1
|
Zhou L, Tan F, Zhang X, Li Y, Yin W. Neuroprotection and mechanisms of ginsenosides in nervous system diseases: Progress and perspectives. IUBMB Life 2024; 76:862-882. [PMID: 38822647 DOI: 10.1002/iub.2862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Ginsenosides are the primary component discernible from ginseng, including Rb1, Rb2, Rd, Rg1, Rg2, and compound K, and so forth. They have been shown to have multiple pharmacological activities. In recent years, more and more studies have been devoted to the neuroprotection of various ginsenosides against neurological diseases and their potential mechanisms. This paper comprehensively summarizes and reviews the neuroprotective effects of various ginsenosides on neurological diseases, especially acute and chronic neurodegenerative diseases, and their mechanisms, as well as their potential therapeutic applications to promote neuroprotection in disease prevention, treatment, and prognosis. Briefly, ginsenosides exert effective neuroprotective effects on neurological conditions, including stroke, Alzheimer's disease, Parkinson's disease, and brain/spinal cord injuries through a variety of molecular mechanisms, including anti-inflammatory, antioxidant, and anti-apoptotic. Among them, some signaling pathways play important roles in related processes, such as PI3K/Akt, TLR4/NF-κB, ROS/TXNIP/NLRP3, HO-1/Nrf2, Wnt/β-catenin, and Ca2+ pathway. In conclusion, the present study reviews the research progress on the neuroprotective effects of ginsenosides in the last decade, with the aim of furnishing essential theoretical underpinning and effective references for further research and exploration of the multiple medicinal values of Chinese herbal medicines and their small molecule compounds, including ginseng and panax ginseng. Because there is less evidence in the existing clinical studies, future research should be focused on clinical trials in order to truly reflect the clinical value of various ginsenosides for the benefit of patients.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Feilong Tan
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Xue Zhang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yanhua Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Wenjie Yin
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Shi M, Han H, Yang L, Wang Z, Chen K. Development and validation of a dried blood spots assay for metabolic profiling of ginsenosides using ultra-high performance liquid chromatography-mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118136. [PMID: 38583731 DOI: 10.1016/j.jep.2024.118136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C.A. Meyer., a famous and valuable traditional Chinese medicine with thousand years of history for its healthcare and therapeutic effects. It is necessary and meaningful to study the pharmacokinetic behavior of ginsenosides in vivo as they are the most active components. Dried blood spots (DBS) are a mature and advanced blood collection method with meet the needs for the measurement of numerous analytes. AIM OF THE STUDY This study aimed to explore the feasibility on DBS in the metabolic profile analysis of complex herbal products. MATERIALS AND METHODS An ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) method was developed and validated for the determination of ginsenosides. The preparation of DBS samples was conducted by spiking the whole blood with analytes to obtain 20 μL of blood spots on Whatman 903 collection card. A punched dish of 10 mm in diameter was extracted with 70 % methanol aqueous solution, digoxin was used as an internal standard. Target compounds were separated on a Waters T3 column (2.1 × 100 mm, 1.8 μm) with acetonitrile and water (0.1 % formic acid) at a flow rate of 0.4 mL/min. RESULTS The various ginsenosides showed good linearity in the range of 1-2000 ng/mL. The extraction recoveries and matrix effects of the target analytes were above 82.2%. The intra- and inter-batch accuracy and precision were within the limits of ≤15% for all tested concentrations. Moreover, the collected dried blood spot samples could be stably stored at room temperature for 14 days and 4 °C for 1 month without being affected. And it is delightful that the DBS-based analysis is compatible or even superior to the conventional protein precipitation in terms of sensitivity, linearity, and stability. In particular, the target analytes are stable in the DBS sampling under normal storing condition and the sensitivity for some trace metabolites of ginsenosides, such as 20(S)-Rg3, 20(R)-Rg3, F1, Rk1, Rg5, etc. increases 3-4 folds as evaluated by LLOQ. CONCLUSIONS The established method was successfully applied to pharmacokinetic studies of ginseng extract in mice, this suggests a more feasible strategy for pharmacokinetic study of traditional and natural medicines both in animal tests and clinical trials.
Collapse
Affiliation(s)
- Mengge Shi
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Han Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Kaixian Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
3
|
Nguyen DT, Kim MH, Baek MJ, Kang NW, Kim DD. Preparation and evaluation of proliposomes formulation for enhancing the oral bioavailability of ginsenosides. J Ginseng Res 2024; 48:417-424. [PMID: 39036737 PMCID: PMC11259707 DOI: 10.1016/j.jgr.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 07/23/2024] Open
Abstract
Background This research main objective was to evaluate a proliposomes (PLs) formulation for the enhancement of oral bioavailability of ginsenosides, using ginsenoside Rg3 (Rg3) as a marker. Methods A novel PLs formulation was prepared using a modified evaporation-on-matrix method. Soy phosphatidylcholine, Rg3-enriched extract, poloxamer 188 (Lutrol® F 68) and sorbitol were mixed and dissolved using a aqueous ethanolic solution, followed by the removal of ethanol and lyophilization. The characterization of Rg3-PLs formulations was performed by powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM) and in vitro release. The enhancement of oral bioavailability was investigated and analyzed by non-compartmental parameters after oral administration of the formulations. Results PXRD of Rg3-PLs indicated that Rg3 was transformed from crystalline into its amorphous form during the preparation process. The Rg3-encapsulated liposomes with vesicular-shaped morphology were generated after the reconstitution by gentle hand-shaking in water; they had a mean diameter of approximately 350 nm, a negative zeta potential (-28.6 mV) and a high entrapment efficiency (97.3%). The results of the in vitro release study exhibited that significantly more amount of Rg3 was released from the PLs formulation in comparison with that from the suspension of Rg3-enriched extract (control group). The pharmacokinetic parameters after oral administration of PLs formulation in rats showed an approximately 11.8-fold increase in the bioavailability of Rg3, compared to that of the control group. Conclusion The developed PLs formulation could be a favorable delivery system to improve the oral bioavailability of ginsenosides, including Rg3.
Collapse
Affiliation(s)
- Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min-Hwan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H, Zhang H. Structural Characters and Pharmacological Activity of Protopanaxadiol-Type Saponins and Protopanaxatriol-Type Saponins from Ginseng. Adv Pharmacol Pharm Sci 2024; 2024:9096774. [PMID: 38957183 PMCID: PMC11217582 DOI: 10.1155/2024/9096774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Ginseng has a long history of drug application in China, which can treat various diseases and achieve significant efficacy. Ginsenosides have always been deemed important ingredients for pharmacological activities. Based on the structural characteristics of steroidal saponins, ginsenosides are mainly divided into protopanaxadiol-type saponins (PDS, mainly including Rb1, Rb2, Rd, Rc, Rh2, CK, and PPD) and protopanaxatriol-type saponins (PTS, mainly including Re, R1, Rg1, Rh1, Rf, and PPT). The structure differences between PDS and PTS result in the differences of pharmacological activities. This paper provides an overview of PDS and PTS, mainly focusing on their chemical profile, pharmacokinetics, hydrolytic metabolism, and pharmacological activities including antioxidant, antifatigue, antiaging, immunodulation, antitumor, cardiovascular protection, neuroprotection, and antidiabetes. It is intended to contribute to an in-depth study of the relationship between PDS and PTS.
Collapse
Affiliation(s)
- Lancao Zhang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Xiang Gao
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Chunhui Yang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- Tuina DepartmentThe Third Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Zuguo Liang
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Dongsong Guan
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- Quality Testing Laboratory, Haerbin Customs District 150008, Foshan, China
| | - Tongyi Yuan
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - He Zhang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
- Research Center of Traditional Chinese MedicineThe Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| |
Collapse
|
5
|
Li Q, Lianghao Y, Shijie G, Zhiyi W, Yuanting T, Cong C, Chun-Qin Z, Xianjun F. Self-assembled nanodrug delivery systems for anti-cancer drugs from traditional Chinese medicine. Biomater Sci 2024; 12:1662-1692. [PMID: 38411151 DOI: 10.1039/d3bm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yuan Lianghao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Gao Shijie
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Wang Zhiyi
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Tang Yuanting
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chen Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Zhao Chun-Qin
- Academy of Chinese Medicine Literature and Culture, Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Fu Xianjun
- Marine Traditional Chinese Medicine Research Centre, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, P. R. China.
| |
Collapse
|
6
|
Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H, Zhang H. Structural Characters and Pharmacological Activity of Protopanaxadiol‐Type Saponins and Protopanaxatriol‐Type Saponins from Ginseng. Adv Pharmacol Pharm Sci 2024; 2024. [DOI: org/10.1155/2024/9096774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Ginseng has a long history of drug application in China, which can treat various diseases and achieve significant efficacy. Ginsenosides have always been deemed important ingredients for pharmacological activities. Based on the structural characteristics of steroidal saponins, ginsenosides are mainly divided into protopanaxadiol‐type saponins (PDS, mainly including Rb1, Rb2, Rd, Rc, Rh2, CK, and PPD) and protopanaxatriol‐type saponins (PTS, mainly including Re, R1, Rg1, Rh1, Rf, and PPT). The structure differences between PDS and PTS result in the differences of pharmacological activities. This paper provides an overview of PDS and PTS, mainly focusing on their chemical profile, pharmacokinetics, hydrolytic metabolism, and pharmacological activities including antioxidant, antifatigue, antiaging, immunodulation, antitumor, cardiovascular protection, neuroprotection, and antidiabetes. It is intended to contribute to an in‐depth study of the relationship between PDS and PTS.
Collapse
|
7
|
Liu S, Chen W, Zhao Y, Zong Y, Li J, He Z. Research Progress on Effects of Ginsenoside Rg2 and Rh1 on Nervous System and Related Mechanisms. Molecules 2023; 28:7935. [PMID: 38067664 PMCID: PMC10708332 DOI: 10.3390/molecules28237935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Neurological-related disorders are diseases that affect the body's neurons or peripheral nerve tissue, such as Parkinson's disease (PD) and Alzheimer's disease (AD). The development of neurological disorders can cause serious harm to the quality of life and functioning of the patient. The use of traditional therapeutic agents such as dopamine-promoting drugs, anticholinergic drugs, cholinesterase inhibitors, and NMDA receptor antagonists is often accompanied by a series of side effects such as drug resistance, cardiac arrhythmia, liver function abnormalities, and blurred vision. Therefore, there is an urgent need to find a therapeutic drug with a high safety profile and few side effects. Herbal medicines are rich in active ingredients that are natural macromolecules. Ginsenoside is the main active ingredient of ginseng, which has a variety of pharmacological effects and is considered to have potential value in the treatment of human diseases. Modern pharmacological studies have shown that ginsenosides Rg2 and Rh1 have strong pharmacological activities in the nervous system, with protective effects on nerve cells, improved resistance to neuronal injury, modulation of neural activity, resistance to cerebral ischemia/reperfusion injury, improvement of brain damage after eclampsia hemorrhage, improvement of memory and cognitive deficits, treatment of AD and vascular dementia, alleviation of anxiety, pain, and inhibition of ionic-like behavior. In this article, we searched the pharmacological research literature of Rg2 and Rh1 in the field of neurological diseases, summarized the latest research progress of the two ginsenosides, and reviewed the pharmacological effects and mechanisms of Rg2 and Rh1, which provided a new way of thinking for the research of the active ingredients in ginseng anti-neurological diseases and the development of new drugs.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| |
Collapse
|
8
|
Lu Z, Mao T, Chen K, Chai L, Dai Y, Liu K. Ginsenoside Rc: A potential intervention agent for metabolic syndrome. J Pharm Anal 2023; 13:1375-1387. [PMID: 38223453 PMCID: PMC10785250 DOI: 10.1016/j.jpha.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 01/16/2024] Open
Abstract
Ginsenoside Rc, a dammarane-type tetracyclic triterpenoid saponin primarily derived from Panax ginseng, has garnered significant attention due to its diverse pharmacological properties. This review outlined the sources, putative biosynthetic pathways, extraction, and quantification techniques, as well as the pharmacokinetic properties of ginsenoside Rc. Furthermore, this study explored the pharmacological effects of ginsenoside Rc against metabolic syndrome (MetS) across various phenotypes including obesity, diabetes, atherosclerosis, non-alcoholic fatty liver disease, and osteoarthritis. It also highlighted the impact of ginsenoside Rc on multiple associated signaling molecules. In conclusion, the anti-MetS effect of ginsenoside Rc is characterized by its influence on multiple organs, multiple targets, and multiple ways. Although clinical investigations regarding the effects of ginsenoside Rc on MetS are limited, its proven safety and tolerability suggest its potential as an effective treatment option.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Longxin Chai
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
9
|
Balusamy SR, Perumalsamy H, Huq MA, Yoon TH, Mijakovic I, Thangavelu L, Yang DC, Rahimi S. A comprehensive and systemic review of ginseng-based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Med Res Rev 2023; 43:1374-1410. [PMID: 36939049 DOI: 10.1002/med.21953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 03/21/2023]
Abstract
Among 17 Panax species identified across the world, Panax ginseng (Korean ginseng), Panax quinquefolius (American ginseng), and Panax notoginseng (Chinese ginseng) are highly recognized for the presence of bioactive compound, ginsenosides and their pharmacological effects. P. ginseng is widely used for synthesis of different types of nanoparticles compared to P. quinquefolius and P. notoginseng. The use of nano-ginseng could increase the oral bioavailability, membrane permeability, and thus provide effective delivery of ginsenosides to the target sites through transport system. In this review, we explore the synthesis of ginseng nanoparticles using plant extracts from various organs, microbes, and polymers, as well as their biomedical applications. Furthermore, we highlight transporters involved in transport of ginsenoside nanoparticles to the target sites. Size, zeta potential, temperature, and pH are also discussed as the critical parameters affecting the quality of ginseng nanoparticles synthesis.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, Gwangjin-gu, Republic of Korea
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Md Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Tae Hyun Yoon
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, Republic of Korea
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Deok Chun Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Ma C, Sheng N, Li Y, Zheng H, Wang Z, Zhang J. A comprehensive perspective on the disposition, metabolism, and pharmacokinetics of representative multi-components of Dengzhan Shengmai in rats with chronic cerebral hypoperfusion after oral administration. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116212. [PMID: 36739927 DOI: 10.1016/j.jep.2023.116212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan Shengmai capsule (DZSM), an evidence-based Chinese medicine comprising Erigeron breviscapus (Vaniot) Hand. -Mazz., Panax ginseng C.A.Mey., Ophiopogon japonicus (Thunb.) Ker Gawl., and Schisandra chinensis (Turcz.) Baill., exhibits an excellent efficacy in treating cardio- and cerebrovascular diseases. It contains caffeoyl compounds, flavonoids, saponins, and lignans as primary active components. However, so far, the characteristics of disposition, metabolism, and pharmacokinetics of its active components remain mostly unclear. AIM OF STUDY To elucidate disposition, metabolism, and pharmacokinetics of representative components of DZSM in rats with chronic cerebral hypoperfusion (CCH) by integrating ex vivo and in situ approaches. MATERIALS AND METHODS Exposure and distribution of absorbed prototypes and their metabolites were comprehensively investigated using sensitive LC-MS/MS and high-resolution LC-Q-TOF/MS. Pharmacokinetics of representative 16 components (12 prototypes and 4 metabolites) with different chemical categories, relatively high in vivo levels, wide tissue distribution, and reported neuroprotective activities were profiled. The ex vivo everted gut sac and in situ linked-rat models were adopted. RESULTS Representative 12 prototypes including 6 caffeoyl compounds (CA, 5-CQA, 3-CQA, 4-CQA, 1,3-CQA, and 3,4-CQA), 1 flavonoid (Scu), 2 saponins (Rd and Rg2), and 3 lignans (SchA, SchB, and SolA) presented characteristic absorption, disposition, and pharmacokinetics profiles in CCH rats. The caffeoyl compounds and flavonoid were well absorbed, exhibited wide distribution, and underwent extensive intestinal metabolism, such as methylation, isomerization, and sulfoconjugation. For CA, 5-CQA, Scu, and 4 related metabolites, the enterohepatic circulation was observed and resulted in bimodal or multimodal pharmacokinetic profiles. Saponins showed relatively low systemic exposure and limited distribution. The PPD-type ginsenoside Rd exhibited longer elimination half-life and systemic circulation than the PPT-type ginsenoside Rg2. No enterohepatic circulation was observed regarding saponins, suggesting that the multimodal pharmacokinetic profile of Rd could be due to its multi-site intestinal absorption. Lignans presented a low in vivo exposure and broad distribution. They were mainly transformed into hydroxylated metabolites. Corresponding to its bimodal pharmacokinetic profile, one metabolite of lignans completed the enterohepatic cycle. CONCLUSION The disposition, metabolism, and pharmacokinetic profiles of representative active components of DZSM were comprehensively characterized and elucidated.
Collapse
Affiliation(s)
- Congyu Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Ning Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Yuanyuan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Hao Zheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
11
|
Liu P, Zhang Z, Cai Y, Yang Y, Yuan J, Chen Q. Inhibition of the pyroptosis-associated inflammasome pathway: The important potential mechanism of ginsenosides in ameliorating diabetes and its complications. Eur J Med Chem 2023; 253:115336. [PMID: 37031528 DOI: 10.1016/j.ejmech.2023.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Diabetes mellitus (DM) and its complications have become an important global public health issue, affecting human health and negatively impacting life and lifespan. Pyroptosis is a recently discovered form of pro-inflammatory programmed cell death (PCD). To date, pyroptosis-associated inflammasome pathways have been identified primarily in the canonical and non-canonical inflammasome pathway, apoptotic caspase-mediated pathway, granzyme-mediated pathway, and streptococcal pyrogenic exotoxin B (SpeB)-mediated pathway. The activation of diabetes-mediated pyroptosis-associated factors play an important role in the pathophysiology of DM and its complications. Studies have shown that ginsenosides exert significant protective effects on DM and its complications. Through inhibiting the activation of pyroptosis-associated inflammasome pathways, and then the DM and its complications are improved. This review summarizes the subtypes of ginsenosides and their chemical characteristics, pharmacokinetics and side effects, the main pyroptosis-associated inflammasome pathways that have been discovered to date, and the potential mechanism of different subtypes of ginsenosides in the treatment of DM and its complications (such as diabetic cardiomyopathy, diabetic nephropathy, diabetic liver injury, diabetic retinopathy, and diabetic ischemic stroke) via anti-pyroptosis-associated inflammasome pathways. These findings may provide ideas for further research to explore ginsenoside mechanism in improving DM and its complications. However, many pyroptosis-associated inflammasome pathways and targets involved in the occurrence and development of DM and its complications are still unknown. In the future, further studies using in vitro cell models, in vivo animal models, and human disease models can be used to further elucidate the mechanism of ginsenosides in the treatment of DM and its complications.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China
| | - Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yunjiao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
12
|
Concomitant Administration of Red Ginseng Extract with Lactic Acid Bacteria Increases the Plasma Concentration of Deglycosylated Ginsenosides in Healthy Human Subjects. Biomolecules 2022; 12:biom12121896. [PMID: 36551324 PMCID: PMC9775652 DOI: 10.3390/biom12121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
With the increased frequency of red ginseng extract (RGE) and lactic acid bacteria (LAB) co-administration, we aimed to investigate the interactions between RGE and LAB with regard to in vitro and in vivo deglycosylation metabolism and the pharmacokinetics of ginsenosides. As a proof-of-concept study, five healthy humans were administered RGE (104.1 mg of total ginsenosides/day) with or without co-administration of LAB (2 g, 1 billion CFU/day) for 2 weeks, and the plasma concentrations of ginsenosides in human plasma were monitored. The plasma exposure to compound K (CK), ginsenoside Rh2 (GRh2), protopanaxadiol (PPD), and protopanaxatriol (PPT) in the concomitant administration RGE and LAB groups increased by 2.7-, 2.1-, 1.6-, and 3.5-fold, respectively, compared to those in the RGE administration group, without a significant change in Tmax. The plasma concentrations of GRb1, GRb2, and GRc remained unchanged, whereas the AUC values of GRd and GRg3 significantly decreased in the concomitant administration RGE and LAB groups. To understand the underlying mechanism, the in vitro metabolic activity of ginsenosides was measured during the fermentation of RGE or individual ginsenosides in the presence of LAB for 1 week. Consistent with the in vivo results, co-incubation with RGE and LAB significantly increased the formation rate of GRh2, CK, PPD, and PPT. These results may be attributed to the facilitated deglycosylation of GRd and GRg3 and the increased production of GRh2, CK, PPD, and PPT by the co-administration of LAB and RGE. In conclusion, LAB supplementation increased the plasma concentrations of deglycosylated ginsenosides, such as GRh2, CK, PPD, and PPT, through facilitated deglycosylation metabolism of ginsenosides in the intestine.
Collapse
|
13
|
A Transversal Approach Combining In Silico, In Vitro and In Vivo Models to Describe the Metabolism of the Receptor Interacting Protein 1 Kinase Inhibitor Sibiriline. Pharmaceutics 2022; 14:pharmaceutics14122665. [PMID: 36559159 PMCID: PMC9787481 DOI: 10.3390/pharmaceutics14122665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Sibiriline is a novel drug inhibiting receptor-interacting protein 1 kinase (RIPK1) and necroptosis, a regulated form of cell death involved in several disease models. In this study, we aimed to investigate the metabolic fate of sibiriline in a cross-sectional manner using an in silico prediction, coupled with in vitro and in vivo experiments. In silico predictions were performed using GLORYx and Biotransformer 3.0 freeware; in vitro incubation was performed on differentiated human HepaRG cells, and in vivo experiments including a pharmacokinetic study were performed on mice treated with sibiriline. HepaRG culture supernatants and mice plasma samples were analyzed with ultra-high-performance liquid chromatography, coupled with tandem mass spectrometry (LC-HRMS/MS). The molecular networking bioinformatics tool applied to LC-HRMS/MS data allowed us to visualize the sibiriline metabolism kinetics. Overall, 14 metabolites, mostly produced by Phase II transformations (glucuronidation and sulfation) were identified. These data provide initial reassurance regarding the toxicology of this new RIPK1 inhibitor, although further studies are required.
Collapse
|
14
|
Enhanced bioavailability and hepatoprotective effect of silymarin by preparing silymarin-loaded solid dispersion formulation using freeze-drying method. Arch Pharm Res 2022; 45:743-760. [PMID: 36178580 DOI: 10.1007/s12272-022-01407-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
This study aimed to develop a solid dispersion formulation of silymarin (Silymarin-SD) using freeze-drying method to enhance its oral bioavailability (BA) by inhibiting the intestinal first-pass effect and increasing its solubility and permeability. Silymarin-SD formulation (i.e., silymarin:tween 80:hydroxypropyl cellulose (HPC) = 1:1:3 (w/w/w) significantly increased silymarin permeability in the duodenum, jejunum, and ileum by decreasing the efflux ratio of silymarin and by inhibiting silymarin-glucuronidation activity, in which tween 80 played a crucial role. As a result, orally administered Silymarin-SD formulation increased plasma silymarin concentrations and decreased silymarin-glucuronide in rats compared with silymarin alone and silymmarin:D-α-tocopherol polyethylene glycol 1000 succinate (1:1, w/w) formulation. In addition to modulating intestinal first-pass effect, Silymarin-SD formulation showed a significantly higher cumulative dissolution for 120 min compared with that of silymarin from the physical mixture (PM) of the same composition as Silymarin-SD and silymarin alone; the relative BA of silymarin-SD increased to 215% and 589% compared with silymarin-PM and silymarin alone, respectively. This could be attributed to the amorphous status of the Silymarin-SD formulation without chemical interaction with excipients, such as tween 80 and HPC. Moreover, the hepatoprotective effect of Silymarin-SD in acetaminophen-induced acute hepatotoxicity, as estimated from the alanine aminotransferase and aspartate aminotransferase values, was superior to that of silymarin. In conclusion, the increase in the dissolution rate and intestinal permeability of silymarin, and the inhibition of silymarin-glucuronidation by the Silymarin-SD formulation, prepared using tween 80 and HPC, increased its plasma concentration and resulted in a superior hepatoprotective effect compared to silymarin.
Collapse
|
15
|
Pharmacokinetics and Tissue Distribution of Enavogliflozin in Mice and Rats. Pharmaceutics 2022; 14:pharmaceutics14061210. [PMID: 35745783 PMCID: PMC9230590 DOI: 10.3390/pharmaceutics14061210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
This study investigated the pharmacokinetics and tissue distribution of enavogliflozin, a novel sodium-glucose cotransporter 2 inhibitor that is currently in phase three clinical trials. Enavogliflozin showed dose-proportional pharmacokinetics following intravenous and oral administration (doses of 0.3, 1, and 3 mg/kg) in both mice and rats. Oral bioavailability was 84.5–97.2% for mice and 56.3–62.1% for rats. Recovery of enavogliflozin as parent form from feces and urine was 39.3 ± 3.5% and 6.6 ± 0.7%, respectively, 72 h after its intravenous injection (1 mg/kg), suggesting higher biliary than urinary excretion in mice. Major biliary excretion was also suggested for rats, with 15.9 ± 5.9% in fecal recovery and 0.7 ± 0.2% in urinary recovery for 72 h, following intravenous injection (1 mg/kg). Enavogliflozin was highly distributed to the kidney, which was evidenced by the AUC ratio of kidney to plasma (i.e., 41.9 ± 7.7 in mice following its oral administration of 1 mg/kg) and showed slow elimination from the kidney (i.e., T1/2 of 29 h). It was also substantially distributed to the liver, stomach, and small and large intestine. In addition, the tissue distribution of enavogliflozin after single oral administration was not significantly altered by repeated oral administration for 7 days or 14 days. Overall, enavogliflozin displayed linear pharmacokinetics following intravenous and oral administration, significant kidney distribution, and favorable biliary excretion, but it was not accumulated in the plasma and major distributed tissues, following repeated oral administration for 2 weeks. These features may be beneficial for drug efficacy. However, species differences between rats and mice in metabolism and oral bioavailability should be considered as drug development continues.
Collapse
|
16
|
Ginsenoside Rd protects cerebral endothelial cells from oxygen-glucose deprivation/reoxygenation induced pyroptosis via inhibiting SLC5A1 mediated sodium influx. J Ginseng Res 2022; 46:700-709. [PMID: 36090684 PMCID: PMC9459060 DOI: 10.1016/j.jgr.2022.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ginsenoside Rd is a natural compound with promising neuroprotective effects. However, the underlying mechanisms are still not well-understood. In this study, we explored whether ginsenoside Rd exerts protective effects on cerebral endothelial cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment and its potential docking proteins related to the underlying regulations. Method Commercially available primary human brain microvessel endothelial cells (HBMECs) were used for in vitro OGD/R studies. Cell viability, pyroptosis-associated protein expression and tight junction protein degradation were evaluated. Molecular docking proteins were predicted. Subsequent surface plasmon resonance (SPR) technology was utilized for validation. Flow cytometry was performed to quantify caspase-1 positive and PI positive (caspase-1+/PI+) pyroptotic cells. Results Ginsenoside Rd treatment attenuated OGD/R-induced damage of blood-brain barrier (BBB) integrity in vitro. It suppressed NLRP3 inflammasome activation (increased expression of NLRP3, cleaved caspase-1, IL-1β and GSDMD-N terminal (NT)) and subsequent cellular pyroptosis (caspase-1+/PI + cells). Ginsenoside Rd interacted with SLC5A1 with a high affinity and reduced OGD/R-induced sodium influx and potassium efflux in HBMECs. Inhibiting SLC5A1 using phlorizin suppressed OGD/R-activated NLRP3 inflammasome and pyroptosis in HBMECs. Conclusion Ginsenoside Rd protects HBMECs from OGD/R-induced injury partially via binding to SLC5A1, reducing OGD/R-induced sodium influx and potassium efflux, thereby alleviating NLRP3 inflammasome activation and pyroptosis.
Collapse
|
17
|
Insights into Recent Studies on Biotransformation and Pharmacological Activities of Ginsenoside Rd. Biomolecules 2022; 12:biom12040512. [PMID: 35454101 PMCID: PMC9031344 DOI: 10.3390/biom12040512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
It is well known that ginsenosides—major bioactive constituents of Panax ginseng—are attracting more attention due to their beneficial pharmacological activities. Ginsenoside Rd, belonging to protopanaxadiol (PPD)-type ginsenosides, exhibits diverse and powerful pharmacological activities. In recent decades, nearly 300 studies on the pharmacological activities of Rd—as a potential treatment for a variety of diseases—have been published. However, no specific, comprehensive reviews have been documented to date. The present review not only summarizes the in vitro and in vivo studies on the health benefits of Rd, including anti-cancer, anti-diabetic, anti-inflammatory, neuroprotective, cardioprotective, ischemic stroke, immunoregulation, and other pharmacological effects, it also delves into the inclusion of potential molecular mechanisms, providing an overview of future prospects for the use of Rd in the treatment of chronic metabolic diseases and neurodegenerative disorders. Although biotransformation, pharmacokinetics, and clinical studies of Rd have also been reviewed, clinical trial data of Rd are limited; the only data available are for its treatment of acute ischemic stroke. Therefore, clinical evidence of Rd should be considered in future studies.
Collapse
|
18
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
19
|
Yang F, Yang MY, Le JQ, Luo BY, Yin MD, Chao-Li, Jiang JL, Fang YF, Shao JW. Protective Effects and Therapeutics of Ginsenosides for Improving Endothelial Dysfunction: From Therapeutic Potentials, Pharmaceutical Developments to Clinical Trials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:749-772. [PMID: 35450513 DOI: 10.1142/s0192415x22500318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The endothelium covers the internal lumen of the entire circulatory system and plays an important modulatory role in vascular homeostasis. Endothelium dysfunction, characterized by a vasoconstrictive, pro-inflammatory, and pro-coagulant state, usually manifests as a significant pathological process of vascular diseases, including hypertension, atherosclerosis (AS), stroke, diabetes mellitus, coronary artery disease, and cancer. Therefore, there is an urgent necessity to seek promising therapeutic drugs or remedies to ameliorate endothelial dysfunction-induced vascular ailments and complications. Recently, much attention has been attached to ginsenosides, the most significant active components of ginseng, which have always been referred to as "all-healing" and widely used for its extensively medicinal value. Surprisingly, ginsenosides have diverse biological activity which might be related to inflammation, apoptosis, oxidative stress, and angiogenesis. In this review, a brief introduction about endothelial dysfunction and ginsenosides was demonstrated, and the emphasis was put on summarizing multi-faceted pharmacological effects and underlying molecular mechanisms of ginsenosides on the endothelium, including vasorelaxation, anti-oxidation, anti-inflammation, and angio-modulation. Beyond that, nanotechnology to improve efficacy and the existing clinical trials of ginsenosides were concluded. Hopefully, our work will give suggestions for promoting clinical application of traditional Chinese medicine, e.g., hypertension, AS, diabetes, ischemic stroke, and cancer. This review provides a comprehensive base of knowledge for ginsenosides to prevention and treatment of vascular injury- related diseases with clinical significance.
Collapse
Affiliation(s)
- Fang Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ming-Yue Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Qing Le
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bang-Yue Luo
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Meng-Die Yin
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao-Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jia-Li Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi-Fan Fang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Wei Shao
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
20
|
Park R, Choi WG, Lee MS, Cho YY, Lee JY, Kang HC, Sohn CH, Song IS, Lee HS. Pharmacokinetics of α-amanitin in mice using liquid chromatography-high resolution mass spectrometry and in vitro drug-drug interaction potentials. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:821-835. [PMID: 34187333 DOI: 10.1080/15287394.2021.1944942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to determine pharmacokinetics of α-amanitin, a toxic bicyclic octapeptide isolated from the poisonous mushrooms, following intravenous (iv) or oral (po) administration in mice using a newly developed and validated liquid chromatography-high resolution mass spectrometry. The iv injected α-amanitin disappeared rapidly from the plasma with high a clearance rate (26.9-30.4 ml/min/kg) at 0.1, 0.2, or 0.4 mg/kg doses, which was consistent with a rapid and a major excretion of α-amanitin via the renal route (32.6%). After the po administration of α-amanitin at doses of 2, 5, or 10 mg/kg to mice, the absolute bioavailability of α-amanitin was 3.5-4.8%. Due to this low bioavailability, 72.5% of the po administered α-amanitin was recovered from the feces. When α-amanitin is administered po, the tissue to plasma area under the curve ratio was higher in stomach > large intestine > small intestine > lung ~ kidneys > liver but not detected in brain, heart, and spleen. The high distribution of α-amanitin to intestine, kidneys, and liver is in agreement with the previously reported major intoxicated organs following acute α-amanitin exposure. In addition, α-amanitin weakly or negligibly inhibited cytochrome P450 and 5'-diphospho-glucuronosyltransferase enzymes activity in human liver microsomes as well as major drug transport functions in mammalian cells overexpressing transporters. Data suggested remote drug interaction potential may be associated with α-amanitin exposure.
Collapse
Affiliation(s)
- Ria Park
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Won-Gu Choi
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Min Seo Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Chang Hwan Sohn
- Department of Emergency Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Im-Sook Song
- Kyungpook National University, Daegu, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
21
|
Wang H, Zheng Y, Sun Q, Zhang Z, Zhao M, Peng C, Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J Nanobiotechnology 2021; 19:322. [PMID: 34654430 PMCID: PMC8518152 DOI: 10.1186/s12951-021-01062-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides, the main components isolated from Panax ginseng, can play a therapeutic role by inducing tumor cell apoptosis and reducing proliferation, invasion, metastasis; by enhancing immune regulation; and by reversing tumor cell multidrug resistance. However, clinical applications have been limited because of ginsenosides' physical and chemical properties such as low solubility and poor stability, as well as their short half-life, easy elimination, degradation, and other pharmacokinetic properties in vivo. In recent years, developing a ginsenoside delivery system for bifunctional drugs or carriers has attracted much attention from researchers. To create a precise treatment strategy for cancer, a variety of nano delivery systems and preparation technologies based on ginsenosides have been conducted (e.g., polymer nanoparticles [NPs], liposomes, micelles, microemulsions, protein NPs, metals and inorganic NPs, biomimetic NPs). It is desirable to design a targeted delivery system to achieve antitumor efficacy that can not only cross various barriers but also can enhance immune regulation, eventually converting to a clinical application. Therefore, this review focused on the latest research about delivery systems encapsulated or modified with ginsenosides, and unification of medicines and excipients based on ginsenosides for improving drug bioavailability and targeting ability. In addition, challenges and new treatment methods were discussed to support the development of these new tumor therapeutic agents for use in clinical treatment.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
22
|
Jeon JH, Lee J, Park JH, Lee CH, Choi MK, Song IS. Effect of Lactic Acid Bacteria on the Pharmacokinetics and Metabolism of Ginsenosides in Mice. Pharmaceutics 2021; 13:1496. [PMID: 34575573 PMCID: PMC8469489 DOI: 10.3390/pharmaceutics13091496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
This study aims to investigate the effect of lactic acid bacteria (LAB) on in vitro and in vivo metabolism and the pharmacokinetics of ginsenosides in mice. When the in vitro fermentation test of RGE with LAB was carried out, protopanaxadiol (PPD) and protopanaxadiol (PPD), which are final metabolites of ginsenosides but not contained in RGE, were greatly increased. Compound K (CK), ginsenoside Rh1 (GRh1), and GRg3 also increased by about 30%. Other ginsenosides with a sugar number of more than 2 showed a gradual decrease by fermentation with LAB for 7 days, suggesting the involvement of LAB in the deglycosylation of ginsenosides. Incubation of single ginsenoside with LAB produced GRg3, CK, and PPD with the highest formation rate and GRd, GRh2, and GF with the lower rate among PPD-type ginsenosides. Among PPT-type ginsenosides, GRh1 and PPT had the highest formation rate. The amoxicillin pretreatment (20 mg/kg/day, twice a day for 3 days) resulted in a significant decrease in the fecal recovery of CK, PPD, and PPT through the blockade of deglycosylation of ginsenosides after single oral administrations of RGE (2 g/kg) in mice. The plasma concentrations of CK, PPD, and PPT were not detectable without change in GRb1, GRb2, and GRc in this group. LAB supplementation (1 billion CFU/2 g/kg/day for 1 week) after the amoxicillin treatment in mice restored the ginsenoside metabolism and the plasma concentrations of ginsenosides to the control level. In conclusion, the alterations in the gut microbiota environment could change the ginsenoside metabolism and plasma concentrations of ginsenosides. Therefore, the supplementation of LAB with oral administrations of RGE would help increase plasma concentrations of deglycosylated ginsenosides such as CK, PPD, and PPT.
Collapse
Affiliation(s)
- Ji-Hyeon Jeon
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (J.L.); (J.-H.P.)
| | - Jaehyeok Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (J.L.); (J.-H.P.)
| | - Jin-Hyang Park
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (J.L.); (J.-H.P.)
| | - Chul-Haeng Lee
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea;
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea;
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (J.L.); (J.-H.P.)
| |
Collapse
|
23
|
Jin S, Lee CH, Lim DY, Lee J, Park SJ, Song IS, Choi MK. Improved Hygroscopicity and Bioavailability of Solid Dispersion of Red Ginseng Extract with Silicon Dioxide. Pharmaceutics 2021; 13:pharmaceutics13071022. [PMID: 34371714 PMCID: PMC8309041 DOI: 10.3390/pharmaceutics13071022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
This study aims to develop a powder formulation for the Korean red ginseng extract (RGE) and to evaluate its in vitro and in vivo formulation characteristics. The solid dispersion of RGE was prepared with hydrophilic carriers using a freeze-drying method. After conducting the water sorption–desorption isothermogram (relative humidity between 30 and 70% RH), differential scanning calorimetry thermal behavior, dissolution test, and intestinal permeation study, a solid dispersion formulation of RGE and silicon dioxide (RGE-SiO2) was selected. RGE-SiO2 formulation increased intestinal permeability of ginsenoside Rb1 (GRb1), GRb2, GRc, and GRd by 1.6-fold in rat jejunal segments as measured by the Ussing chamber system. A 1.6- to 1.8-fold increase in plasma exposure of GRb1, GRb2, GRc, and GRd in rats was observed following oral administration of RGE-SiO2 (375 mg/kg as RGE). No significant difference was observed in the time to reach maximum concentration (Tmax) and half-life in comparison to those in RGE administered rats (375 mg/kg). In conclusion, formulating solid dispersion of RGE with amorphous SiO2, the powder formulation of RGE was successfully formulated with improved hygroscopicity, increased intestinal permeability, and enhanced oral bioavailability and is therefore suitable for processing solid formulations of RGE product.
Collapse
Affiliation(s)
- Sojeong Jin
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (S.J.); (C.H.L.); (D.Y.L.)
| | - Chul Haeng Lee
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (S.J.); (C.H.L.); (D.Y.L.)
| | - Dong Yu Lim
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (S.J.); (C.H.L.); (D.Y.L.)
| | - Jaehyeok Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Soo-Jin Park
- College of Korean Medicine, Daegu Haany University, Daegu 38610, Korea
- Correspondence: (S.-J.P.); (I.-S.S.); (M.-K.C.); Tel.: +82-53-819-1459 (S.-J.P.); +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-819-1576 (S.-J.P.); +82-53-950-8557 (I.-S.S.)
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (S.-J.P.); (I.-S.S.); (M.-K.C.); Tel.: +82-53-819-1459 (S.-J.P.); +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-819-1576 (S.-J.P.); +82-53-950-8557 (I.-S.S.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (S.J.); (C.H.L.); (D.Y.L.)
- Correspondence: (S.-J.P.); (I.-S.S.); (M.-K.C.); Tel.: +82-53-819-1459 (S.-J.P.); +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-819-1576 (S.-J.P.); +82-53-950-8557 (I.-S.S.)
| |
Collapse
|
24
|
Choi MK, Song IS. Pharmacokinetic Drug-Drug Interactions and Herb-Drug Interactions. Pharmaceutics 2021; 13:610. [PMID: 33922481 PMCID: PMC8146483 DOI: 10.3390/pharmaceutics13050610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
Due to the growing use of herbal supplementation-ease of taking herbal supplements with therapeutics drugs (i [...].
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea;
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
25
|
Kang YJ, Lee CH, Park SJ, Lee HS, Choi MK, Song IS. Involvement of Organic Anion Transporters in the Pharmacokinetics and Drug Interaction of Rosmarinic Acid. Pharmaceutics 2021; 13:pharmaceutics13010083. [PMID: 33435470 PMCID: PMC7828042 DOI: 10.3390/pharmaceutics13010083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
We investigated the involvement of drug transporters in the pharmacokinetics of rosmarinic acid in rats as well as the transporter-mediated drug interaction potential of rosmarinic acid in HEK293 cells overexpressing clinically important solute carrier transporters and also in rats. Intravenously injected rosmarinic acid showed bi-exponential decay and unchanged rosmarinic acid was mainly eliminated by urinary excretion, suggesting the involvement of transporters in its renal excretion. Rosmarinic acid showed organic anion transporter (OAT)1-mediated active transport with a Km of 26.5 μM and a Vmax of 69.0 pmol/min in HEK293 cells overexpressing OAT1, and the plasma concentrations of rosmarinic acid were increased by the co-injection of probenecid because of decreased renal excretion due to OAT1 inhibition. Rosmarinic acid inhibited the transport activities of OAT1, OAT3, organic anion transporting polypeptide (OATP)1B1, and OATP1B3 with IC50 values of 60.6 μM, 1.52 μM, 74.8 μM, and 91.3 μM, respectively, and the inhibitory effect of rosmarinic acid on OAT3 transport activity caused an in vivo pharmacokinetic interaction with furosemide by inhibiting its renal excretion and by increasing its plasma concentration. In conclusion, OAT1 and OAT3 are the major transporters that may regulate the pharmacokinetic properties of rosmarinic acid and may cause herb-drug interactions with rosmarinic acid, although their clinical relevance awaits further evaluation.
Collapse
Affiliation(s)
- Yun Ju Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Chul Haeng Lee
- College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Soo-Jin Park
- College of Korean Medicine, Daegu Haany University, Daegu 38610, Korea;
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheonan 31116, Korea;
- Correspondence: (M.-K.C.); (I.-S.S.); Tel.: +82-41-550-1438 (M.-K.C.); +82-53-950-8575 (I.-S.S.); Fax: +82-53-950-8557 (I.-S.S.)
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (M.-K.C.); (I.-S.S.); Tel.: +82-41-550-1438 (M.-K.C.); +82-53-950-8575 (I.-S.S.); Fax: +82-53-950-8557 (I.-S.S.)
| |
Collapse
|