1
|
El-Sayed ASA, Shindia A, Emam E, Labib M, El-Deen EN, Seadawy MG, Yassin MA. Aspergillus flavipes L-methionine γ-lyase-β-cyclodextrin conjugates with improved stability, catalytic efficiency and anticancer activity. Sci Rep 2024; 14:27715. [PMID: 39532921 PMCID: PMC11557573 DOI: 10.1038/s41598-024-78368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Aspergillus flavipes L-methionine γ-lyase (MGL) has been authenticated as a powerful anticancer agent towards various solid tumors, however, the catalytic efficiency and stability of this enzyme remains the main challenge for its further in vivo applications. Thus, the objective of this study was to enhance the catalytic efficiency, structural stability of A. flavipes MGL, in addition to boost their anticancer activity, via conjugation with β-cyclodextrin. The purified A. flavipes MGL was (38.1 μmol/mg/min) was conjugated with β-cyclodextrin, with immobilization yield 80%. The conjugation process of MGL with β-cyclodextrin was verified from the FTIR analysis, molecular docking analysis, ensuring the covalent conjugation process via the hydrogen, and hydrophobic interactions with the cyclodextrin hydroxyl groups and MGL surface amino acids residues. The free and CD-MGL have the same optimum reaction temperature 37 °C, reaction pH 7.5 and pH stability pH 6.5-8.0. The CD-MGL conjugates had a significant stability to proteinase K and trypsin digestion. The affinity of CD-MGL was increased by ~ 2 folds to L-methionine (KM 3.1 mM), compared to the free one (KM 7.2 mM), as well as the catalytic efficiency of MGL was increased by 1.8 folds upon cyclodextrin conjugation. The higher affinity of CD-MGL for L-methionine might be due to re-orientation of the MGL to bind with the substrate by multiple interactions hydrogen, hydrophobic and covalent bonds compared to the free one. The thermal stability of MGL was increased by ~ 2 folds for the tested treatments, upon cyclodextrin conjugation. The in vitro anticancer activity of CD-MGL was enhanced by 2 folds against the HCT-116 (IC50 value 13.9 μmol/mg/min) and MCF7 (IC50 value 9.6 μmol/mg/min), compared to the free MGL (~ 21.4 μmol/mg/min). The enzymes displayed a significant activity against the proliferation of Ehrlich ascites carcinoma in vivo, with an obvious improvement on the liver tissues, as revealed from the histopathological sections.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed Shindia
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Esraa Emam
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mai Labib
- Agriculture Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, 12619, Egypt
| | - Eman Nour El-Deen
- Histopathology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed G Seadawy
- Biological Prevention Department, Egyptian Ministry of Defense, Cairo, Egypt
| | - Marwa A Yassin
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Tan Q, Gou L, Fan TP, Cai Y. Enzymatic properties of ornithine decarboxylase from Clostridium aceticum DSM1496. Biotechnol Appl Biochem 2024; 71:525-535. [PMID: 38225812 DOI: 10.1002/bab.2556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Clostridium aceticum DSM1496 is an acid-resistant strain in which ornithine decarboxylase (ODC) plays a crucial role in acid resistance. In this study, we expressed ODC derived from C. aceticum DSM1496 in Escherichia coli BL21 (DE3) and thoroughly examined its enzymatic properties. The enzyme has a molecular weight of 55.27 kDa and uses pyridoxal-5'-phosphate (PLP) as a coenzyme with a Km = 0.31 mM. ODC exhibits optimal activity at pH 7.5, and it maintains high stability even at pH 4.5. The peak reaction temperature for ODC is 30°C. Besides, it can be influenced by certain metal ions such as Mn2+. Although l-ornithine serves as the preferred substrate for ODC, the enzyme also decarboxylates l-arginine and l-lysine simultaneously. The results indicate that ODC derived from C. aceticum DSM1496 exhibits the ability to produce putrescine, cadaverine, and agmatine through decarboxylation. These polyamines have the potential to neutralize acid in an acidic environment, facilitating the growth of microorganisms. These significant findings provide a strong basis for further investigation into the acid-resistant mechanisms contributed by ODC.
Collapse
Affiliation(s)
- Qian Tan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Linbo Gou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Gwad MMA, El-Sayed ASA, Abdel-Fattah GM, Abdelmoteleb M, Abdel-Fattah GG. Potential fungicidal and antiaflatoxigenic effects of cinnamon essential oils on Aspergillus flavus inhabiting the stored wheat grains. BMC PLANT BIOLOGY 2024; 24:394. [PMID: 38741071 PMCID: PMC11613666 DOI: 10.1186/s12870-024-05065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Wheat is one of the essential crops for the human and animal nutrition, however, contamination with aflatoxigenic fungi, due to the improper storage conditions and high humidity, was the main global threats. So, preventing the growth of aflatoxigenic fungi in stored wheat grains, by using different essential oils was the main objective of this work. Aspergillus flavus EFBL-MU12 PP087400, EFBL-MU23 PP087401 and EFBL-MU36 PP087403 isolates were the most potent aflatoxins producers inhabiting wheat grains. The effect of storage conditions of wheat grains "humidity, temperature, incubation period, and pH" on growth of A. flavus, was assessed by the response surface methodology using Plackett-Burman design and FCCD. The highest yield of aflatoxins EFBL-MU12 B1 and B2 by A. flavus grown on wheat grains were 145.3 and 7.6 μg/kg, respectively, at incubation temperature 35°C, 16% moisture contents, initial pH 5.0, and incubated for 14 days. The tested oils had a powerful antifungal activity for the growth and aflatoxins production by A. flavus in a concentration-dependent manner. Among these oils, cinnamon oil had the highest fungicidal activity for A. flavus at 0.125%, with about 85-90 % reduction to the aflatoxins B1 and B2, conidial pigmentation and chitin contents on wheat grains. From the SEM analysis, cinnamon oils had the most deleterious effect on A. flavus with morphological aberrations to the conidial heads, vegetative mycelia, alteration in conidiophores identity, hyphae shrank, and winding. To emphasize the effect of the essential oils on the aflatoxins producing potency of A. flavus, the molecular expression of the aflatoxins biosynthetic genes was estimated by RT-qPCR. The molecular expression of nor-1, afLR, pKsA and afLJ genes was suppressed by 94-96%, due to cinnamon oil at 0.062% compared to the control. Conclusively, from the results, cinnamon oils followed by the peppermint oils displayed the most fungicidal activity for the growth and aflatoxins production by A. flavus grown on wheat grains.
Collapse
Affiliation(s)
- Manar M Abdel Gwad
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | | | | | | |
Collapse
|
4
|
El-Sayed ASA, Shindia A, Ammar H, Seadawy MG, Khashana SA. Bioprocessing of Epothilone B from Aspergillus fumigatus under solid state fermentation: Antiproliferative activity, tubulin polymerization and cell cycle analysis. BMC Microbiol 2024; 24:43. [PMID: 38291363 PMCID: PMC10829302 DOI: 10.1186/s12866-024-03184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Epothilone derivatives have been recognized as one of the most powerful anticancer drugs towards solid tumors, for their unique affinity to bind with β-tubulin microtubule arrays, stabilizing their disassembly, causing cell death. Sornagium cellulosum is the main source for Epothilone, however, the fermentation bioprocessing of this myxobacteria is the main challenge for commercial production of Epothilone. The metabolic biosynthetic potency of epothilone by Aspergillus fumigatus, an endophyte of Catharanthus roseus, raises the hope for commercial epothilone production, for their fast growth rate and feasibility of manipulating their secondary metabolites. Thus, nutritional optimization of A. fumigatus for maximizing their epothilone productivity under solid state fermentation process is the objective. The highest yield of epothilone was obtained by growing A. fumigatus on orange peels under solid state fermentation (2.2 μg/g), bioprocessed by the Plackett-Burman design. The chemical structure of the extracted epothilone was resolved from the HPLC and LC-MS/MS analysis, with molecular mass 507.2 m/z and identical molecular fragmentation pattern of epothilone B of S. cellulosum. The purified A. fumigatus epothilone had a significant activity towards HepG2 (IC50 0.98 μg/ml), Pancl (IC50 1.5 μg/ml), MCF7 (IC50 3.7 μg/ml) and WI38 (IC50 4.6 μg/ml), as well as a strong anti-tubulin polymerization activity (IC50 0.52 μg/ml) compared to Paclitaxel (2.0 μg/ml). The effect of A. fumigatus epothilone on the immigration ability of HepG2 cells was assessed, as revealed from the wound closure of the monolayer cells that was estimated by ~ 63.7 and 72.5%, in response to the sample and doxorubicin, respectively, compared to negative control. From the Annexin V-PI flow cytometry results, a significant shift of the normal cells to the apoptosis was observed in response to A. fumigatus epothilone by ~ 20 folds compared to control cells, with the highest growth arrest of the HepG2 cells at the G0-G1 stage.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed Shindia
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hala Ammar
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed G Seadawy
- Biological Prevention Department, Egyptian Ministry of Defense, Cairo, Egypt
| | - Samar A Khashana
- Enzymology and Fungal Biotechnology lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
El-Sayed ASA, Elghamry HN, Yassin MA. Biochemical Characterization of Thermostable Acrylamide Amidohydrolase from Aspergillus fumigatus with Potential Activity for Acrylamide Degradation in Various Food Products. Curr Microbiol 2023; 81:30. [PMID: 38052960 PMCID: PMC10698087 DOI: 10.1007/s00284-023-03544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Acrylamide is the major by-product of the Maillard reactions in foods with the overheating processes of L-asparagine-rich foods with reducing sugars that usually allied with neurotoxicity and carcinogenicity. Several approaches have been used to prevent the formation of acrylamide, however, degrading the already formed acrylamide in foods remains unequivocal. Acrylamide hydrolyzing enzyme "amidohydrolase" is one of the most promising enzymes for acrylamide degradation in foods. So, amidohydrolase "amidase" from thermotolerant Aspergillus fumigatus EFBL was purified to their electrophoretic homogeneity by gel-filtration and ion-exchange chromatography, with overall purification folds 2.8 and yield 9.43%. The apparent molecular subunit structure of the purified A. fumigatus amidase was 50 kDa, with highest activity at reaction temperature of 40 °C and pH of 7.5 The enzyme displayed a significant thermal stability as revealed from the value of T1/2 (13.37 h), and thermal denaturation rate (Kr 0.832 × 10-3 min) at 50 °C, with metalloproteinic identity. The purified enzyme had a significant activity for acrylamide degradation in various food products such as meat, cookies, potato chips, and bread as revealed from the HPLC analysis and LC-MS analysis. So, with the purified amidase, the acrylamide in the food products was degraded by about 95% to acrylic acid, ensuring the possibility of using this enzyme in abolishing the toxic acrylamide in the foods products. This is the first report exploring the potency of A. fumigatus amidase for an actual degradation of acrylamide in foods efficiently. Further biochemical analyses are ongoing to assess the affinity of this enzyme for selective hydrolyses of acrylamide in foods, without affecting the beneficial stereochemical related compounds.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Hala N Elghamry
- Enzymology and Fungal Biotechnology Lab, Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa A Yassin
- Enzymology and Fungal Biotechnology Lab, Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
6
|
Ashkan MF, Younis SA, Elazab NT. Isolation and characterization of Trichoderma harzianum L-methioninase with promising a powerful anticancer. Saudi J Biol Sci 2023; 30:103870. [PMID: 38020221 PMCID: PMC10663931 DOI: 10.1016/j.sjbs.2023.103870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Bioactive components derived from medicinal herbs have recently acquired popularity due to their efficacy in treating various ailments, including cancer and infectious diseases. In this study, the anticancer enzyme, L-methioninase isolated from medicinal plants endophytic fungi, then evaluated its promising therapeutic agents against different types of human cancers. L methionine was purified using column chromatography with the stationary phase of Sephadex G-200 with 6.6-fold purification, which increased the specific activity of 71.3 U/mg of protein with a recovery rate of 48.2 %. On the SDS-PAGE chromatogram, the apparent molecular mass of the isolated enzyme was 48 kDa, and its highest activity was observed at pH 8 and 35 °C. The enzyme was catalytically stable within the pH range of 6.0-9.0 and below 40 °C. This study demonstrates that isolated L-methioninase is particularly efficient against tumour cell lines in vitro. The crude and purified L-methioninase inhibited 60 and 80 % of the growth of the breast cancer cell line (MCF-7), respectively, with an estimated IC50 = 12.6 μg/ml (crude) and IC50 = 5.0 μg/ml for purified L-methioninase from isolate 8 with accession no MZ675362. Because of this, pure L-methioninase has better catalytic characteristics and significant thermal stability, which could be used as a cancer-fighting substance than the enzyme purified from other sources.
Collapse
Affiliation(s)
- Mada F. Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sadia A. Younis
- Department of Botany, Molecular Microbial Lab, Faculty of Science, Mansoura University, Egypt
| | - Nahla T. Elazab
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
- Department of Biology, College of Science, Qassim University, Qassim, Saudi Arabia
| |
Collapse
|
7
|
Abou Zeid AA, Mohamed AH, El-Sayed AS, EL-Shawadfy AM. Biochemical, molecular and anti-tumor characterization of L-methionine gamma lyase produced by local Pseudomonas sp. in Egypt. Saudi J Biol Sci 2023; 30:103682. [PMID: 37305655 PMCID: PMC10248269 DOI: 10.1016/j.sjbs.2023.103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
A soil inhabiting Pseudomonas sp. has been examined for producing L- methionine gamma-lyase enzyme. The identity of the tested bacteria was verified by VITEK2, and MALDI-TOF analysis in addition to molecular confirmation by 16S rDNA sequence and submitted in Genbank under accession number ON993898.1. Production of the targeted enzyme was done using a commercial medium including L-methionine, as the main substrate. This obtained enzyme was precipitated using acetone (1:1v/v) followed by purification with Sephadex G100 and sepharose columns. The specific activity of the purified enzyme (105.8 µmol/ mg/min) increased by 1.89 folds after the purification steps. The peptide fingerprint of the native MGL was verified from the proteomics analysis, with identical conserved active site domains with database-deposited MGLs. The molecular mass of the pure MGL denatured subunit was (>40 kDa) and that of the native enzyme was (>150 kDa) ensuring their homotetrameric identity. The purified enzyme showed absorption spectra at 280 nm and 420 nm for the apo-MGL and PLP coenzyme, respectively. Amino acids suicide analogues analysis by DTNB, hydroxylamine, iodoacetate, MBTH, mercaptoethanol and guanidine thiocyanate reduced the relative activity of purified MGL. From the kinetic properties, the catalytic effectiveness (Kcat/km) of Pseudomonas sp. MGL was 10.8 mM -1 S-1 for methionine and 5.51 mM -1 S-1 for cysteine, respectively. The purified MGL showed highly significant antiproliferative activity towards the liver carcinoma cell line (HEPG-2) and breast carcinoma cell line (MCF-7) with half inhibitory concentration values (IC50) 7.23 U/ml and 21.14 U/ml, respectively. No obvious signs of toxicity on liver and kidney functions in the examined animal models were observed.
Collapse
Affiliation(s)
- Azza A. Abou Zeid
- Corresponding author at: Botany and Microbiology Deparetment, Faculy of Science, Zagazig University, Zagazig, Egypt.
| | | | | | | |
Collapse
|
8
|
Esa SS, El-Sayed AF, El-Khonezy MI, Zhang S. Recombinant production, purification, and biochemical characterization of a novel L-lactate dehydrogenase from Bacillus cereus NRC1 and inhibition study of mangiferin. Front Bioeng Biotechnol 2023; 11:1165465. [PMID: 37091329 PMCID: PMC10117910 DOI: 10.3389/fbioe.2023.1165465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC 1.1.1.27) is one of the vital glycolytic conditions, especially during anaerobic conditions. It is a significant diagnostic, prognostic, and monitoring biomarker parameter. A 950-bp DNA fragment containing the gene (LDH) encoding LDH was amplified from Bacillus cereus NRC1. The deduced amino acid sequence reveals that B. cereus LDH (Bc-LDH) is highly homologous to the LDHs of Bacillus organisms. All LDH enzymes have a significant degree of conservation in their active site and several additional domains with unidentified functions. The gene for LDH, which catalyzes lactate synthesis, was cloned, sequenced (accession number: LC706200.1), and expressed in Escherichia coli BL21 (DE3). In this investigation, Bc-LDH was purified to homogeneity with a specific activity of 22.7 units/mg protein and a molecular weight of 35 kDa. It works optimally at pH 8.0. The purified enzyme was inhibited by FeCl2, CuCl2, ZnCl2, and NiCl, whereas CoCl2 was found to boost the activity of Bc-LDH. The molecular docking of the 3D model of the Bc-LDH structure with a natural inhibitor, mangiferin, demonstrated excellent LDH inhibition, with a free binding energy of −10.2 kcal/mol. Moreover, mangiferin is a potent Bc-LDH inhibitor that inhibits Bc-LDH competitively and has one binding site with a Ki value of 0.075 mM. The LDH-mangiferin interaction exhibits a low RMSF value (>1.5 Å), indicating a stable contact at the residues. This study will pave the way for more studies to improve the understanding of mangiferin, which could be considered an intriguing candidate for creating novel and improved LDH inhibitors.
Collapse
Affiliation(s)
- Sayed S. Esa
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ahmed F. El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed I. El-Khonezy
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- *Correspondence: Shubing Zhang,
| |
Collapse
|
9
|
Hendy MH, Hashem AH, Suleiman WB, Sultan MH, Abdelraof M. Purification, Characterization and anticancer activity of L-methionine γ-lyase from thermo-tolerant Aspergillus fumigatus. Microb Cell Fact 2023; 22:8. [PMID: 36635695 PMCID: PMC9837997 DOI: 10.1186/s12934-023-02019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Purification of L-methionine γ-lyase (MGL) from A. fumigatus was sequentially conducted using heat treatment and gel filtration, resulting in 3.04 of purification fold and 73.9% of enzymatic recovery. The molecular mass of the purified MGL was approximately apparent at 46 KDa based on SDS-PAGE analysis. The enzymatic biochemical properties showed a maximum activity at pH 7 and exhibited plausible stability within pH range 5.0-7.5; meanwhile the highest catalytic activity of MGL was observed at 30-40 °C and the enzymatic stability was noted up to 40 °C. The enzyme molecule was significantly inhibited in the presence of Cu2+, Cd2+, Li2+, Mn2+, Hg2+, sodium azide, iodoacetate, and mercaptoethanol. Moreover, MGL displayed a maximum activity toward the following substrates, L-methionine < DL-methionine < Ethionine < Cysteine. Kinetic studies of MGL for L-methioninase showed catalytic activity at 20.608 mM and 12.34568 µM.min-1. Furthermore, MGL exhibited anticancer activity against cancerous cell lines, where IC50 were 243 ± 4.87 µg/ml (0.486 U/ml), and 726 ± 29.31 µg/ml (1.452 U/ml) against Hep-G2, and HCT116 respectively. In conclusion, A. fumigatus MGL had good catalytic properties along with significantly anticancer activity at low concentration which makes it a probably candidate to apply in the enzymotherapy field.
Collapse
Affiliation(s)
- Mahmoud H Hendy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Waleed B Suleiman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Mahmoud H Sultan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
10
|
El-Sayed ASA, Rady AM, Mohamed HT, Zein N, Yassin MA, Mohamed NZ, Hassan A, Amer MM, El-Sharakawy R, El-Sharkawy AA, El-Sayed N, Ali MG. Aspergillus Niger thermostable Cytosine deaminase-dextran conjugates with enhanced structure stability, proteolytic resistance, and Antiproliferative activity. BMC Microbiol 2023; 23:9. [PMID: 36627557 PMCID: PMC9830863 DOI: 10.1186/s12866-023-02754-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
Cytosine deaminase (CDA) is a prodrug mediating enzyme converting 5-flurocytosine into 5-flurouracil with profound broad-range anticancer activity towards various cell lines. Availability, molecular stability, and catalytic efficiency are the main limiting factors halting the clinical applications of this enzyme on prodrug and gene therapies, thus, screening for CDA with unique biochemical and catalytic properties was the objective. Thermotolerant/ thermophilic fungi could be a distinctive repertoire for enzymes with affordable stability and catalytic efficiency. Among the recovered thermotolerant isolates, Aspergillus niger with optimal growth at 45 °C had the highest CDA productivity. The enzyme was purified, with purification 15.4 folds, molecular mass 48 kDa and 98 kDa, under denaturing and native PAGE, respectively. The purified CDA was covalently conjugated with dextran with the highest immobilization yield of 75%. The free and CDA-dextran conjugates have the same optimum pH 7.4, reaction temperature 37 °C, and pI 4.5, and similar response to the inhibitors and amino acids suicide analogues, ensuring the lack of effect of dextran conjugation on the CDA conformational structure. CDA-Dextran conjugates had more resistance to proteolysis in response to proteinase K and trypsin by 2.9 and 1.5 folds, respectively. CDA-Dextran conjugates displayed a dramatic structural and thermal stability than the free enzyme, authenticating the acquired structural and catalytic stability upon dextran conjugation. The thermal stability of CDA was increased by about 1.5 folds, upon dextran conjugation, as revealed from the half-life time (T1/2). The affinity of CDA-conjugates (Km 0.15 mM) and free CDA (Km 0.22 mM) to deaminate 5-fluorocytosine was increased by 1.5 folds. Upon dextran conjugation, the antiproliferative activity of the CDA towards the different cell lines "MDA-MB, HepG-2, and PC-3" was significantly increased by mediating the prodrug 5-FC. The CDA-dextran conjugates strongly reduce the tumor size and weight of the Ehrlich cells (EAC), dramatically increase the titers of Caspase-independent apoptotic markers PARP-1 and AIF, with no cellular cytotoxic activity, as revealed from the hematological and biochemical parameters.
Collapse
Affiliation(s)
- Ashraf S. A. El-Sayed
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Amgad M. Rady
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt ,grid.442760.30000 0004 0377 4079Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, 12451 Egypt
| | - Hossam Taha Mohamed
- grid.442760.30000 0004 0377 4079Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, 12451 Egypt ,grid.7776.10000 0004 0639 9286Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Nabila Zein
- grid.31451.320000 0001 2158 2757Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Marwa A. Yassin
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Nabil Z. Mohamed
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Abdallah Hassan
- grid.31451.320000 0001 2158 2757Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| | - Mahmoud M. Amer
- grid.411660.40000 0004 0621 2741Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518 Egypt
| | - Reyad El-Sharakawy
- grid.411660.40000 0004 0621 2741Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518 Egypt
| | - Aya Ali El-Sharkawy
- grid.7776.10000 0004 0639 9286Department of Zoology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Nesma El-Sayed
- grid.411660.40000 0004 0621 2741Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518 Egypt
| | - Mostafa G. Ali
- grid.31451.320000 0001 2158 2757Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt ,grid.411660.40000 0004 0621 2741Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518 Egypt
| |
Collapse
|
11
|
Sharma B, Devi S, Kumar R, Kanwar SS. Screening, characterization and anti-cancer application of purified intracellular MGL. Int J Biol Macromol 2022; 217:96-110. [PMID: 35817235 DOI: 10.1016/j.ijbiomac.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022]
Abstract
L-methionine-γ-lyase (MGL) producing bacterial isolates were screened from soil samples that further characterized as 'Klebsiella oxytoca BLM-1' by biochemical and 16S rDNA sequencing. Intracellular MGL obtained from K. oxytoca BLM-1 by sonication was purified by Octyl-Sepharose and Sephadex G-200 column chromatography. MALDI-TOF-MS analysis of protein band (Mr ~ 63 kDa) confirmed the PLP-dependence and structural similarity with MGL enzyme. Purified MGL (1.1 μg) exhibited the maximum activity in potassium phosphate buffer (80 mM; with L-met 20 mM pH 7.0) at 37 °C. That further enhanced in the presence of NaCl (2 mM), Tween-80 (1.0 %; v/v) and EDTA (5 mM). Km and Vmax for purified MGL by using L-met as substrate was found to be 5.32 mM and 0.386 U/mL/min. The purified MGL showed PLP dependence and the half-life was 365.59 min. The MGL was effective against breast cancer (MCF7), gastric adenocarcinoma and human glioblastoma (U87MG) cancer cell lines with IC50 values of purified MGL 0.041 U/mL, 0.008 U/mL and 0.009 U/mL, respectively. The U87MG, greatly affected by MGL treatment, when cultured in DMEM medium (10 mL) with PLP, homocysteine and 10 % FCS as compared to control/untransformed mouse spleen cells.
Collapse
Affiliation(s)
- Bhupender Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Sunita Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Rakesh Kumar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India.
| |
Collapse
|
12
|
Thermostable Chitosan-L-Asparaginase conjugate from Aspergillus fumigatus is a novel structurally stable composite for abolishing acrylamide formation in French fried potatoes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Yang Z, Shi Y, Li P, Pan K, Li G, Li X, Yao S, Zhang D. Application of Principal Component Analysis (PCA) to the Evaluation and Screening of Multiactivity Fungi. JOURNAL OF OCEAN UNIVERSITY OF CHINA : JOUC 2022; 21:763-772. [PMID: 35582545 PMCID: PMC9098371 DOI: 10.1007/s11802-022-5096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/06/2021] [Accepted: 10/13/2021] [Indexed: 06/15/2023]
Abstract
Continued innovation in screening methodologies remains important for the discovery of high-quality multiactive fungi, which have been of great significance to the development of new drugs. Mangrove-derived fungi, which are well recognized as prolific sources of natural products, are worth sustained attention and further study. In this study, 118 fungi, which mainly included Aspergillus spp. (34.62%) and Penicillium spp. (15.38%), were isolated from the mangrove ecosystem of the Maowei Sea, and 83.1% of the cultured fungi showed at least one bioactivity in four antibacterial and three antioxidant assays. To accurately evaluate the fungal bioactivities, the fungi with multiple bioactivities were successfully evaluated and screened by principal component analysis (PCA), and this analysis provided a dataset for comparing and selecting multibioactive fungi. Among the 118 mangrove-derived fungi tested in this study, Aspergillus spp. showed the best comprehensive activity. Fungi such as A. clavatonanicus, A. flavipes and A. citrinoterreus, which exhibited high comprehensive bioactivity as determined by the PCA, have great potential in the exploitation of natural products and the development of new drugs. This study demonstrated the first use of PCA as a time-saving, scientific method with a strong ability to evaluate and screen multiactive fungi, which indicated that this method can affect the discovery and development of new drugs.
Collapse
Affiliation(s)
- Zonglin Yang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100 China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
| | - Yaqi Shi
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100 China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
| | - Pinglin Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266100 China
| | - Kanghong Pan
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100 China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266100 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology, Qingdao, 266100 China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100 China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
| | - Shuo Yao
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100 China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100 China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100 China
| |
Collapse
|
14
|
Biochemical Properties of Tyrosinase from Aspergillus terreus and Penicillium copticola; Undecanoic Acid from Aspergillus flavus, an Endophyte of Moringa oleifera, Is a Novel Potent Tyrosinase Inhibitor. Molecules 2021; 26:molecules26051309. [PMID: 33804376 PMCID: PMC7957516 DOI: 10.3390/molecules26051309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/31/2023] Open
Abstract
Tyrosinase is a copper-containing monooxygenase catalyzing the O-hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine then to dopaquinone that is profoundly involved in melanin synthesis in eukaryotes. Overactivation of tyrosinase is correlated with hyperpigmentation that is metabolically correlated with severe pathological disorders, so, inhibition of this enzyme is the most effective approach in controlling the overproduction of melanin and its hazardous effects. Thus, searching for a powerful, selective inhibitor of human tyrosinase to limit the hyper-synthesis of melanin is a challenge. Unlike the difficulty of overexpression of human tyrosinase, using fungal tyrosinase as a model enzyme to the human one to evaluate the mechanistics of enzyme inhibition in response to various compounds is the most feasible strategy. Thus, the purification of highly catalytic-efficient fungal tyrosinase, exploring a novel inhibitor, and evaluating the mechanistics of enzyme inhibition are the main objectives of this work. Aspergillus terreus and Penicillium copticola were reported as the most potential tyrosinase producers. The biochemical properties suggest that this enzyme displays a higher structural and catalytic proximity to human tyrosinase. Upon nutritional bioprocessing by Plackett–Burman design, the yield of tyrosinase was increased by about 7.5-folds, compared to the control. The purified tyrosinase was strongly inhibited by kojic acid and A. flavus DCM extracts with IC50 values of 15.1 and 12.6 µg/mL, respectively. From the spectroscopic analysis, the main anti-tyrosinase compounds of A. flavus extract was resolved, and verified as undecanoic acid. Further studies are ongoing to unravel the in vivo effect and cytotoxicity of this compound in fungi and human, that could be a novel drug to various diseases associated with hyperpigmentation by melanin.
Collapse
|
15
|
Irajie C, Mohkam M, Vakili B, Nezafat N. Computational Elucidation of Phylogenetic, Functional and Structural Features of Methioninase from Pseudomonas, Escherichia, Clostridium and Citrobacter Strains. Recent Pat Biotechnol 2021; 15:286-301. [PMID: 34515017 DOI: 10.2174/1872208315666210910091438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND L-Methioninase (EC 4.4.1.11; MGL) is a pyridoxal phosphate (PLP)-dependent enzyme that is produced by a variety of bacteria, fungi, and plants. L-methioninase, especially from Pseudomonas and Citrobacter sp., is considered as the efficient therapeutic enzyme, particularly in cancers such as glioblastomas, medulloblastoma, and neuroblastoma that are more sensitive to methionine starvation. OBJECTIVE The low stability is one of the main drawbacks of the enzyme; in this regard, in the current study, different features of the enzyme, including phylogenetic, functional, and structural from Pseudomonas, Escherichia, Clostridium, and Citrobacter strains were evaluated to find the best bacterial L-Methioninase. METHODS After the initial screening of L-Methioninase sequences from the above-mentioned bacterial strains, the three-dimensional structures of enzymes from Escherichia fergusonii, Pseudomonas fluorescens, and Clostridium homopropionicum were determined through homology modeling via GalaxyTBM server and refined by GalaxyRefine server. RESULTS AND CONCLUSION Afterwards, PROCHECK, verify 3D, and ERRAT servers were used for verification of the obtained models. Moreover, antigenicity, allergenicity, and physico-chemical analysis of enzymes were also carried out. In order to get insight into the interaction of the enzyme with other proteins, the STRING server was used. The secondary structure of the enzyme is mainly composed of random coils and alpha-helices. However, these outcomes should further be validated by wet-lab investigations.
Collapse
Affiliation(s)
- Cambyz Irajie
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Salim N, Santhiagu A, Joji K. Purification, characterization and anticancer evaluation of l-methioninase from Trichoderma harzianum. 3 Biotech 2020; 10:501. [PMID: 33163320 PMCID: PMC7606426 DOI: 10.1007/s13205-020-02494-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022] Open
Abstract
The Trichoderma harzianum l-methioninase was purified 7.15-fold with a recovery of 47.9% and the specific activity of 74.4 U/mg of protein. The purified enzyme has an apparent molecular mass of 48 kDa on SDS-PAGE and exhibited maximum activity at pH 8 and 35 °C. The enzyme was catalytically stable below 50 °C and at a pH range of 6.0-8.5. The thermal inactivation of l-methioninase exhibited first-order kinetics with the k value between 5.71 × 10-4 min-1 and 1.83 × 10-2 min-1. The studies on thermodynamic parameters of l-methioninase indicated the compaction and aggregation of the enzyme molecule during denaturation. This is the first report of thermodynamic analysis of thermal inactivation in l-methioninase. The enzyme activity was enhanced by Li+ and inhibited by Cu2+, Co2+, Fe2+, Hydroxylamine and PMSF. The purified enzyme showed K m , V max and k cat value of 1.19 mM, 21.27 U/mg/min and 16.11 s-1, respectively. The l-methioninase inhibited the growth of human cell lines hepatocellular carcinoma (Hep-G2) and breast carcinoma (MCF-7) with IC50 values of 14.12 μg/ml and 20.07 μg/ml, respectively. The in vivo antitumor activity of l-methioninase was evaluated against DAL cell lines bearing in Swiss albino mice. The enzyme effectively reduced tumor volume, packed cell volume, viable cell count and restored hematological parameters, serum enzyme and lipid profile to normal levels compared to DAL control mice. The present study has demonstrated the high efficacy of Trichoderma harzianum l-methioninase against cancer cell lines in vitro and in vivo conditions. The purified l-methioninase has significant thermal stability and better catalytic properties than the enzyme purified from other sources.
Collapse
Affiliation(s)
- Nisha Salim
- Bioprocess Laboratory, School of Biotechnology, National Institute of Technology, Calicut, India
| | - A. Santhiagu
- Bioprocess Laboratory, School of Biotechnology, National Institute of Technology, Calicut, India
| | - K. Joji
- Bioprocess Laboratory, School of Biotechnology, National Institute of Technology, Calicut, India
| |
Collapse
|
17
|
El Sayed MT, El-Sayed ASA. Bioremediation and tolerance of zinc ions using Fusarium solani. Heliyon 2020; 6:e05048. [PMID: 33024860 PMCID: PMC7527588 DOI: 10.1016/j.heliyon.2020.e05048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Evaluating the mechanism of tolerance and biotransformation Zn(II) ions by Fusarium solani based on the different physiological was the objective of this work. The physical properties of synthesized ZnONPs was determined by UV-spectroscopy, transmission electron microscope, and X-ray powder diffraction. The structural and anatomical changes of F. solani in response to Zn(II) was examined by TEM and SEM. From the HPLC profile, oxalic acid by F. solani was strongly increased by about 10.5 folds in response to 200 mg/l Zn(II) comparing to control cultures. The highest biosorption potential were reported at pH 4.0 (alkali-treated biomass) and 5.0 (native biomass), at 600 mg/l Zn(II) concentration, incubation temperature 30 °C, and contact time 40 min (alkali-treated biomass) and 6 h (native biomass). From the FT-IR spectroscopy, the main functional groups implemented on this remediation were C-S stretching, C=O C=N, C-H bending, C-N stretching and N-H bending. From the EDX spectra, fungal cellular sulfur and phosphorus compounds were the mainly compartments involved on ZN(II) binding.
Collapse
Affiliation(s)
- Manal T El Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| |
Collapse
|
18
|
El-Sayed AS, El-Sayed MT, Rady AM, Zein N, Enan G, Shindia A, El-Hefnawy S, Sitohy M, Sitohy B. Exploiting the Biosynthetic Potency of Taxol from Fungal Endophytes of Conifers Plants; Genome Mining and Metabolic Manipulation. Molecules 2020; 25:E3000. [PMID: 32630044 PMCID: PMC7412027 DOI: 10.3390/molecules25133000] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
Endophytic fungi have been considered as a repertoire for bioactive secondary metabolites with potential application in medicine, agriculture and food industry. The biosynthetic pathways by fungal endophytes raise the argument of acquisition of these machineries of such complex metabolites from the plant host. Diterpenoids "Taxol" is the most effective anticancer drug with highest annual sale, since its discovery in 1970 from the Pacific yew tree, Taxus brevifolia. However, the lower yield of Taxol from this natural source (bark of T. brevifolia), availability and vulnerability of this plant to unpredicted fluctuation with the ecological and environmental conditions are the challenges. Endophytic fungi from Taxus spp. opened a new avenue for industrial Taxol production due to their fast growth, cost effectiveness, independence on climatic changes, feasibility of genetic manipulation. However, the anticipation of endophytic fungi for industrial Taxol production has been challenged by the loss of its productivity, due to the metabolic reprograming of cells, downregulating the expression of its encoding genes with subculturing and storage. Thus, the objectives of this review were to (1) Nominate the endophytic fungal isolates with the Taxol producing potency from Taxaceae and Podocarpaceae; (2) Emphasize the different approaches such as molecular manipulation, cultural optimization, co-cultivation for enhancing the Taxol productivities; (3) Accentuate the genome mining of the rate-limiting enzymes for rapid screening the Taxol biosynthetic machinery; (4) Triggering the silenced rate-limiting genes and transcriptional factors to activates the biosynthetic gene cluster of Taxol.
Collapse
Affiliation(s)
- Ashraf S.A. El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Manal T. El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Amgad M. Rady
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Cairo 12566, Egypt;
| | - Nabila Zein
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Gamal Enan
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Ahmed Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Sara El-Hefnawy
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (M.T.E.-S.); (G.E.); (A.S.); (S.E.-H.)
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, SE-90185 Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
19
|
Kannan S, Marudhamuthu M. Development of chitin cross-linked enzyme aggregates of L-methioninase for upgraded activity, permanence and application as efficient therapeutic formulations. Int J Biol Macromol 2019; 141:218-231. [DOI: 10.1016/j.ijbiomac.2019.08.246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/22/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
|
20
|
El-Sayed ASA, Shindia AA, Zeid AAA, Yassin AM, Sitohy MZ, Sitohy B. Aspergillus nidulans thermostable arginine deiminase-Dextran conjugates with enhanced molecular stability, proteolytic resistance, pharmacokinetic properties and anticancer activity. Enzyme Microb Technol 2019; 131:109432. [PMID: 31615671 DOI: 10.1016/j.enzmictec.2019.109432] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
The potential anticancer activity of arginine deiminase (ADI) via deimination of l-arginine into citrulline has been extensively verified against various arginine-auxotrophic tumors, however, the higher antigenicity, structural instability and in vivo proteolysis are the major challenges that limit this enzyme from further clinical implementation. Since, this clinically applied enzyme was derived from Mycobacterium spp, thus, searching for ADI from eukaryotic microbes "especially thermophilic fungi" could have a novel biochemical, conformational and catalytic properties. Aspergillus nidulans ADI was purified with 5.3 folds, with molecular subunit structure 48 kDa and entire molecular mass 120 kDa, ensuring its homotrimeric identity. The peptide fingerprinting analysis revealing the domain Glu95-Gly96-Gly97 as the conserved active site of A. nidulans ADI, with higher proximity to Mycobacterium ADI clade IV. In an endeavor to fortify the structural stability and anticancer activity of A. nidulans ADI, the enzyme was chemically modified with dextran. The optimal activity of Dextran-ADI conjugates was determined at 0.08:20 M ratio of ADI: Dextran, with an overall increase to ADI molecular subunit mass to ˜100 kDa. ADI was conjugated with dextran via the ε-amino groups interaction of surface lysine residues of ADI. The resistance of Dextran-ADI conjugate to proteolysis had been increased by 2.5 folds to proteinase K and trypsin, suggesting the shielding of >50% of ADI surface proteolytic recognition sites. The native and Dextran-ADI conjugates have the same optimum reaction temperature (37 °C), reaction pH and pH stability (7.0-8.0) with dependency on K+ ions as a cofactor. Dextran-ADI conjugates exhibited a higher thermal stability by ˜ 2 folds for all the tested temperatures, ensuring the acquired structural and catalytic stability upon dextran conjugation. Dextran conjugation slightly protect the reactive amino and thiols groups of surface amino acids of ADI from amino acids suicide inhibitors. The affinity of ADI was increased by 5.3 folds to free L-arginine with a dramatic reduction in citrullination of peptidylarginine residues upon dextran conjugation. The anticancer activity of ADI to breast (MCF-7), liver (HepG-2) and colon (HCT8, HT29, DLD1 and LS174 T) cancer cell lines was increased by 1.7 folds with dextran conjugation in vitro. Pharmacokinetically, the half-life time of ADI was increased by 1.7 folds upon dextran conjugation, in vivo. From the biochemical and hematological parameters, ADIs had no signs of toxicity to the experimental animals. In addition to the dramatic reduction of L-arginine in serum, citrulline level was increased by 2.5 folds upon dextran conjugation of ADI. This is first report exploring thermostable ADI from thermophilic A. nidulans with robust structural stability, catalytic efficiency and proteolytic resistance.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt; Department of Clinical Microbiology, Section of Immunology, Umeå University, SE-90185 Umeå, Sweden; Department of Radiation Sciences, Section of Oncology, Umeå University, SE-90185 Umeå, Sweden.
| | - Ahmed A Shindia
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Azza A Abou Zeid
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Amany M Yassin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Section of Immunology, Umeå University, SE-90185 Umeå, Sweden; Department of Radiation Sciences, Section of Oncology, Umeå University, SE-90185 Umeå, Sweden.
| |
Collapse
|
21
|
El-Sayed ASA, George NM, Yassin MA, Alaidaroos BA, Bolbol AA, Mohamed MS, Rady AM, Aziz SW, Zayed RA, Sitohy MZ. Purification and Characterization of Ornithine Decarboxylase from Aspergillus terreus; Kinetics of Inhibition by Various Inhibitors. Molecules 2019; 24:molecules24152756. [PMID: 31362455 PMCID: PMC6696095 DOI: 10.3390/molecules24152756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
l-Ornithine decarboxylase (ODC) is the rate-limiting enzyme of de novo polyamine synthesis in humans and fungi. Elevated levels of polyamine by over-induction of ODC activity in response to tumor-promoting factors has been frequently reported. Since ODC from fungi and human have the same molecular properties and regulatory mechanisms, thus, fungal ODC has been used as model enzyme in the preliminary studies. Thus, the aim of this work was to purify ODC from fungi, and assess its kinetics of inhibition towards various compounds. Forty fungal isolates were screened for ODC production, twenty fungal isolates have the higher potency to grow on L-ornithine as sole nitrogen source. Aspergillus terreus was the most potent ODC producer (2.1 µmol/mg/min), followed by Penicillium crustosum and Fusarium fujikuori. These isolates were molecularly identified based on their ITS sequences, which have been deposited in the NCBI database under accession numbers MH156195, MH155304 and MH152411, respectively. ODC was purified and characterized from A. terreus using SDS-PAGE, showing a whole molecule mass of ~110 kDa and a 50 kDa subunit structure revealing its homodimeric identity. The enzyme had a maximum activity at 37 °C, pH 7.4-7.8 and thermal stability for 20 h at 37 °C, and 90 days storage stability at 4 °C. A. terreus ODC had a maximum affinity (Km) for l-ornithine, l-lysine and l-arginine (0.95, 1.34 and 1.4 mM) and catalytic efficiency (kcat/Km) (4.6, 2.83, 2.46 × 10-5 mM-1·s-1). The enzyme activity was strongly inhibited by DFMO (0.02 µg/mL), curcumin (IC50 0.04 µg/mL), propargylglycine (20.9 µg/mL) and hydroxylamine (32.9 µg/mL). These results emphasize the strong inhibitory effect of curcumin on ODC activity and subsequent polyamine synthesis. Further molecular dynamic studies to elucidate the mechanistics of ODC inhibition by curcumin are ongoing.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Nelly M George
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Marwa A Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | | | - Ahmed A Bolbol
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Marwa S Mohamed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Amgad M Rady
- Faculty of Biotechnology, Modern Science and Arts University, Cairo, Egypt
| | - Safa W Aziz
- Department of Laboratory and Clinical Science, College of Pharmacy, University of Babylon, Babylon, Iraq
| | - Rawia A Zayed
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
22
|
Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AA, Lukashev AN, Lukasheva EV. Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Curr Med Chem 2019; 26:446-464. [PMID: 28990519 DOI: 10.2174/0929867324666171006132729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth. OBJECTIVE The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer. METHODS We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology. RESULTS Most published research are on the subject of L-asparaginase properties and it's use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo. CONCLUSION The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin Cancer Research Center, Moscow, Russian Federation.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation.,People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Belozersky Institute of Physico- Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander N Lukashev
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elena V Lukasheva
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
23
|
Detoxification and Bioremediation of Sulfa Drugs and Synthetic Dyes by Streptomyces mutabilis A17 Laccase Produced in Solid State Fermentation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.09] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
24
|
Abdelraof M, Selim MH, Abo Elsoud MM, Ali MM. Statistically optimized production of extracellular l-methionine γ-lyase by Streptomyces Sp. DMMMH60 and evaluation of purified enzyme in sub-culturing cell lines. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
El-Sayed ASA, Shindia AA, AbouZaid AA, Yassin AM, Ali GS, Sitohy MZ. Biochemical characterization of peptidylarginine deiminase-like orthologs from thermotolerant Emericella dentata and Aspergillus nidulans. Enzyme Microb Technol 2019; 124:41-53. [PMID: 30797478 DOI: 10.1016/j.enzmictec.2019.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Peptidylarginine deiminases (PADs) are a group of hydrolases, mediating the deimination of peptidylarginine residues into peptidyl-citrulline. Equivocal protein citrullination by PADs of fungal pathogens has a strong relation to the progression of multiple human diseases, however, the biochemical properties of fungal PADs remain ambiguous. Thus, this is the first report exploring the molecular properties of PAD from thermotolerant fungi, to imitate the human temperature. The teleomorph Emericella dentata and anamorph Aspergillus nidulans have been morphologically and molecularly identified, with observed robust growth at 37-40 °C, and strong PAD productivity. The physiological profiles of E. dentata and A. nidulans for PADs production in response to carbon, nitrogen sources, initial medium pH and incubation temperature were relatively identical, emphasizing the taxonomical proximity of these fungal isolates. PADs were purified from E. dentata and A. nidulans with apparent molecular masses 41 and 48 kDa, respectively. The peptide fingerprints of PADs from E. dentata and A. nidulans have been analyzed by MALDI-TOF/MS, displaying a higher sequence similarity to human PAD4 by 18% and 31%, respectively. The conserved peptide sequences of E. dentata and A. nidulans PADs displayed a higher similarity to human PAD than A. fumigatus PADs clade. PADs from both fungal isolates have an optimum pH and pH stability at 7.0-8.0, with putative pI 5.0-5.5, higher structural denaturation at pH 4.0-5.5 and 9.5-12 as revealed from absorbance at λ280nm. E. dentata PAD had a higher conformationally thermal stability than A. nidulans PAD as revealed from its lower Kr value. From the proteolytic mapping, the orientation of trypsinolytic recognition sites on the PADs surface from both fungal isolates was very similar. PADs from both isolates are calcium dependent, with participation of serine and cysteine residues on their catalytic sites. PADs displayed a higher affinity to deiminate the peptidylarginine residues with a feeble affinity to work as ADI. So, PADs from E. dentata and A. nidulans had a relatively similar conformational and kinetic properties. Further molecular modeling analysis are ongoing to explore the role of PADs in citrullination of human proteins in Aspergillosis, that will open a new avenue for unraveling the vague of protein-protein interaction of human A. nidulans pathogen.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed A Shindia
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Azza A AbouZaid
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Amany M Yassin
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gul Shad Ali
- MREC, Department of Plant Pathology, University of Florida, Florida, 32703, USA
| | - Mahmoud Z Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
El-Sayed AS, Ali DM, Yassin MA, Zayed RA, Ali GS. Sterol inhibitor “Fluconazole” enhance the Taxol yield and molecular expression of its encoding genes cluster from Aspergillus flavipes. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Salim N, Santhiagu A, Joji K. Process modeling and optimization of high yielding L-methioninase from a newly isolated Trichoderma harzianum using response surface methodology and artificial neural network coupled genetic algorithm. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Khade S, Srivastava S, Kumar K, Sharma K, Goyal A, Tripathi A. Optimization of clinical uricase production by Bacillus cereus under submerged fermentation, its purification and structure characterization. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Silva MVDM, Costa ICR, de Souza ROMA, Bornscheuer UT. Biocatalytic Cascade Reaction for the Asymmetric Synthesis of L‐ and D‐Homoalanine. ChemCatChem 2018. [DOI: 10.1002/cctc.201801413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marcus V. de M. Silva
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryGreifswald University Greifswald 17487 Germany
- Biocatalysis and Organic Synthesis GroupInstitute of ChemistryFederal University of Rio de Janeiro, Rio de Janeiro 21941-909 Brazil
| | - Ingrid C. R. Costa
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryGreifswald University Greifswald 17487 Germany
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis GroupInstitute of ChemistryFederal University of Rio de Janeiro, Rio de Janeiro 21941-909 Brazil
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryGreifswald University Greifswald 17487 Germany
| |
Collapse
|
30
|
Guo L, Wang C. Optimized production and isolation of antibacterial agent from marine Aspergillus flavipes against Vibrio harveyi. 3 Biotech 2017; 7:383. [PMID: 29134160 DOI: 10.1007/s13205-017-1015-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 06/03/2017] [Indexed: 10/18/2022] Open
Abstract
Statistical methodologies, including Plackett-Burman design and Box-Behnken design, were employed to optimize the fermentation conditions for the production of active substances against aquatic pathogen Vibrio harveyi by marine-derived Aspergillus flavipes strain HN4-13. The optimal crucial fermentation values for maximum production of active substances against V. harveyi were obtained as follows: X1 (peptone) = 0.3%, X2 (KCl) = 0.25%, and X3 (inoculum size) = 4.5%. The predicted diameter of inhibitory zone against V. harveyi was 23.39 mm, and the practical value reached 23.71 ± 0.98 mm with a 62.3% increase. Bioassay-guided fractionation resulted in the acquisition of two compounds whose structures were identified as questin (1) and emodin (2). Questin exhibited the same antibacterial activity against V. harveyi as streptomycin (MIC 31.25 µg/mL). This is the first time to report questin as a potential antibacterial agent against aquatic pathogen V. harveyi.
Collapse
|
31
|
Suganya K, Govindan K, Prabha P, Murugan M. An extensive review on L-methioninase and its potential applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Shukla A, Gundampati RK, Jagannadham MV. Biochemical and biophysical characterization of a peroxidase isolated from Euphorbia tirucalli with antifungal activity. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.1080/10242422.2016.1238463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ankita Shukla
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India and
| | - Ravi Kumar Gundampati
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India and
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Medicherla V. Jagannadham
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India and
| |
Collapse
|
33
|
El-Sayed AS, Hassan AE, Shindia AA, Mohamed SG, Sitohy MZ. Aspergillus flavipes methionine γ-lyase-dextran conjugates with enhanced structural, proteolytic stability and anticancer efficiency. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Molecular and Spectroscopic Characterization of Aspergillus flavipes and Pseudomonas putida L-Methionine γ-Lyase in Vitro. Appl Biochem Biotechnol 2016; 181:1513-1532. [PMID: 27796875 DOI: 10.1007/s12010-016-2299-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 01/11/2023]
Abstract
Pseudomonas putida L-methionine γ-lyase (PpMGL) has been recognized as an efficient anticancer agent, however, its antigenicity and stability remain as critical challenges for its clinical use. From our studies, Aspergillus flavipes L-methionine γ-lyase (AfMGL) displayed more affordable biochemical properties than PpMGL. Thus, the objective of this work was to comparatively assess the functional properties of AfMGL and PpMGL via stability of their internal aldimine linkage, tautomerism of pyridoxal 5'-phosphate (PLP) and structural stability responsive to physicochemical factors. The internal Schiff base of AfMGL and PpMGL have the same stability to hydroxylamine and human serum albumin. Acidic pHs resulted in strong cleavage of the internal Schiff base, inducing the unfolding of MGLs, compared to neutral-alkaline pHs. At λ 280 nm excitation, both AfMGL and PpMGL have identical fluorescence emission spectra at λ 335 nm for the intrinsic tryptophan and λ 560 nm for the internal Schiff base. The maximum PLP tautomeric shift of ketoenamine to enolimine was detected at acidic pH causing complete enzyme unfolding, subunits dissociation and tautomeric shift of intrinsic PLP, rather than neutral-alkaline ones. The T m of AfMGL and PpMGL in presence of thermal stabilizer/ destabilizer was assayed by DSF. The T m of AfMGL and PpMGL was 73.1 °C and 74.4 °C, respectively, suggesting the higher proximity to the tertiary structure of both enzymes. The T m of AfMGL and PpMGL was slightly increased by trehalose and EDTA in contrast to guanidine HCl and urea. The active site and PLP-binding domains are identically conserved in both AfMGL and PpMGL.
Collapse
|
35
|
El-Sayed ASA, Yassin MA, Ali GS. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation. PLoS One 2015; 10:e0144304. [PMID: 26633307 PMCID: PMC4669086 DOI: 10.1371/journal.pone.0144304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway.
Collapse
Affiliation(s)
- Ashraf S. A. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, Apopka, Florida 32703, United States of America
- * E-mail: (GSA); (AES)
| | - Marwa A. Yassin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Zagazig, Egypt
| | - Gul Shad Ali
- Mid-Florida Research and Education Center, Department of Plant Pathology, University of Florida, Apopka, Florida 32703, United States of America
- * E-mail: (GSA); (AES)
| |
Collapse
|
36
|
Selim MH, Karm Eldin EZ, Saad MM, Mostafa ESE, Shetia YH, Anise AAH. Purification, Characterization of L-Methioninase from Candida tropicalis, and Its Application as an Anticancer. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2015; 2015:173140. [PMID: 26691554 PMCID: PMC4672112 DOI: 10.1155/2015/173140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 02/08/2023]
Abstract
The aim of the present study is to purify L-methioninase from Candida tropicalis 34.19-fold with 27.98% recovery after ion exchange chromatography followed by gel filtration. The purified enzyme revealed a single band on SDS-PAGE gel with a molecular weight of 46 KDa. Its optimum temperature was 45 to 55 and thermal stability was 55°C for 15 min. The enzyme had optimum pH at 6.5 and stability at a pH range of 5.5 to 7.0 for 24 hr. The maximum activity was observed with substrate concentration of 30 µM and Km was 0.5 mM. The enzyme was strongly inhibited by Cd(+2) and Cu(+2) while it was enhanced by Na(+), Ni(+2), and Mg(+2) at 10 mM while Ca(+2) had slight activation at 20 mM. In addition, the potential application of the L-methioninase as an anticancer agent against various types of tumor cell lines is discussed.
Collapse
|
37
|
El-Sayed ASA, Hassan AE, Yassin MA, Hassan AMF. Characterization of Glutathione-Homocystine Transhydrogenase as a Novel Isoform of Glutathione S-Transferase from Aspergillus flavipes. Pharm Chem J 2015. [DOI: 10.1007/s11094-015-1288-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
El-Sayed AS, Yassin MA, Khalaf SA, El-Batrik M, Ali GS, Esener S. Biochemical and Pharmacokinetic Properties of PEGylated Cystathionine γ-Lyase from Aspergillus carneus KF723837. J Mol Microbiol Biotechnol 2015; 25:301-10. [DOI: 10.1159/000437331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cystathionine γ-lyase (CGL) was purified to its electrophoretic homogeneity from<i> Aspergillus carneus</i> by various chromatographic approaches. The purified enzyme has four identical subunits of 52 kDa based on SDS and native PAGE analyses. To improve its structural stability, purified CGL was modified by covalent binding to polyethylene glycol moieties. The specific activity of free-CGL and PEG-CGL was 59.71 and 48.71 U/mg, respectively, with a PEGylation yield of 81.5 and 70.7% modification of surface ε-amino groups. Free- and modified CGL have the same pattern of pH stability (8.0-9.0). At 50°C, the thermal stability [half-life time (T<sub>1/2</sub>)] of PEG-CGL was increased by 40% in comparison to free-CGL. The activity of CGL was completely inhibited by hydroxylamine and Hg<sup>+2</sup>, with no effect by EDTA. Free-CGL (0.04 m<smlcap>M</smlcap><sup>-1</sup>s<sup>-1</sup>) and PEG-CGL (0.03 m<smlcap>M</smlcap><sup>-1</sup>s<sup>-1</sup>) have a similar catalytic efficiency to <smlcap>L</smlcap>-cystathionine as a substrate. The inhibition constant values of propargylglycine were 0.31 and 0.52 µ<smlcap>M</smlcap> for the free- and PEG-CGL, respectively. By in vitro proteolysis, PEG-CGL retains >50% of its initial activity compared to <10% of the free-CGL for acid protease for 30 min. From in vivo pharmacokinetics in New Zealand white rabbits, the T<sub>1/2</sub> was 19.1 and 28.9 h for the Holo free-CGL and PEG-CGL, respectively, ensuring the role of PEGylation on shielding the CGL surface from proteolytic attack, reducing its antigenicity, and stabilizing its internal Schiff base. By external infusion of pyridoxal 5′-phosphate (10 µ<smlcap>M</smlcap>), the T<sub>1/2</sub> of free- and PEG-CGL was prolonged to 24 and 33 h, respectively, so dissociation of pyridoxal 5′-phosphate was one of the main causes of loss of enzyme activity. The biochemical and hematological responses of rabbits to free- and PEG-CGL were assessed, with relative similarity to the negative control, confirming the nil toxicity of enzymes. The titer of IgG was duplicated in response to free- versus PEG-CGL after 45 days. To the best of our knowledge, this is the first report concerned with purification and PEGylation of CGL from fungi, with higher affinity for <smlcap>L</smlcap>-cystathionine. With further molecular studies, CGL will be a promising enzyme against various cardiovascular diseases and antioxidant deficiency, as well as for generation of a neurotransmitter (H<sub>2</sub>S).
Collapse
|
39
|
El-Sayed AS, Khalaf SA, Abdel-Hamid G, El-Batrik MI. Screening, morphological and molecular characterization of fungi producing cystathionine γ-lyase. ACTA BIOLOGICA HUNGARICA 2015; 66:119-32. [PMID: 25740443 DOI: 10.1556/abiol.66.2015.1.10] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potency for production of cystathionine γ-lyase (CGL) by the fungal isolates was screened. Among the tested twenty-two isolates, Aspergillus carneus was the potent CGL producer (6.29 U/mg), followed by A. ochraceous (6.03 U/mg), A. versicolor (2.51 U/mg), A. candidus (2.12 U/mg), A. niveus and Penicillium notatum (2.0 U/mg). The potent six isolates producing CGL was characterized morphologically, A. carneus KF723837 was further molecularly characterized based on the sequence of 18S-28S rDNA. Upon sulfur starvation, the yield of A. carneus extracellular CGL was increased by about 1.7- and 4.1-fold comparing to non-sulfur starved and L-methionine free medium, respectively. Also, the uptake of L-methionine was duplicated upon sulfur starvation, assuming the activation of specific transporters for L-methionine and efflux of CGL. Also, the intracellular thiols and GDH activity of A. carneus was strongly increased by S starvation, revealing the activation of in vivo metabolic antioxidant systems. Upon irradiation of A. carneus by 2.0 kGy of γ-rays, the activity of CGL was increased by two-fold, regarding to control, with an obvious decreases on its yield upon further doses. Practically, CGL activity from the solid A. carneus cultures, using rice bran as substrate, was increased by 1.2-fold, comparing to submerged cultures, under optimum conditions.
Collapse
Affiliation(s)
- Ashraf S El-Sayed
- Zagazig University Microbiology Department, Faculty of Science Zagazig Egypt
| | - Salwa A Khalaf
- Zagazig University Microbiology Department, Faculty of Science Zagazig Egypt
| | | | - Mohamed I El-Batrik
- Zagazig University Microbiology Department, Faculty of Science Zagazig Egypt
| |
Collapse
|
40
|
El-Sayed ASA, Yassin MA, Ibrahim H. Coimmobilization of l-methioninase and glutamate dehydrogenase: Novel approach for L-homoalanine synthesis. Biotechnol Appl Biochem 2014; 62:514-22. [PMID: 25273833 DOI: 10.1002/bab.1299] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/26/2014] [Indexed: 01/04/2023]
Abstract
L-Homoalanine, a nonnatural amino acid that is rarely found in human and microorganisms, is used in the synthesis of various medically pivotal antiepileptic drugs and antituberculosis compounds. l-Homoalanine can be synthesized by different enzymatic approaches. In this article, the synthesis of l-homoalanine from l-methionine was explored by coimmobilization of Aspergillus flavipes l-methioninase (AfMETase) and glutamate dehydrogenase (GDH) on polyacrylamide and chitosan. Polyacrylamide coimmobilized AfMETase and GDH displayed a maximum reactivity for the synthesis of homoalanine from l-methionine. The chitosan-coimmobilized AfMETase and GDH retain about 70% of their initial activity of l-homoalanine production by the fifth catalytic reusability cycle as compared with 50% for polyacrylamide coimmobilizate. Catalytic conditions were optimized for the maximum yield of homoalanine. Homoalanine was purified by cationic and anionic chromatographs and the proton nuclear magnetic resonance (H-NMR) analysis of the lyophilized sample displayed a unique chemical structure identical to the authentic homoalanine. Using dependable dual action of AfMETase and GDH immobilized on a solid support is a novel approach for in vitro enzymatic synthesis of l-homoalanine from l-methionine, and the immobilized enzymes can be reused many times without any significant loss of their activities.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Department of Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.,Nano-Engineering Department, University of California, San Diego, CA, 92093, USA
| | - Marwa A Yassin
- Department of Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hend Ibrahim
- Proteomics and Metabolomics Facility, Department of Microbiology, Colorado State University, Fort Collins, CO, 80523-2021, USA
| |
Collapse
|
41
|
El-Sayed AS, Shindia AA, Diab AA, Rady AM. Purification and immobilization of L-arginase from thermotolerant Penicillium chrysogenum KJ185377.1; with unique kinetic properties as thermostable anticancer enzyme. Arch Pharm Res 2014. [PMID: 25322968 DOI: 10.1007/s12272-014-0498-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
L-Arginase, hydrolyzing L-arginine to L-ornithine and urea, is a powerful anticancer, L-arginine-depleting agent, against argininosuccinate synthase expressing tumors. Otherwise, the higher antigenicity and lower thermal stability of this enzyme was the main biochemical hurdles. Since, the intrinsic thermal stability of enzymes follow the physiological temperature of their producer, thus, characterization of L-arginase from thermotolerant Penicillium chrysogenum was the objective of this study. L-Arginase (Arg) was purified to its homogeneity from P. chrysogenum by 10.1-fold, with 37.0 kDa under denaturing PAGE, optimum reaction at 50 °C, pH stability (6.8-7.9), with highest molar ratio of constitutional arginine, glutamic acid, lysine and aspartic acid. The purified enzyme was PEGylated and immobilized on chitosan, with 41.9 and 22.1 % yield of immobilization. At 40 °C, the T1/2 value of free-Arg, PEG-Arg and Chit-Arg was 10.4, 15.6, 20.5 h, respectively. The free-Arg and Chit-Arg have a higher affinity to L-arginine (K m 4.8 mM), while, PEG-Arg affinity was decreased by about 3 fold (K m 15.2 mM). The inhibitory constants to the free and PEG-Arg were relatively similar towards HA and PPG. The IC50 for the free enzyme against HEPG-2 and A549 tumor cells was 0.136 and 0.165 U/ml, comparing to 0.232 and 0.496 U/ml for PEG-Arg, respectively. The in vivo T1/2 to the free Arg and PEG-Arg was 16.4 and 20.4 h, respectively as holo-enzyme. The residual L-arginine level upon using free Arg was 156.9 and 144.5 µM, after 6 and 8 h, respectively, regarding to initials at 253.6 µM, while for Peg-Arg the level of L-arginine was nil till 7 h of initial dosing. The titer of IgG was induced by 10-15 % in response to free-Arg after 28 days comparing to IgG titer for PEG-Arg.
Collapse
Affiliation(s)
- Ashraf S El-Sayed
- Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt,
| | | | | | | |
Collapse
|
42
|
Liu Y, Zhao S, Ding W, Wang P, Yang X, Xu J. Methylthio-Aspochalasins from a Marine-Derived Fungus Aspergillus sp. Mar Drugs 2014; 12:5124-31. [PMID: 25272329 PMCID: PMC4210888 DOI: 10.3390/md12105124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/26/2022] Open
Abstract
Two novel aspochalasins, 20-β-methylthio-aspochalsin Q (named as aspochalasin V), (1) and aspochalasin W (2), were isolated from culture broth of Aspergillus sp., which was found in the gut of a marine isopod Ligia oceanica. The structures were determined on the basis of NMR and mass spectral data analysis. This is the first report about methylthio-substituted aspochalasin derivatives. Cytotoxicity against the prostate cancer PC3 cell line and HCT116 cell line was assayed using the MTT method. Apochalasin V showed moderate activity at IC50 values of 30.4 and 39.2 μM, respectively.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Shizhe Zhao
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Wanjing Ding
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Pinmei Wang
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Xianwen Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Jinzhong Xu
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
43
|
Advances in Detection Methods of l-Amino Acid Oxidase Activity. Appl Biochem Biotechnol 2014; 174:13-27. [DOI: 10.1007/s12010-014-1005-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|
44
|
El-Sayed AS, Shindia AA, Zaher YA. Purification and characterization of L-amino acid oxidase from the solid-state grown cultures of Aspergillus oryzae ASH. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261713060143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
El-Sayed ASA, Ibrahim H, Sitohy MZ. Co-immobilization of PEGylated Aspergillus flavipes L-methioninase with glutamate dehydrogenase: a novel catalytically stable anticancer consortium. Enzyme Microb Technol 2013; 54:59-69. [PMID: 24267569 DOI: 10.1016/j.enzmictec.2013.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/15/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022]
Abstract
Aspergillus flavipes L-methioninase (AfMETase) exhibits reliable pharmacokinetic properties and anticancer potency in vitro[10]. To maximize its therapeutic efficiency as protection against in vivo proteolysis, reduction of antigenicity and hyperammoniemia, the enzyme was PEGylated and coupled with glutamate dehydrogenase (GDH). The highest degree of PEGylation was measured at 40-50/1 molar ratio of PEG to AfMETase, with a lower mobility on SDS-PGE, compared to the native AfMETase. The activity of free AfMETase was reduced to 66.2% and further to 50% upon PEGylation and GDH conjugation, respectively. The highest degree of surface NH2 modification of AfMETase-GDH co-immobilizates (65%), was reported using 300 mM glutaraldehyde, with 31% methionine conversion. Using L-cysteine and L-methionine as active site protectors, the activity of PEG-AfMETase and PEG-AfMETase-GDH was increased by 14.4 and 32.9-fold, respectively. At 45°C, PEG-AfMETase, PEG-AfMETase-GDH and AfMETase-GDH conjugate have a T1/2 10.3, 8.5 and 7.6 h, inactivation rate (Kr) 0.021, 0.03 and 0.016 min, with 2.0, 1.65 and 1.47-fold stabilization, respectively. Kinetically, the three immobilizates have a relatively similar Km values for L-methionine (7.4-7.9 mM), with lower affinity to homocysteine and cysteine, with stability to PLP-enzyme inhibitors (propargylglycine and hydroxylamine), indicating the protective effect by PEG moieties on the enzyme structure. Also, the three immobilizates exhibited improved stability against proteolysis in vitro, comparing to free AfMETase.
Collapse
|
46
|
Extracellular l-Asparaginase from a Protease-Deficient Bacillus aryabhattai ITBHU02: Purification, Biochemical Characterization, and Evaluation of Antineoplastic Activity In Vitro. Appl Biochem Biotechnol 2013; 171:1759-74. [DOI: 10.1007/s12010-013-0455-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
47
|
Negi VS, Bingham JP, Li QX, Borthakur D. midD-encoded 'rhizomimosinase' from Rhizobium sp. strain TAL1145 is a C-N lyase that catabolizes L-mimosine into 3-hydroxy-4-pyridone, pyruvate and ammonia. Amino Acids 2013; 44:1537-47. [PMID: 23462928 DOI: 10.1007/s00726-013-1479-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Rhizobium sp. strain TAL1145 catabolizes mimosine, which is a toxic non-protein amino acid present in Leucaena leucocephala (leucaena). The objective of this investigation was to study the biochemical and catalytic properties of the enzyme encoded by midD, one of the TAL1145 genes involved in mimosine degradation. The midD-encoded enzyme, MidD, was expressed in Escherichia coli, purified and used for biochemical and catalytic studies using mimosine as the substrate. The reaction products in the enzyme assay were analyzed by HPLC and mass spectrometry. MidD has a molecular mass of ~45 kDa and its catalytic activity was found to be optimal at 37 °C and pH 8.5. The major product formed in the reaction had the same retention time as that of synthetic 3-hydroxy-4-pyridone (3H4P). It was confirmed to be 3H4P by MS/MS analysis of the HPLC-purified product. The K m, V max and K cat of MidD were 1.27 × 10(-4) mol, 4.96 × 10(-5) mol s(-1) mg(-1), and 2,256.05 s(-1), respectively. Although MidD has sequence similarities with aminotransferases, it is not an aminotransferase because it does not require a keto acid as the co-substrate in the degradation reaction. It is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and the addition of 50 μM hydroxylamine completely inhibited the reaction. However, the supplementation of the reaction with 0.1 μM PLP restored the catalytic activity of MidD in the reaction containing 50 μM hydroxylamine. The catalytic activity of MidD was found to be specific to mimosine, and the presence of its structural analogs including L-tyrosine, L-tryptophan and L-phenylalanine did not show any competitive inhibition. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products in equimolar quantities of the substrate used. The degradation of mimosine into a ring compound, 3H4P with the release of ammonia indicates that MidD of Rhizobium sp. strain TAL1145 is a C-N lyase.
Collapse
Affiliation(s)
- Vishal Singh Negi
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | | | | | | |
Collapse
|
48
|
El-Sayed AS, Shouman SA, Nassrat HM. Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes l-methioninase. Enzyme Microb Technol 2012; 51:200-10. [DOI: 10.1016/j.enzmictec.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/19/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
|
49
|
El-Sayed AS, Shindia AA, Zaher Y. L-Amino acid oxidase from filamentous fungi: screening and optimization. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0318-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
50
|
El-Sayed AS, Shindia AA. Characterization and immobilization of purified Aspergillus flavipesl-methioninase: continuous production of methanethiol. J Appl Microbiol 2011; 111:54-69. [PMID: 21466637 DOI: 10.1111/j.1365-2672.2011.05027.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To immobilize the purified Aspergillus flavipesl-methioninase on solid carriers for continuous production of methanethiol with high purity, by the enzymatic methods. METHODS AND RESULTS The purified l-methioninase was immobilized using different methods, and physicochemical and kinetic studies for the potent immobilized enzyme were conducted parallel to the soluble one. The activity of the purified extracellular enzyme was 1·8-fold higher than intracellular one from submerged cultures of A. flavipes. Among the tested methods, polyacrylamide (42·2%), Ca-alginate (40·9%) and chitin (40·8%) displayed the highest immobilization efficiency. The thermal inactivation rate was strongly decreased for chitin-immobilized enzyme (0·222 s⁻¹) comparing to soluble enzyme (0·51 s⁻¹). Enzyme immobilization efficiency was greatly improved using 4·0% glutaraldehyde and 41·6/6·3 (T/C) as spacers for chitin and polyacrylamide-enzyme conjugates, comparing to their controls. Also the incorporation of lysine, glutathione, cysteine and dithiothreitol as active site protectants significantly enhance the catalytic efficiency of immobilized enzyme. The activity of enzyme was increased by 4·5- and 3·5-fold using glutathione plus DDT and glutathione plus methionine, for chitin and polyacrylamide enzyme, respectively. CONCLUSION Chitin enzyme gave a plausible stability till fourth cycle for production of methanethiol under controlled system. Applying GC and HNMR analysis, methanethiol has identical chemical structure to the standard compound. SIGNIFICANCE AND IMPACT OF THE STUDY Technically, a new method for continuous production of pure methanethiol, with broad applications, was developed using a simple low expenses method.
Collapse
Affiliation(s)
- A S El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | | |
Collapse
|