than as endogenously produced cytotoxic compounds. New findings on signalling activities of ROS, NO but also hydrogen sulfide (H2S) and carbon monoxide (CO) supported this paradigm shift. Because of their similar chemical properties and their similar signal transduction capacities, NO, H2S and CO are meanwhile designated as the group of gasotransmitters. In this review, we describe the current knowledge of the signalling properties of gasotransmitters with a focus on glomerular cells and their role in glomerular diseases.
Collapse
Affiliation(s)
- Karl-Friedrich Beck
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Germany.
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Hejazian SM, Hosseiniyan Khatibi SM, Barzegari A, Pavon-Djavid G, Razi Soofiyani S, Hassannejhad S, Ahmadian E, Ardalan M, Zununi Vahed S. Nrf-2 as a therapeutic target in acute kidney injury. Life Sci 2020; 264:118581. [PMID: 33065149 DOI: 10.1016/j.lfs.2020.118581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Multifaceted cellular pathways exhibit a crucial role in the preservation of homeostasis at the molecular, cellular, and organism levels. One of the most important of these protective cascades is Nuclear factor E2-related factor (Nrf-2) that regulates the expression of several genes responsible for cellular detoxification, antioxidant function, anti-inflammation, drug/xenobiotic transportation, and stress-related factors. A growing body of evidence provides information regarding the protective role of Nrf-2 against a number of kidney diseases. Acute kidney injury (AKI) is a substantial clinical problem that causes a huge social burden. In the kidneys, Nrf-2 exerts a dynamic role in improving the injury triggered by inflammation and oxidative stress. Understanding of the exact molecular mechanisms underlying AKI is vital in order to determine the equilibrium between renal adaptation and malfunction and thus reduce disease progression. This review highlights the role of Nrf-2 targeting against AKI and provides evidence that targeting Nrf-2 to prevail oxidative damage and its consequences might exhibit protective effects in kidney diseases.
Collapse
Affiliation(s)
- Seyyedeh Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Paris, France
| | | | - Sina Hassannejhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Development and Coordination Center (RDCC), Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
20
|
De Miguel C, Kraus AC, Saludes MA, Konkalmatt P, Ruiz Domínguez A, Asico LD, Latham PS, Offen D, Jose PA, Cuevas S. ND-13, a DJ-1-Derived Peptide, Attenuates the Renal Expression of Fibrotic and Inflammatory Markers Associated with Unilateral Ureter Obstruction. Int J Mol Sci 2020; 21:ijms21197048. [PMID: 32987947 PMCID: PMC7582723 DOI: 10.3390/ijms21197048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
DJ-1 is a redox-sensitive chaperone with reported antioxidant and anti-inflammatory properties in the kidney. The 20 amino acid (aa) peptide ND-13 consists of 13 highly conserved aas from the DJ-1 sequence and a TAT-derived 7 aa sequence that helps in cell penetration. This study aimed to determine if ND-13 treatment prevents the renal damage and inflammation associated with unilateral ureter obstruction (UUO). Male C57Bl/6 and DJ-1-/- mice underwent UUO and were treated with ND-13 or vehicle for 14 days. ND-13 attenuated the renal expression of fibrotic markers TGF-β and collagen1a1 (Col1a1) and inflammatory markers TNF-α and IL-6 in C57Bl/6 mice. DJ-1-/- mice treated with ND-13 presented similar decreased expression of TNF-α, IL-6 and TGF-β. However, in contrast to C57Bl/6 mice, ND-13 failed to prevent renal fibrosis or to ameliorate the expression of Col1a1 in this genotype. Further, UUO led to elevated urinary levels of the proximal tubular injury marker neutrophil gelatinase-associated lipocalin (NGAL) in DJ-1-/- mice, which were blunted by ND-13. Our results suggest that ND-13 protects against UUO-induced renal injury, inflammation and fibrosis. These are all crucial mechanisms in the pathogenesis of kidney injury. Thus, ND-13 may be a new therapeutic approach to prevent renal diseases.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL 35233, USA;
- Correspondence: (C.D.M.); (S.C.); Tel.: +1-(205)-934-2430 (C.D.M.); +34-(868)-885-038 (S.C.)
| | - Abigayle C. Kraus
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL 35233, USA;
| | - Mitchell A. Saludes
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Prasad Konkalmatt
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Almudena Ruiz Domínguez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, 30120 Murcia, Spain;
| | - Laureano D. Asico
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Patricia S. Latham
- Pathology and Internal Medicine The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA;
| | - Daniel Offen
- Neuroscience Laboratory, The Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Pedro A. Jose
- Department of Medicine, Division of Renal Diseases & Hypertension and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA; (M.A.S.); (P.K.); (L.D.A.); (P.A.J.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, 30120 Murcia, Spain;
- Correspondence: (C.D.M.); (S.C.); Tel.: +1-(205)-934-2430 (C.D.M.); +34-(868)-885-038 (S.C.)
| |
Collapse
|
21
|
Barrett PM, McCarthy FP, Evans M, Kublickas M, Perry IJ, Stenvinkel P, Khashan AS, Kublickiene K. Hypertensive disorders of pregnancy and the risk of chronic kidney disease: A Swedish registry-based cohort study. PLoS Med 2020; 17:e1003255. [PMID: 32797043 PMCID: PMC7428061 DOI: 10.1371/journal.pmed.1003255] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) (preeclampsia, gestational hypertension) are associated with an increased risk of end-stage kidney disease (ESKD). Evidence for associations between HDP and chronic kidney disease (CKD) is more limited and inconsistent. The underlying causes of CKD are wide-ranging, and HDP may have differential associations with various aetiologies of CKD. We aimed to measure associations between HDP and maternal CKD in women who have had at least one live birth and to identify whether the risk differs by CKD aetiology. METHODS AND FINDINGS Using data from the Swedish Medical Birth Register (MBR), singleton live births from 1973 to 2012 were identified and linked to data from the Swedish Renal Register (SRR) and National Patient Register (NPR; up to 2013). Preeclampsia was the main exposure of interest and was treated as a time-dependent variable. Gestational hypertension was also investigated as a secondary exposure. The primary outcome was maternal CKD, and this was classified into 5 subtypes: hypertensive, diabetic, glomerular/proteinuric, tubulointerstitial, and other/nonspecific CKD. Cox proportional hazard regression models were used, adjusting for maternal age, country of origin, education level, antenatal BMI, smoking during pregnancy, gestational diabetes, and parity. Women with pre-pregnancy comorbidities were excluded. The final sample consisted of 1,924,409 women who had 3,726,554 singleton live births. The mean (±SD) age of women at first delivery was 27.0 (±5.1) years. Median follow-up was 20.7 (interquartile range [IQR] 9.9-30.0) years. A total of 90,917 women (4.7%) were diagnosed with preeclampsia, 43,964 (2.3%) had gestational hypertension, and 18,477 (0.9%) developed CKD. Preeclampsia was associated with a higher risk of developing CKD during follow-up (adjusted hazard ratio [aHR] 1.92, 95% CI 1.83-2.03, p < 0.001). This risk differed by CKD subtype and was higher for hypertensive CKD (aHR 3.72, 95% CI 3.05-4.53, p < 0.001), diabetic CKD (aHR 3.94, 95% CI 3.38-4.60, p < 0.001), and glomerular/proteinuric CKD (aHR 2.06, 95% CI 1.88-2.26, p < 0.001). More modest associations were observed between preeclampsia and tubulointerstitial CKD (aHR 1.44, 95% CI 1.24-1.68, p < 0.001) or other/nonspecific CKD (aHR 1.51, 95% CI 1.38-1.65, p < 0.001). The risk of CKD was increased after preterm preeclampsia, recurrent preeclampsia, or preeclampsia complicated by pre-pregnancy obesity. Women who had gestational hypertension also had increased risk of developing CKD (aHR 1.49, 95% CI 1.38-1.61, p < 0.001). This association was strongest for hypertensive CKD (aHR 3.13, 95% CI 2.47-3.97, p < 0.001). Limitations of the study are the possibility that cases of CKD were underdiagnosed in the national registers, and some women may have been too young to have developed symptomatic CKD despite the long follow-up time. Underreporting of postpartum hypertension is also possible. CONCLUSIONS In this study, we found that HDP are associated with increased risk of maternal CKD, particularly hypertensive or diabetic forms of CKD. The risk is higher after preterm preeclampsia, recurrent preeclampsia, or preeclampsia complicated by pre-pregnancy obesity. Women who experience HDP may benefit from future systematic renal monitoring.
Collapse
Affiliation(s)
- Peter M. Barrett
- School of Public Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
- Department of Obstetrics & Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Marie Evans
- Division of Renal Medicine, Department of Clinical Intervention, Science and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Marius Kublickas
- Department of Obstetrics & Gynaecology, Karolinska University Hospital, Stockholm, Sweden
| | - Ivan J. Perry
- School of Public Health, University College Cork, Cork, Ireland
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Intervention, Science and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Ali S. Khashan
- School of Public Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Intervention, Science and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Abstract
Covering: up to 2020The transcription factor NRF2 is one of the body's major defense mechanisms, driving transcription of >300 antioxidant response element (ARE)-regulated genes that are involved in many critical cellular processes including redox regulation, proteostasis, xenobiotic detoxification, and primary metabolism. The transcription factor NRF2 and natural products have an intimately entwined history, as the discovery of NRF2 and much of its rich biology were revealed using natural products both intentionally and unintentionally. In addition, in the last decade a more sinister aspect of NRF2 biology has been revealed. NRF2 is normally present at very low cellular levels and only activated when needed, however, it has been recently revealed that chronic, high levels of NRF2 can lead to diseases such as diabetes and cancer, and may play a role in other diseases. Again, this "dark side" of NRF2 was revealed and studied largely using a natural product, the quassinoid, brusatol. In the present review, we provide an overview of NRF2 structure and function to orient the general reader, we will discuss the history of NRF2 and NRF2-activating compounds and the biology these have revealed, and we will delve into the dark side of NRF2 and contemporary issues related to the dark side biology and the role of natural products in dissecting this biology.
Collapse
Affiliation(s)
- Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
23
|
Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD. Breakdown of an Ironclad Defense System: The Critical Role of NRF2 in Mediating Ferroptosis. Cell Chem Biol 2020; 27:436-447. [PMID: 32275864 PMCID: PMC7597851 DOI: 10.1016/j.chembiol.2020.03.011] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a non-apoptotic mode of regulated cell death that is iron and lipid peroxidation dependent. As new mechanistic insight into ferroptotic effectors and how they are regulated in different disease contexts is uncovered, our understanding of the physiological and pathological relevance of this mode of cell death continues to grow. Along these lines, a host of pharmacological modulators of this pathway have been identified, targeting proteins involved in iron homeostasis; the generation and reduction of lipid peroxides; or cystine import and glutathione metabolism. Also, of note, many components of the ferroptosis cascade are target genes of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), indicating its critical role in mediating the ferroptotic response. In this review, we discuss the in vitro, in vivo, and clinical evidence of ferroptosis in disease, including a brief discussion of targeting upstream mediators of this cascade, including NRF2, to treat ferroptosis-driven diseases.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Cody J Schmidlin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|