1
|
Zhang Q, Zhen M, Wang X, Zhao F, Dong Y, Wang X, Gao S, Wang J, Shi W, Zhang Y. Antibiotic exposure enriches streptococci carrying resistance genes in periodontitis plaque biofilms. PeerJ 2025; 13:e18835. [PMID: 39850835 PMCID: PMC11756365 DOI: 10.7717/peerj.18835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
Background Periodontitis is not always satisfactorily treated with conventional scaling and root planing, and adjunctive use of antibiotics is required in clinical practice. Therefore, it is important for clinicians to understand the diversity and the antibiotic resistance of subgingival microbiota when exposed to different antibiotics. Materials and Methods In this study, subgingival plaques were collected from 10 periodontitis patients and 11 periodontally healthy volunteers, and their microbiota response to selective pressure of four antibiotics (amoxicillin, metronidazole, clindamycin, and tetracycline) were evaluated through 16S rRNA gene amplicon and metagenomic sequencing analysis. Additionally, sensitive and resistant strains were isolated and cultured in vitro for resistance evaluation. Results Cultivation of subgingival microbiota revealed the oral microbiota from periodontitis patients were more resistant to antibiotics than that of healthy. Significant differences were also observed for the microbial community between with and without antibiotics (especially amoxicillin and tetracycline) treated in periodontitis group. Conclusion Overall, after the two antibiotics (amoxicillin and tetracycline) exposed, the oral subgingival microbiota in periodontitis patients exhibited different diversity and composition. Streptococcus may account for oral biofilm-specific antibiotic resistance in periodontitis. This provides information for personalized treatment of periodontitis.
Collapse
Affiliation(s)
- Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Min Zhen
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - FengXiang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yang Dong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoya Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shengtao Gao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wenyu Shi
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yifei Zhang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
2
|
Gattu R, Ramesh SS, Ramesh S. Role of small molecules and nanoparticles in effective inhibition of microbial biofilms: A ray of hope in combating microbial resistance. Microb Pathog 2024; 188:106543. [PMID: 38219923 DOI: 10.1016/j.micpath.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Microbial biofilms pose a severe threat to global health, as they are associated with deadly chronic infections and antibiotic resistance. To date, very few drugs are in clinical practice that specifically target microbial biofilms. Therefore, there is an urgent need for the development of novel therapeutic options targeting biofilm-related infections. In this review, we discuss nearly seventy-five different molecular scaffolds published over the last decade (2010-2023) which have exhibited their biofilm inhibition potential. For convenience, we have classified these into five different sub-groups based on their origin and design (excluding peptides as they are placed in between small molecules and biologics), namely, heterocycles; inorganic small molecules & metal complexes; small molecules decorated nanoparticles; small molecules derived from natural products (both plant and marine sources); and small molecules designed by in-silico approach. These antibiofilm agents are capable of disrupting microbial biofilms and can offer a promising avenue for future developments in human medicine. A hitherto review of this kind will lay a platform for the researchers to find new molecular entities to curb the serious menace of antimicrobial resistance especially caused by biofilms.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Sanjay S Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India.
| |
Collapse
|
3
|
Palmieri A, Martinelli M, Pellati A, Carinci F, Lauritano D, Arcuri C, Baggi L, Gatto R, Scapoli L. Prevalence of Enterococci and Vancomycin Resistance in the Throat of Non-Hospitalized Individuals Randomly Selected in Central Italy. Antibiotics (Basel) 2023; 12:1161. [PMID: 37508257 PMCID: PMC10376521 DOI: 10.3390/antibiotics12071161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococci are commonly found in the environment and humans as a part of the normal microbiota. Among these, Enterococcus faecalis and Enterococcus faecium can convert into opportunistic pathogens, making them a major cause of nosocomial infections. The rapid diffusion of vancomycin-resistant strains and their impact on nosocomial settings is of considerable concern. Approximately one-third of the E. faecium infections in Italy are caused by vancomycin-resistant strains. This study explored the hypothesis that the oral cavity could represent a silent reservoir of virulent enterococci. A sample of 862 oral flora specimens collected from healthy human volunteers in Central Italy was investigated by real-time PCR to detect E. faecalis and E. faecium, as well as the genetic elements that most frequently determine vancomycin resistance. The prevalence of E. faecalis was 19%, a value that was not associated with alcohol consumption, tobacco smoking, or age of the subjects. Less frequently detected, with an overall prevalence of 0.7%, E. faecium was more common among people older than 49 years of age. The genes conferring vancomycin resistance were detected in only one sample. The results indicate that the oral cavity can be considered a reservoir of clinically relevant enterococci; however, our data suggest that healthy individuals rarely carry vancomycin-resistant strains.
Collapse
Affiliation(s)
- Annalisa Palmieri
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Marcella Martinelli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Agnese Pellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Francesco Carinci
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Dorina Lauritano
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Arcuri
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00113 Rome, Italy
| | - Luigi Baggi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00113 Rome, Italy
| | - Roberto Gatto
- Department of Life, Health and Environmental Sciences, School of Dentistry, University of L'Aquila, 67100 L'Aquila, Italy
| | - Luca Scapoli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
4
|
Anderson AC, von Ohle C, Frese C, Boutin S, Bridson C, Schoilew K, Peikert SA, Hellwig E, Pelz K, Wittmer A, Wolff D, Al-Ahmad A. The oral microbiota is a reservoir for antimicrobial resistance: resistome and phenotypic resistance characteristics of oral biofilm in health, caries, and periodontitis. Ann Clin Microbiol Antimicrob 2023; 22:37. [PMID: 37179329 PMCID: PMC10183135 DOI: 10.1186/s12941-023-00585-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is an ever-growing threat to modern medicine and, according to the latest reports, it causes nearly twice as many deaths globally as AIDS or malaria. Elucidating reservoirs and dissemination routes of antimicrobial resistance genes (ARGs) are essential in fighting AMR. Human commensals represent an important reservoir, which is underexplored for the oral microbiota. Here, we set out to investigate the resistome and phenotypic resistance of oral biofilm microbiota from 179 orally healthy (H), caries active (C), and periodontally diseased (P) individuals (TRN: DRKS00013119, Registration date: 22.10.2022). The samples were analysed using shotgun metagenomic sequencing combined, for the first time, with culture technique. A selection of 997 isolates was tested for resistance to relevant antibiotics. RESULTS The shotgun metagenomics sequencing resulted in 2,069,295,923 reads classified into 4856 species-level OTUs. PERMANOVA analysis of beta-diversity revealed significant differences between the groups regarding their microbiota composition and their ARG profile. The samples were clustered into three ecotypes based on their microbial composition. The bacterial composition of H and C samples greatly overlapped and was based on ecotypes 1 and 2 whereas ecotype 3 was only detected in periodontitis. We found 64 ARGs conveying resistance to 36 antibiotics, particularly to tetracycline, macrolide-lincosamide-streptogramin, and beta-lactam antibiotics, and a correspondingly high prevalence of phenotypic resistance. Based on the microbiota composition, these ARGs cluster in different resistotypes, and a higher prevalence is found in healthy and caries active than in periodontally diseased individuals. There was a significant association between the resistotypes and the ecotypes. Although numerous associations were found between specific antibiotic resistance and bacterial taxa, only a few taxa showed matching associations with both genotypic and phenotypic analyses. CONCLUSIONS Our findings show the importance of the oral microbiota from different niches within the oral cavity as a reservoir for antibiotic resistance. Additionally, the present study showed the need for using more than one method to reveal antibiotic resistance within the total oral biofilm, as a clear mismatch between the shotgun metagenomics method and the phenotypic resistance characterization was shown.
Collapse
Affiliation(s)
- A C Anderson
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - C von Ohle
- Department of Conservative Dentistry, Periodontology and Endodontology, University Centre of Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - C Frese
- Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - S Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - C Bridson
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - K Schoilew
- Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - S A Peikert
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - E Hellwig
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - K Pelz
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A Wittmer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - D Wolff
- Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - A Al-Ahmad
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| |
Collapse
|
5
|
Batool M, Keating C, Javed S, Nasir A, Muddassar M, Ijaz UZ. A Cross-Sectional Study of Potential Antimicrobial Resistance and Ecology in Gastrointestinal and Oral Microbial Communities of Young Normoweight Pakistani Individuals. Microorganisms 2023; 11:microorganisms11020279. [PMID: 36838244 PMCID: PMC9965051 DOI: 10.3390/microorganisms11020279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Antimicrobial resistance (AMR) is a major global public health concern mainly affecting low- and middle-income countries (LMICs) due to lack of awareness, inadequate healthcare and sanitation infrastructure, and other environmental factors. In this study, we aimed to link microbial assembly and covariates (body mass index, smoking, and use of antibiotics) to gut microbiome structure and correlate the predictive antimicrobial gene prevalence (piARG) using PICRUSt2. We examined the gastrointestinal and oral microbial profiles of healthy adults in Pakistan through 16S rRNA gene sequencing with a focus on different ethnicities, antibiotic usage, drinking water type, smoking, and other demographic measures. We then utilised a suite of innovative statistical tools, driven by numerical ecology and machine learning, to address the above aims. We observed that drinking tap water was the main contributor to increased potential AMR signatures in the Pakistani cohort compared to other factors considered. Microbial niche breadth analysis highlighted an aberrant gut microbial signature of smokers with increased age. Moreover, covariates such as smoking and age impact the human microbial community structure in this Pakistani cohort.
Collapse
Affiliation(s)
- Maria Batool
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ciara Keating
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sundus Javed
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
| | - Arshan Nasir
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
- Correspondence: (M.M.); (U.Z.I.)
| | - Umer Zeeshan Ijaz
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GE, UK
- College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
- Correspondence: (M.M.); (U.Z.I.)
| |
Collapse
|
6
|
Sparbrod M, Gager Y, Koehler AK, Jentsch H, Stingu CS. Relationship between Phenotypic and Genotypic Resistance of Subgingival Biofilm Samples in Patients with Periodontitis. Antibiotics (Basel) 2022; 12:antibiotics12010068. [PMID: 36671269 PMCID: PMC9854985 DOI: 10.3390/antibiotics12010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The phenotypic expression of antibiotic resistance genes (ARGs) can hamper the use of antibiotics as adjuncts to subgingival instrumentation in the treatment of periodontitis patients. The aim of the study was to analyze the relationship between the phenotypic and genotypic resistance against ampicillin-sulbactam, clindamycin, doxycycline and metronidazole of subgingival biofilm samples from 19 periodontitis patients. Samples were analyzed with shotgun sequencing and cultivated anaerobically for 7 days on microbiological culture media incorporating antibiotics. All growing isolates were identified to the species level using MALDI-TOF-MS and sequence analysis of the 16S ribosomal RNA (rRNA) gene. Phenotypic resistance was determined using EUCAST-breakpoints. The genetic profile of eight patients matched completely with phenotypical resistance to the tested antibiotics. The positive predictive values varied from 1.00 for clindamycin to 0.57 for doxycycline and 0.25 for ampicillin-sulbactam. No sample contained the nimI gene. It can be concluded that antibiotic resistance may be polygenetic and genes may be silent. Every biofilm sample harboring erm genes was phenotypic resistant. The absence of cfx and tet genes correlated to 100%, respectively, to 75%, with the absence of phenotypic resistance. The absence of nimI genes leads to the assumption that constitutive resistance among several species could explain the resistance to metronidazole.
Collapse
Affiliation(s)
- Moritz Sparbrod
- Institute for Medical Microbiology and Virology, University Hospital Leipzig, 04103 Leipzig, Germany
- Correspondence: (M.S.); (C.-S.S.)
| | | | | | - Holger Jentsch
- Center of Periodontology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Catalina-Suzana Stingu
- Institute for Medical Microbiology and Virology, University Hospital Leipzig, 04103 Leipzig, Germany
- Correspondence: (M.S.); (C.-S.S.)
| |
Collapse
|
7
|
Radunovic M, Barac M, Kuzmanovic Pficer J, Pavlica D, Jovanovic A, Pucar A, Petrovic S. Antifungal Susceptibility of Candida albicans Isolated from Tongue and Subgingival Biofilm of Periodontitis Patients. Antibiotics (Basel) 2022; 11:802. [PMID: 35740208 PMCID: PMC9219811 DOI: 10.3390/antibiotics11060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
The subgingival biofilm, as the most complex microbial community, has been proven to be reservoir of Candida spp. The main concept of this study was to investigate if there is a difference between the sensitivity of Candida albicans (C. albicans) isolated from tongue and subgingival areas of periodontitis patients to antifungal agents. The aim of the study was to determine: (1) the distribution of different Candida species in the tongue and subgingival samples of periodontitis patients; (2) the susceptibility of Candida albicans strains from tongue and subgingival biofilm to the effects of commonly used antifungal agents: fluconazole, amphotericin B and itraconazole; (3) the correlation between the susceptibility of Candida albicans and clinical periodontal parameters. Tongue and subgingival biofilm samples of periodontitis subjects (N = 163) were examined. Susceptibility was tested when the same Candida species was isolated from both sites (17 subjects). Candida spp. were isolated in 23.3% of tongue and 21.5% of the subgingival samples. All isolates were susceptible to amphotericin B, while 64.71% of tongue and 52.94% of subgingival isolates were susceptible to fluconazole. A low frequency of itraconazole susceptibility was observed for tongue (17.64%) and subgingival isolates (11.76%). The correlations between full-mouth plaque score and Minimal Inhibitory Concentration (MIC) for tongue isolates were strongly positive for all antimycotics. Positive correlation was also observed between moderate periodontal destruction and MICs for tongue and subgingival isolates. The susceptibility of C. albicans to antifungals correlate with oral hygiene and moderate periodontal destruction. There is no difference in antifungal susceptibility between tongue and subgingival isolates.
Collapse
Affiliation(s)
- Milena Radunovic
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia;
| | - Milena Barac
- Department of Oral Medicine and Periodontology, School of Dental Medicine, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (M.B.); (A.P.)
| | - Jovana Kuzmanovic Pficer
- Department for Medical Statistics and Informatics, School of Dental Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia;
| | - Dusan Pavlica
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia;
| | - Aleksandar Jovanovic
- Clinic of Urology, University Clinical Center of Serbia, Resavska 51, 11000 Belgrade, Serbia;
| | - Ana Pucar
- Department of Oral Medicine and Periodontology, School of Dental Medicine, University of Belgrade, Dr Subotica 4, 11000 Belgrade, Serbia; (M.B.); (A.P.)
| | - Sanja Petrovic
- Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia;
| |
Collapse
|
8
|
White AE, de-Dios T, Carrión P, Bonora GL, Llovera L, Cilli E, Lizano E, Khabdulina MK, Tleugabulov DT, Olalde I, Marquès-Bonet T, Balloux F, Pettener D, van Dorp L, Luiselli D, Lalueza-Fox C. Genomic Analysis of 18th-Century Kazakh Individuals and Their Oral Microbiome. BIOLOGY 2021; 10:biology10121324. [PMID: 34943238 PMCID: PMC8698332 DOI: 10.3390/biology10121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022]
Abstract
The Asian Central Steppe, consisting of current-day Kazakhstan and Russia, has acted as a highway for major migrations throughout history. Therefore, describing the genetic composition of past populations in Central Asia holds value to understanding human mobility in this pivotal region. In this study, we analyse paleogenomic data generated from five humans from Kuygenzhar, Kazakhstan. These individuals date to the early to mid-18th century, shortly after the Kazakh Khanate was founded, a union of nomadic tribes of Mongol Golden Horde and Turkic origins. Genomic analysis identifies that these individuals are admixed with varying proportions of East Asian ancestry, indicating a recent admixture event from East Asia. The high amounts of DNA from the anaerobic Gram-negative bacteria Tannerella forsythia, a periodontal pathogen, recovered from their teeth suggest they may have suffered from periodontitis disease. Genomic analysis of this bacterium identified recently evolved virulence and glycosylation genes including the presence of antibiotic resistance genes predating the antibiotic era. This study provides an integrated analysis of individuals with a diet mostly based on meat (mainly horse and lamb), milk, and dairy products and their oral microbiome.
Collapse
Affiliation(s)
- Anna E. White
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Toni de-Dios
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Pablo Carrión
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Gian Luca Bonora
- ISMEO—International Association for Mediterranean and East Studies, 00186 Rome, Italy;
| | - Laia Llovera
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy;
| | - Esther Lizano
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Maral K. Khabdulina
- K.A. Akishev Institute of Archaeology, L.N. Gumilev Eurasian National University, Nur-Sultan 010000, Kazakhstan; (M.K.K.); (D.T.T.)
| | - Daniyar T. Tleugabulov
- K.A. Akishev Institute of Archaeology, L.N. Gumilev Eurasian National University, Nur-Sultan 010000, Kazakhstan; (M.K.K.); (D.T.T.)
| | - Iñigo Olalde
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Centro de Investigación “Lascaray” Ikergunea, BIOMICs Research Group, Universidad del País Vasco, 01006 Vitoria-Gasteiz, Spain
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
| | - François Balloux
- UCL Genetics Institute, Department of Genetics Evolution & Environment, University College London, London WC1E 6BT, UK;
| | - Davide Pettener
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Lucy van Dorp
- UCL Genetics Institute, Department of Genetics Evolution & Environment, University College London, London WC1E 6BT, UK;
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy;
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| |
Collapse
|
9
|
Lunde TM, Hjerde E, Al-Haroni M. Prevalence, diversity and transferability of the Tn 916-Tn 1545 family ICE in oral streptococci. J Oral Microbiol 2021; 13:1896874. [PMID: 33796228 PMCID: PMC7971310 DOI: 10.1080/20002297.2021.1896874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: The Tn916-Tn1545 family of Integrative Conjugative Elements (ICE) are mobile genetic elements (MGEs) that play a role in the spread of antibiotic resistance genes. The Tn916 harbors the tetracycline resistance gene tet(M) and it has been reported in various bacterial species. The increase in the levels of tetracycline resistance among oral streptococci is of great concern primarily due to the abundance of these species in the oral cavity and their ability to act as reservoirs for antibiotic resistance genes.Methods: In the current study, we screened 100 Norwegian clinical oral streptococcal isolates for the presence and diversity of the Tn916-Tn1545 family. In addition, we investigated the transferability the elements, and the associated transfer frequencies.Results: We observed that 21 isolates harboured the Tn916-Tn1545 family and that two of these elements were the novel Tn6815 and Tn6816. The most prevalent member of the Tn916 -Tn1545 family observed in the Norwegian clinical oral streptococcal isolates was the wild type Tn916.Conclusion: The detection of other members of this family of ICE and varying transfer frequencies suggests high versatility of the Tn916 element in oral streptococci in Norway.
Collapse
Affiliation(s)
- Tracy Munthali Lunde
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø
| | - Erik Hjerde
- bCenter for Bioinformatics, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Mohammed Al-Haroni
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø
| |
Collapse
|
10
|
Arredondo A, Blanc V, Mor C, Nart J, León R. Tetracycline and multidrug resistance in the oral microbiota: differences between healthy subjects and patients with periodontitis in Spain. J Oral Microbiol 2020; 13:1847431. [PMID: 33391624 PMCID: PMC7717685 DOI: 10.1080/20002297.2020.1847431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction: Antibiotic resistance is widely found even among bacterial populations not having been exposed to selective pressure by antibiotics, such as tetracycline. In this study we analyzed the tetracycline-resistant subgingival microbiota of healthy subjects and of patients with periodontitis, comparing the prevalence of tet genes and their multidrug resistance profiles. Methods: Samples from 259 volunteers were analyzed, obtaining 813 tetracycline-resistant isolates. The prevalence of 12 antibiotic resistance genes was assessed, and multidrug profiles were built. Each isolate was identified by 16S rRNA sequencing. Differences in qualitative data and quantitative data were evaluated using the chi-square test and the Mann-Whitney-U test, respectively. Results: tet(M) was the most frequently detected tet gene (52.03%). We observed significant differences between the prevalence of tet(M), tet(W), tet(O), tet(32) and tet(L) in both populations studied. Multidrug resistance was largely observed, with resistance to kanamycin being the most detected (83.64%). There were significant differences between the populations in the prevalence of kanamycin, chloramphenicol, and cefotaxime resistance. Resistant isolates showed significantly different prevalence between the two studied groups. Conclusion: The high prevalence of multidrug resistance and tetracycline resistance genes found in the subgingival microbiota, highlights the importance of performing wider and more in-depth analysis of antibiotic resistance in the oral microbiota.
Collapse
Affiliation(s)
- Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain.,Departament De Genètica I Microbiologia, Universitat Autònoma De Barcelona, Bellaterra, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| | - Carolina Mor
- Department of Periodontology, Universitat Internacional De Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional De Catalunya, Barcelona, Spain
| | - Rubén León
- Department of Microbiology, Dentaid Research Center, Cerdanyola Del Vallès, Spain
| |
Collapse
|
11
|
Bravo-Lopez M, Villa-Islas V, Rocha Arriaga C, Villaseñor-Altamirano AB, Guzmán-Solís A, Sandoval-Velasco M, Wesp JK, Alcantara K, López-Corral A, Gómez-Valdés J, Mejía E, Herrera A, Meraz-Moreno A, Moreno-Cabrera MDLL, Moreno-Estrada A, Nieves-Colón MA, Olvera J, Pérez-Pérez J, Iversen KH, Rasmussen S, Sandoval K, Zepeda G, Ávila-Arcos MC. Paleogenomic insights into the red complex bacteria Tannerella forsythia in Pre-Hispanic and Colonial individuals from Mexico. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190580. [PMID: 33012233 PMCID: PMC7702795 DOI: 10.1098/rstb.2019.0580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The 'red complex' is an aggregate of three oral bacteria (Tannerella forsythia, Porphyromonas gingivalis and Treponema denticola) responsible for severe clinical manifestation of periodontal disease. Here, we report the first direct evidence of ancient T.forsythia DNA in dentin and dental calculus samples from archaeological skeletal remains that span from the Pre-Hispanic to the Colonial period in Mexico. We recovered twelve partial ancient T. forsythia genomes and observed a distinct phylogenetic placement of samples, suggesting that the strains present in Pre-Hispanic individuals likely arrived with the first human migrations to the Americas and that new strains were introduced with the arrival of European and African populations in the sixteenth century. We also identified instances of the differential presence of genes between periods in the T. forsythia ancient genomes, with certain genes present in Pre-Hispanic individuals and absent in Colonial individuals, and vice versa. This study highlights the potential for studying ancient T. forsythia genomes to unveil past social interactions through analysis of disease transmission. Our results illustrate the long-standing relationship between this oral pathogen and its human host, while also unveiling key evidence to understand its evolutionary history in Pre-Hispanic and Colonial Mexico. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- Miriam Bravo-Lopez
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| | - Viridiana Villa-Islas
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| | - Carolina Rocha Arriaga
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| | - Ana B. Villaseñor-Altamirano
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| | - Axel Guzmán-Solís
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| | - Marcela Sandoval-Velasco
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Julie K. Wesp
- Department of Sociology and Anthropology, North Carolina State University, Raleigh, NC 27695, USA
| | - Keitlyn Alcantara
- Department of Anthropology, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Aurelio López-Corral
- Department of Archeology, National Institute of Anthropology and History, Tlaxcala, 90000, Mexico
| | | | - Elizabeth Mejía
- National Institute of Anthropology and History, Querétaro, 76000, Mexico
| | - Alberto Herrera
- National Institute of Anthropology and History, Querétaro, 76000, Mexico
| | | | | | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity, Unit of Advanced Genomics (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36824, Mexico
| | - Maria A. Nieves-Colón
- National Laboratory of Genomics for Biodiversity, Unit of Advanced Genomics (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36824, Mexico
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Joel Olvera
- Graduate Program of Physical Anthropology, National School of Anthropology and History, Mexico City, 14030, Mexico
| | - Julia Pérez-Pérez
- National School of Anthropology and History, Mexico City, 14030, Mexico
| | - Katrine Højholt Iversen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Karla Sandoval
- National Laboratory of Genomics for Biodiversity, Unit of Advanced Genomics (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36824, Mexico
| | - Gabriela Zepeda
- National Institute of Anthropology and History, Guanajuato, 36250, Mexico
| | - María C. Ávila-Arcos
- International Laboratory for Human Genome Research, National Autonomous University of México (UNAM), Querétaro, 76230, Mexico
| |
Collapse
|
12
|
Almeida VDSM, Azevedo J, Leal HF, de Queiroz ATL, da Silva Filho HP, Reis JN. Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. PLoS One 2020; 15:e0239664. [PMID: 32991620 PMCID: PMC7523989 DOI: 10.1371/journal.pone.0239664] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES This study aims to describe the oral microbiome diversity and prevalence of ARGs in periodontal health and disease. BACKGROUND The human oral cavity harbors a complex microbial community known as the oral microbiome. These organisms are regularly exposed to selective pressures, such as the usage of antibiotics, which drive evolution and acquisition of antibiotic resistance genes (ARGs). Resistance among oral bacteria jeopardizes not only antibiotic therapy for oral infections, but also extra-oral infections caused by bacterial translocation. METHODS We carried out a cross-sectional investigation. Saliva and subgingival plaque samples were collected during a clinical exam. 16S rRNA gene sequencing was performed to assess microbial diversity. Resistance genes were identified through PCR assays. RESULTS Of the 110 participants, only 22.7% had healthy periodontium, while the majority was diagnosed with gingivitis (55.4%) and chronic periodontitis (21.8%). The composition of the oral microbiota differed from healthy and diseased samples, being Streptococcus spp. and Rothia spp. predominant in periodontal disease. Regarding ARGs, 80 (72.7%) samples were positive for at least one of genes screened, erm being the most frequent variant (58.2%), followed by blaTEM (16.4%), mecA (2.7%), pbp2b and aac(6 ') (1.8%). Neither genes coding resistance to carbapenems nor metronidazole were detected. CONCLUSIONS Our findings indicate that there are no significant differences in terms of taxonomic enrichment between healthy and diseased oral microbiomes. However, samples retrieved from healthy patients had a more diverse microbial community, whereas diseased samples have lower taxonomic diversity. We have also identified clinically relevant ARGs, providing baseline information to guide antibiotic prescription in dentistry.
Collapse
Affiliation(s)
| | - Jailton Azevedo
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Helena Ferreira Leal
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | | | | | - Joice Neves Reis
- School of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| |
Collapse
|
13
|
Arredondo A, Blanc V, Mor C, Nart J, León R. Resistance to β-lactams and distribution of β-lactam resistance genes in subgingival microbiota from Spanish patients with periodontitis. Clin Oral Investig 2020; 24:4639-4648. [PMID: 32495224 DOI: 10.1007/s00784-020-03333-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this study was to analyze the distribution of β-lactamase genes and the multidrug resistance profiles in β-lactam-resistant subgingival bacteria from patients with periodontitis. MATERIALS AND METHODS Subgingival samples were obtained from 130 Spanish patients with generalized periodontitis stage III or IV. Samples were grown on agar plates with amoxicillin or cefotaxime and incubated in anaerobic and microaerophilic conditions. Isolates were identified to the species level by the sequencing of their 16S rRNA gene. A screening for the following β-lactamase genes was performed by the polymerase chain reaction (PCR) technique: blaTEM, blaSHV, blaCTX-M, blaCfxA, blaCepA, blaCblA, and blaampC. Additionally, multidrug resistance to tetracycline, chloramphenicol, streptomycin, erythromycin, and kanamycin was assessed, growing the isolates on agar plates with breakpoint concentrations of each antimicrobial. RESULTS β-lactam-resistant isolates were found in 83% of the patients. Seven hundred and thirty-seven isolates from 35 different genera were obtained, with Prevotella and Streptococcus being the most identified genera. blaCfxA was the gene most detected, being observed in 24.8% of the isolates, followed by blaTEM (12.9%). Most of the isolates (81.3%) were multidrug-resistant. CONCLUSIONS This study shows that β-lactam resistance is widespread among Spanish patients with periodontitis. Furthermore, it suggests that the subgingival commensal microbiota might be a reservoir of multidrug resistance and β-lactamase genes. CLINICAL RELEVANCE Most of the samples yielded β-lactam-resistant isolates, and 4 different groups of bla genes were detected among the isolates. Most of the isolates were also multidrug-resistant. The results show that, although β-lactams may still be effective, their future might be hindered by the presence of β-lactam-resistant bacteria and the presence of transferable bla genes.
Collapse
Affiliation(s)
- Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain.,Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain
| | - Carolina Mor
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Rubén León
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain.
| |
Collapse
|
14
|
Pérez-Serrano RM, Domínguez-Pérez RA, Ayala-Herrera JL, Luna-Jaramillo AE, Zaldivar-Lelo de Larrea G, Solís-Sainz JC, García-Solís P, Loyola-Rodríguez JP. Dental plaque microbiota of pet owners and their dogs as a shared source and reservoir of antimicrobial resistance genes. J Glob Antimicrob Resist 2020; 21:285-290. [PMID: 32315776 DOI: 10.1016/j.jgar.2020.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE This investigation aimed to detect coincidences in the antimicrobial resistance genes (ARG) profiles between members of a group living in a household and to compare them between other groups in order to establish if an exchange of ARG occurs and if dental plaque microbiota can be considered as a source and reservoir of ARG that can be shared between humans and pets. METHODS One hundred sixty dental plaque samples were obtained from four groups: Shelter dogs group (n=20), adult pet owners and dogs group (AD group, n=40), adult pet owners, children and dogs group (ACD group, n=60), and adult non-pet owners and children group (AC group, n=40). DNA was obtained, and specific primers with polymerase chain reaction for ARG detection were used. RESULTS The AD group exhibited the most coincidences in their ARG profiles, 14 (70%) of the 20 profiles coincided in 100% followed by the ACD group with 9 (45%) coincidences. While the AC group was the less coincident group, only 7 (35%) of the 20 profiles coincided. tetM was the most prevalent with 53.1%, followed by tetQ with 52.5% and cfxA with 51.2%, while the less prevalent were tetW with 31.8%, blaTEM-1 with 27.5%, and ermC with 18.7%. CONCLUSION Dental plaque microbiota can be considered as a source and reservoir of ARG that can be shared between humans and dogs living in a household. The dogs seem to play an important role in the transference of ARG, and the children appear to be the most affected by carrying the most significant number of ARG.
Collapse
Affiliation(s)
- Rosa Martha Pérez-Serrano
- Laboratorio de Investigación Odontológica Multidisciplinaria, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Queretaro, Mexico
| | - Rubén Abraham Domínguez-Pérez
- Laboratorio de Investigación Odontológica Multidisciplinaria, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Queretaro, Mexico.
| | | | - Alejandra Elizabeth Luna-Jaramillo
- Laboratorio de Investigación Odontológica Multidisciplinaria, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Queretaro, Mexico
| | | | - Juan Carlos Solís-Sainz
- Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Queretaro, Mexico
| | - Pablo García-Solís
- Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Santiago de Queretaro, Mexico
| | | |
Collapse
|
15
|
Afrasiabi S, Pourhajibagher M, Bahador A. The Photomodulation Activity of Metformin Against Oral Microbiome. J Lasers Med Sci 2019; 10:241-250. [PMID: 31749953 PMCID: PMC6817791 DOI: 10.15171/jlms.2019.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Periodontitis is one of the most common inflammatory diseases of the periodontium, which results in the inflammatory destruction of supporting structures around teeth and is closely associated with the development of systemic disease. Due to a wide variety of antibiotic resistance periodontopathic bacteria, photodynamic therapy (PDT) is a non-invasive adjunctive therapeutic modality that is capable of destroying the whole range of microbes. Metformin (Metf) is an antidiabetic drug, and recent studies suggest that cancer patients who receive Metf and are exposed to radiotherapy and chemotherapy show better outcomes. Our surveys in this review introduce Metf as a potent stimulus in increasing the efficacy of PDT in the induction of destruction in microbial cells.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
El-Rami F, Kong X, Parikh H, Zhu B, Stone V, Kitten T, Xu P. Analysis of essential gene dynamics under antibiotic stress in Streptococcus sanguinis. MICROBIOLOGY-SGM 2019; 164:173-185. [PMID: 29393020 PMCID: PMC5882076 DOI: 10.1099/mic.0.000595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The paradoxical response of Streptococcus sanguinis to drugs prescribed for dental and clinical practices has complicated treatment guidelines and raised the need for further investigation. We conducted a high throughput study on concomitant transcriptome and proteome dynamics in a time course to assess S. sanguinis behaviour under a sub-inhibitory concentration of ampicillin. Temporal changes at the transcriptome and proteome level were monitored to cover essential genes and proteins over a physiological map of intricate pathways. Our findings revealed that translation was the functional category in S. sanguinis that was most enriched in essential proteins. Moreover, essential proteins in this category demonstrated the greatest conservation across 2774 bacterial proteomes, in comparison to other essential functional categories like cell wall biosynthesis and energy production. In comparison to non-essential proteins, essential proteins were less likely to contain ‘degradation-prone’ amino acids at their N-terminal position, suggesting a longer half-life. Despite the ampicillin-induced stress, the transcriptional up-regulation of amino acid-tRNA synthetases and proteomic elevation of amino acid biosynthesis enzymes favoured the enriched components of essential proteins revealing ‘proteomic signatures’ that can be used to bridge the genotype–phenotype gap of S. sanguinis under ampicillin stress. Furthermore, we identified a significant correlation between the levels of mRNA and protein for essential genes and detected essential protein-enriched pathways differentially regulated through a persistent stress response pattern at late time points. We propose that the current findings will help characterize a bacterial model to study the dynamics of essential genes and proteins under clinically relevant stress conditions.
Collapse
Affiliation(s)
- Fadi El-Rami
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiangzhen Kong
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Hardik Parikh
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Victoria Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ping Xu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
17
|
Lunde TM, Roberts AP, Al-Haroni M. Determination of copy number and circularization ratio of Tn 916-Tn 1545 family of conjugative transposons in oral streptococci by droplet digital PCR. J Oral Microbiol 2018; 11:1552060. [PMID: 30598735 PMCID: PMC6292373 DOI: 10.1080/20002297.2018.1552060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 11/09/2022] Open
Abstract
Background: Tn916 and Tn1545 are paradigms of a large family of related, broad host range, conjugative transposons that are widely distributed in bacteria and contribute to the spread of antibiotic resistance genes (ARGs). Variation in the copy number (CN) of Tn916-Tn1545 elements and the circularization ratio (CR) may play an important role in propagation of ARGs carried by these elements. Objectives and Design: In this study, the CN and CR of Tn916-Tn1545 elements in oral streptococci were determined using droplet digital PCR (ddPCR). In addition, we investigated the influence of tetracycline on the CR of Tn916-Tn1545 elements. Results: The ddPCR assay designed in this study is a reliable way to rapidly determine CN and CR of Tn916-Tn1545 elements. Conclusions: Our data also suggest that Tn916-Tn1545 elements are generally stable without selective pressure in the clinical oral Streptococcus strains investigated in this study.
Collapse
Affiliation(s)
- Tracy Munthali Lunde
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Adam P Roberts
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.,Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mohammed Al-Haroni
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
18
|
Domínguez-Pérez RA, De la Torre-Luna R, Ahumada-Cantillano M, Vázquez-Garcidueñas MS, Pérez-Serrano RM, Martínez-Martínez RE, Guillén-Nepita AL. Detection of the antimicrobial resistance genes blaTEM-1, cfxA, tetQ, tetM, tetW and ermC in endodontic infections of a Mexican population. J Glob Antimicrob Resist 2018; 15:20-24. [DOI: 10.1016/j.jgar.2018.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 12/28/2022] Open
|
19
|
Jiang S, Zeng J, Zhou X, Li Y. Drug Resistance and Gene Transfer Mechanisms in Respiratory/Oral Bacteria. J Dent Res 2018; 97:1092-1099. [PMID: 29928825 DOI: 10.1177/0022034518782659] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Growing evidence suggests the existence of new antibiotic resistance mechanisms. Recent studies have revealed that quorum-quenching enzymes, such as MacQ, are involved in both antibiotic resistance and cell-cell communication. Furthermore, some small bacterial regulatory RNAs, classified into RNA attenuators and small RNAs, modulate the expression of resistance genes. For example, small RNA sprX, can shape bacterial resistance to glycopeptide antibiotics via specific downregulation of protein SpoVG. Moreover, some bacterial lipocalins capture antibiotics in the extracellular space, contributing to severe multidrug resistance. But this defense mechanism may be influenced by Agr-regulated toxins and liposoluble vitamins. Outer membrane porin proteins and efflux pumps can influence intracellular concentrations of antibiotics. Alterations in target enzymes or antibiotics prevent binding to targets, which act to confer high levels of resistance in respiratory/oral bacteria. As described recently, horizontal gene transfer, including conjugation, transduction and transformation, is common in respiratory/oral microflora. Many conjugative transposons and plasmids discovered to date encode antibiotic resistance proteins and can be transferred from donor bacteria to transient recipient bacteria. New classes of mobile genetic elements are also being identified. For example, nucleic acids that circulate in the bloodstream (circulating nucleic acids) can integrate into the host cell genome by up-regulation of DNA damage and repair pathways. With multidrug resistant bacteria on the rise, new drugs have been developed to combate bacterial antibiotic resistance, such as innate defense regulators, reactive oxygen species and microbial volatile compounds. This review summaries various aspects and mechanisms of antibiotic resistance in the respiratory/oral microbiota. A better understanding of these mechanisms will facilitate minimization of the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- S Jiang
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Zeng
- 2 Department of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - X Zhou
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Plakunov VK, Mart’yanov SV, Teteneva NA, Zhurina MV. Controlling of microbial biofilms formation: Anti- and probiofilm agents. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
21
|
Beacher N, Sweeney MP, Bagg J. Dentists, antibiotics and Clostridium difficile-associated disease. Br Dent J 2015; 219:275-9. [DOI: 10.1038/sj.bdj.2015.720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2015] [Indexed: 01/07/2023]
|
22
|
Periodontal pathogens and tetracycline resistance genes in subgingival biofilm of periodontally healthy and diseased Dominican adults. Clin Oral Investig 2015; 20:349-56. [PMID: 26121972 PMCID: PMC4762914 DOI: 10.1007/s00784-015-1516-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
Objective The objective of this study was to compare the periodontopathogen prevalence and tetracycline resistance genes in Dominican patients with different periodontal conditions. Methods Seventy-seven samples were collected from healthy, gingivitis, chronic (CP) and aggressive (AgP) periodontitis patients. Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Prevotella intermedia, Parvimonas micra, Eikenella corrodens and Dialister pneumosintes and 11 resistance genes were studied by PCR. P. gingivalis fimA genotype was determined. Results In healthy patients, P. micra and P. intermedia were the most and least frequently detected, respectively. T. forsythia and E. corrodens appeared in 100 % of gingivitis patients. Red complex, D. pneumosintes and E. corrodens were significantly more prevalent in CP compared to healthy patients. F. nucleatum and T. denticola were detected more frequently in AgP. A. actinomycetemcomitans was the most rarely observed in all groups. The fimA II genotype was the most prevalent in periodontitis patients. Seven tetracycline-resistant genes were detected. tet(Q), tet(32) and tet(W) showed the greatest prevalence. tet(32) was significantly more prevalent in CP than in healthy patients. Conclusions Red complex bacteria and D. pneumosintes were significantly the most prevalent species among periodontitis patients. T. forsythia was the most frequently detected in this population. To our knowledge, this is the first study describing the tet(32) gene in subgingival biofilm from healthy and periodontally diseased subjects. Clinical relevance This study contributes to the knowledge on the subgingival microbiota and its resistance genes of a scarcely studied world region. Knowing the prevalence of resistance genes could impact on their clinical prescription and could raise awareness to the appropriate use of antibiotics. Electronic supplementary material The online version of this article (doi:10.1007/s00784-015-1516-2) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Moraes LC, Só MVR, Dal Pizzol TDS, Ferreira MBC, Montagner F. Distribution of Genes Related to Antimicrobial Resistance in Different Oral Environments: A Systematic Review. J Endod 2015; 41:434-41. [DOI: 10.1016/j.joen.2014.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 10/12/2014] [Accepted: 12/16/2014] [Indexed: 10/23/2022]
|
24
|
Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 2015; 34:877-86. [PMID: 25630538 DOI: 10.1007/s10096-015-2323-z] [Citation(s) in RCA: 467] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/09/2015] [Indexed: 01/30/2023]
Abstract
Biofilms are heterogeneous structures composed of bacterial cells surrounded by a matrix and attached to solid surfaces. The bacteria here are 100 to 1,000 times more tolerant to antimicrobials than corresponding planktonic cells. Biofilms can be difficult to eradicate when they cause biofilm-related diseases, e.g., implant infections, cystic fibrosis, urinary tract infections, and periodontal diseases. A number of phenotypic features of the biofilm can be involved in biofilm-specific tolerance and resistance. Little is known about the molecular mechanisms involved. The current review deals with both phenotypic and molecular mechanisms of biofilm-specific antibiotic tolerance and resistance.
Collapse
Affiliation(s)
- I Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, P.O. Box 1052 Blindern, Oslo, 0316, Norway,
| |
Collapse
|
25
|
von Wintersdorff CJH, Penders J, Stobberingh EE, Oude Lashof AML, Hoebe CJPA, Savelkoul PHM, Wolffs PFG. High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. Emerg Infect Dis 2014; 20:649-57. [PMID: 24655888 DOI: 10.3201/eid.2004.131718] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We investigated the effect of international travel on the gut resistome of 122 healthy travelers from the Netherlands by using a targeted metagenomic approach. Our results confirm high acquisition rates of the extended-spectrum β-lactamase encoding gene blaCTX-M, documenting a rise in prevalence from 9.0% before travel to 33.6% after travel (p<0.001). The prevalence of quinolone resistance encoding genes qnrB and qnrS increased from 6.6% and 8.2% before travel to 36.9% and 55.7% after travel, respectively (both p<0.001). Travel to Southeast Asia and the Indian subcontinent was associated with the highest acquisition rates of qnrS and both blaCTX-M and qnrS, respectively. Investigation of the associations between the acquisitions of the blaCTX-M and qnr genes showed that acquisition of a blaCTX-M gene was not associated with that of a qnrB (p = 0.305) or qnrS (p = 0.080) gene. These findings support the increasing evidence that travelers contribute to the spread of antimicrobial drug resistance.
Collapse
|
26
|
von Wintersdorff CJH, Penders J, Stobberingh EE, Oude Lashof AML, Hoebe CJPA, Savelkoul PHM, Wolffs PFG. High rates of antimicrobial drug resistance gene acquisition after international travel, The Netherlands. Emerg Infect Dis 2014. [PMID: 24655888 PMCID: PMC3966371 DOI: 10.3201/eid2004.131718] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigated the effect of international travel on the gut resistome of 122 healthy travelers from the Netherlands by using a targeted metagenomic approach. Our results confirm high acquisition rates of the extended-spectrum β-lactamase encoding gene blaCTX-M, documenting a rise in prevalence from 9.0% before travel to 33.6% after travel (p<0.001). The prevalence of quinolone resistance encoding genes qnrB and qnrS increased from 6.6% and 8.2% before travel to 36.9% and 55.7% after travel, respectively (both p<0.001). Travel to Southeast Asia and the Indian subcontinent was associated with the highest acquisition rates of qnrS and both blaCTX-M and qnrS, respectively. Investigation of the associations between the acquisitions of the blaCTX-M and qnr genes showed that acquisition of a blaCTX-M gene was not associated with that of a qnrB (p = 0.305) or qnrS (p = 0.080) gene. These findings support the increasing evidence that travelers contribute to the spread of antimicrobial drug resistance.
Collapse
|
27
|
Molecular identification and quantification of tetracycline and erythromycin resistance genes in Spanish and Italian retail cheeses. BIOMED RESEARCH INTERNATIONAL 2014; 2014:746859. [PMID: 25302306 PMCID: PMC4180643 DOI: 10.1155/2014/746859] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 11/17/2022]
Abstract
Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is, tet(K), tet(L), tet(M), tet(O), tet(S), and tet(W), and two with respect to erythromycin, that is, erm(B) and erm(F). The most common resistance genes in the analysed cheeses were tet(S), tet(W), tet(M), and erm(B). The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to 10.18log10/g). DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions for tet(W)-carrying cheeses, though the similarity of the sequences suggests this tet(W) to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants.
Collapse
|
28
|
Søraas A, Olsen I, Sundsfjord A, Handal T, Bjørang O, Jenum PA. Extended-spectrum beta-lactamase-producing bacteria are not detected in supragingival plaque samples from human fecal carriers of ESBL-producing Enterobacteriaceae. J Oral Microbiol 2014; 6:24026. [PMID: 25206941 PMCID: PMC4141940 DOI: 10.3402/jom.v6.24026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The prevalence of infections caused by Cefotaximase-Munich (CTX-M)-type extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) has rapidly increased during the past 15 years. Enterobacteriaceae are commonly found in the gastrointestinal tract and long-term intestinal carriage is considered important for the spread of ESBL and as a source of clinical infections. Oral biofilm such as supragingival plaque is known to contain numerous antibiotic resistance determinants and may also represent a poorly investigated site for ESBL carriage and further spread. OBJECTIVE To investigate possible carriage of ESBL-producing bacteria in supragingival plaque of known fecal carriers of these bacteria. DESIGN We screened for the presence of aerobic and anaerobic ESBL-producing bacteria and bla CTX-M in supragingival plaque samples from healthy human adults with culture-verified fecal carriage of CTX-M-producing Escherichia coli. The presence or absence of Enterobacteriaceae and ESBL-producing bacteria in plaque samples was evaluated using culture-based methods and consensus CTX-M PCR. RESULTS Oral samples were obtained from 17 participants with known previous carriage of ESBL-producing E. coli. No ESBL-producing bacteria or ESBL genes were detected using culture-based and molecular methods. One colony of Rahnella aquatilis harboring the class A ESBL gene bla RAHN-1/2 was identified in an oral sample from one of the participants. CONCLUSION This pilot study supports the notion that the presence of CTX-M-producing bacteria is uncommon in oral plaque of healthy human adult fecal carriers. Due to the limited number of persons tested, a low prevalence of oral ESBL-carriage in healthy adults or carriage in selected groups of patients cannot be excluded. To our knowledge, this is the first description of an R. aquatilis with the RAHN-1/2 gene in the oral cavity.
Collapse
Affiliation(s)
- Arne Søraas
- Department of Medical Microbiology, Vestre Viken Hospital Trust, Bærum, Norway
| | - Ingar Olsen
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Arnfinn Sundsfjord
- Department of Microbiology and Infection Control, Reference Centre for Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway ; Department of Medical Biology, Research Group for Host-Microbe Interactions, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Trude Handal
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Ola Bjørang
- Department of Medical Microbiology, Vestre Viken Hospital Trust, Bærum, Norway
| | - Pål Arne Jenum
- Department of Medical Microbiology, Vestre Viken Hospital Trust, Bærum, Norway ; Department of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Penders J, Stobberingh EE, Savelkoul PHM, Wolffs PFG. The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 2013; 4:87. [PMID: 23616784 PMCID: PMC3627978 DOI: 10.3389/fmicb.2013.00087] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/27/2013] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is amongst the most densely populated microbial ecosystem on earth. While the microbiome exerts numerous health beneficial functions, the high density of micro-organisms within this ecosystem also facilitates horizontal transfer of antimicrobial resistance (AMR) genes to potential pathogenic bacteria. Over the past decades antibiotic susceptibility testing of specific indicator bacteria from the microbiome, such as Escherichia coli, has been the method of choice in most studies. These studies have greatly enlarged our understanding on the prevalence and distribution of AMR and associated risk factors. Recent studies using (functional) metagenomics, however, highlighted the unappreciated diversity of AMR genes in the human microbiome and identified genes that had not been described previously. Next to metagenomics, more targeted approaches such as polymerase chain reaction for detection and quantification of AMR genes within a population are promising, in particular for large-scale epidemiological screening. Here we present an overview of the indigenous microbiota as a reservoir of AMR genes, the current knowledge on this “resistome” and the recent and upcoming advances in the molecular diagnostic approaches to unravel this reservoir.
Collapse
Affiliation(s)
- John Penders
- Department of Medical Microbiology, Maastricht University Medical Centre+ Maastricht, Netherlands
| | | | | | | |
Collapse
|
30
|
Detection of antibiotic resistance genes in samples from acute and chronic endodontic infections and after treatment. Arch Oral Biol 2013; 58:1123-8. [PMID: 23591127 DOI: 10.1016/j.archoralbio.2013.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/04/2013] [Accepted: 03/20/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The purpose of this study was twofold: survey samples from acute and chronic endodontic infections for the presence of genes encoding resistance to beta-lactams, tetracycline and erythromycin, and evaluate the ability of treatment to eliminate these genes from root canals. DESIGN DNA extracts from samples of abscess aspirates (n=25) and root canals of teeth with asymptomatic apical periodontitis (n=24) were used as template for direct detection of the genes blaTEM, cfxA, tetM, tetQ, tetW, and ermC using real-time polymerase chain reaction (PCR). Bacterial presence was determined using PCR with universal bacterial primers. Root canals of the asymptomatic cases were also sampled and evaluated after chemomechanical procedures using NiTi instruments with 2.5% NaOCl irrigation. RESULTS All abscess and initial root canal samples were positive for bacteria. At least one of the target resistance genes was found in 36% of the abscess samples and 67% of the asymptomatic cases. The most prevalent genes in abscesses were blaTEM (24%) and ermC (24%), while tetM (42%) and tetW (29%) prevailed in asymptomatic cases. The blaTEM gene was significantly associated with acute cases (p=0.02). Conversely, tetM was significantly more prevalent in asymptomatic cases (p=0.008). Treatment eliminated resistance genes from most cases. CONCLUSIONS Acute and chronic endodontic infections harboured resistance genes for 3 classes of widely used antibiotics. In most cases, treatment was effective in eliminating these genes, but there were a few cases in which they persisted. The implications of persistence are unknown. Direct detection of resistance genes in abscesses may be a potential method for rapid diagnosis and establishment of proactive antimicrobial therapy.
Collapse
|
31
|
Soares GMS, Figueiredo LC, Faveri M, Cortelli SC, Duarte PM, Feres M. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. J Appl Oral Sci 2013; 20:295-309. [PMID: 22858695 PMCID: PMC3881775 DOI: 10.1590/s1678-77572012000300002] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole) and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections.
Collapse
Affiliation(s)
- Geisla Mary Silva Soares
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Rams TE, Degener JE, van Winkelhoff AJ. Prevalence of β-lactamase-producing bacteria in human periodontitis. J Periodontal Res 2012; 48:493-9. [DOI: 10.1111/jre.12031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2012] [Indexed: 12/17/2022]
Affiliation(s)
- T. E. Rams
- Department of Periodontology and Oral Implantology and Oral Microbiology Testing Service Laboratory; Temple University School of Dentistry; Philadelphia PA USA
- Department of Microbiology and Immunology; Temple University School of Medicine; Philadelphia PA USA
- Department of Oral Microbiology; Center for Dentistry and Oral Hygiene; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - J. E. Degener
- Department of Medical Microbiology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - A. J. van Winkelhoff
- Department of Oral Microbiology; Center for Dentistry and Oral Hygiene; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
- Department of Medical Microbiology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| |
Collapse
|